A Reinforcement Learning Algorithm for Resource
Provisioning in Mobile Edge Computing Network

Huynh Thi Thanh Binh', Nguyen Phi Lef, Nguyen Binh Minh, Trinh Thu Haif, Ngo Quang Minh', Do Bao Son*,
School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam
*Faculty of Information Technology, University of Transport Technology, Vietnam
Email: {binhht, lenp, minhnb} @soict.hust.edu.vn
Email: {hai.tt184255, minh.nq173554} @sis.hust.edu.vn
Email: sondb@utt.edu.vn

Abstract—Mobile edge computing (MEC) is a model that
allows integration of computing power into telecommunications
networks, to improve communication and data processing ef-
ficiency. In general, providing power to ensure the computing
power of edge servers in the MEC network is very important. In
many cases, ensuring continuous power supply to the system is
not possible because servers are deployed in hard-to-reach areas
such as outlying areas, forests, islands, etc. This is when renew-
able energy prevails as a viable source of power for ensuring
stable operation. This paper addresses resource provisioning in
the MEC network using renewable energy. We formulate the
problem as a Markov Decision Problem and introduce a new
approach to optimize this problem in terms of energy and time
costs by using a reinforcement learning technique. Our simulation
validates the efficacy of our algorithm, which results in a cost
three times better than the other methods.

Index Terms—Mobile Edge Computing, Fog Computing, Re-
source Provisioning, Markov Decision Process, Energy Harvest-
ing, Proximal Policy Optimization.

I. INTRODUCTION

The idea of Mobile Edge Computing (MEC) (also known
as Fog Computing) was proposed in 2014 by the European
Telecommunications Standards Institute (ETSI) as a way to ex-
tend the ability of cloud computing to the edge of the network
to improve data processing and storage. MEC provides infor-
mation Technology and cloud-computing capabilities within
the Radio Access Network (RAN) in close proximity to mobile
subscribers [1]. MEC servers are deployed along with base
stations to offload workloads from mobile users. The concept
of fog computing [2] is similar to MEC, in which jobs and
applications will be partially processed or processed and then
transferred to the cloud server for completion [3]. Compared to
mobile cloud computing (MCC), MEC has many advantages
such as low latency, speed up computation, reduce network
traffic and ensure quality of service (QoS). An effective
MEC platform should provide an offload policy reasonable.
Depending on the attributes of the job, this policy helps
determine whether the job will be handled at the edge or in
the cloud [4].

MEC servers use less power than large data centers in cloud
systems. However, with the popular implementation of MEC,
energy has become a major concern. For devices that do not
have a stable power supply or battery-powered devices with a

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

limited power source, the ability to perform calculations may
be affected by insufficient power, services will be interrupted
or out of stock. We can use resource management techniques
to optimize execution time and operating costs [5], [6], so
we can save energy. Also we can increase the capacity of
the battery or charge the battery more often. However, large
battery capacity will increase hardware costs, and charging
in some cases is not possible if the nodes are deployed in
hard-to-reach locations [7]. This challenge can be overcome
with the development of energy harvesting technology, which
allows the use of renewable energy such as wind-solar en-
ergy, which will contribute to powering the system. Off-grid
renewable energy, such as solar radiation and wind energy, has
recently emerged as a viable and promising power source for
various IT systems thanks to the recent advancement of energy
harvesting techniques [8], [9]. Compared with traditional grid
energy which is normally generated by coal-fired power plants,
employing renewable energy significantly reduces the amount
of carbon emission. Moreover, the use of renewable energy
sources reduces the need for human intervention, which is
difficult if not impossible for certain types of application
scenarios where the devices are hard and dangerous to reach.
However, designing green MEC powered by renewable energy
is much more challenging compared to green communication.
The harvested energy is integral to the operation of both the
base stations and the edge servers, so it will determine the
power consumption policy of the entire system.
The main contributions of this paper are as follows:

o Propose an energy-wise optimal resource provisioning
model for the MEC network as a Markov Decision
Problem (MDP).

o Propose an approach to solve mentioned MDP, namely
Proximal Policy Optimization (PPO) algorithm.

o Analyze and assess the experimental results to show the
efficiency of the proposed algorithm.

The rest of this paper is organized as follows. Section II
introduces related works. Section III presents the definitions
used for formulating the problem. Section IV describes the
MDP, while the solution proposed to solve MDP is elaborated
in section V. Section VI explains the setup of our experiments

and reports the computed results. The paper concludes in
section VII with discussions on the future extension of this
research.

II. RELATED WORKS

There have been several research on renewable energy
sources to power mobile devices or MEC servers. Trinh et
al. [10] study MEC’s issues related to energy management
on end-user limited energy devices. They tested and analyzed
the effectiveness of policies that reduce the processing data
load and the impact of these policies on power consumption
according to different data requirements. But they are only
considering optimizing the power consumption on the user
side. Yang et al. [11] also only consider minimizing the
power consumption on end users’ devices by modeling the
convex problem and solving with a low-complexity iterative
algorithm in which closed-form solutions are obtained in
each step. Mao et al. [12] investigated MEC systems with
energy harvesting mobile devices. The execution cost, which
addresses the execution delay and task failure, was adopted as
the performance metric. A dynamic computation offloading
policy, namely, the Lyapunov optimization-based algorithm
fog offloading computation was developed. Alternatively, some
existing solutions on wireless powered MEC systems have
also been proposed to exploit the ambient RF signals to
supply the mobile devices. For instance, in [13], a wireless
powered single-user MEC system was considered where the
user harvested RF energy from a dedicated access point (AP)
for computation offloading, and the CPU frequency for each
required CPU cycle was optimized. In [20], the authors con-
sidered a multi-antenna AP delivering RF energy to multiple
users, where the computing tasks were jointly executed by the
AP and users via optimizing transmit energy beamforming,
offloading decision and resource allocation with the minimum
of the AP’s energy consumption. The authors of [14] designed
a new time frame in a binary computation offloading, in which
an AP first broadcasted the RF energy in the downlink and then
the energy-constrained mobile devices offloaded their tasks to
the AP at their allocated time slots. With energy powered by
the wireless RF signal component, the fair energy efficiency
framework in a multi-user MEC system was proposed in [15]
where full-duplex was employed at AP to support energy
delivery and computation offloading simultaneously. The work
in [16] focused on a wireless powered multi-user MEC system
where a multi-antenna AP and an MEC server were separately
placed. The aim was to minimize the total energy cost of
all mobile devices with joint optimization of the offloading
decisions, time switch, local computation/offloading powers.
In order to eliminate the double-near-far effect in a two-user
wireless powered MEC system, the end-user device closer
to AP was selected as a relay to help offload the far-away
end-user device’s computation tasks to the edge cloud. In
this circumstance, [17] paid more attention to minimize the
total transmit energy of the AP and [7] concentrated on the
maximization of energy efficiency under the constraints of
the computational tasks. Considering a hybrid MEC system

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

consisting of a multiple-antenna cellular base station and a
WiFi access point, the authors of [18] studied the problem of
maximizing the total energy saving of all mobile devices by
jointly optimizing the computation and radio resources along
with dynamic interface selection. Recently, the study on RF-
based energy harvesting was applied to an unmanned aerial
vehicle-enabled multi-user MEC system [19], in which both
binary and partial computation offloading modes were respec-
tively taken into account for the computation rate maximiza-
tion problems. The authors of [20] investigated the optimal
resource provisioning policy of an energy harvesting MEC, in
which the state space is formulated as discrete and finite. But
in the reality of communication network, the application can
be limited since the state space of real systems is continuous
and hence, more complex. Our study improves the model to
allow a continuous-value state space, which means a better
representation and adopts a robust algorithm to solve the
resulting problem.

III. SYSTEM DESCRIPTION

We study one version of the Mobile Edge Computing
Network [1], which includes a base station and a set of
edge servers, located in the same position and share the
same power source in cell cite. We also have a green energy
source to provide power to the system and batteries to store
excess energy. Our model is based on [20] but we have some
modifications on calculating the electricity usage on edge
Sservers.

A. Workload

We consider a discrete-time model by isolating the working
time frame into schedule vacancies of equivalent length filed
by t = 0,1, ..., every one of which has a span that matches the
timescale at which the edge gadget can change its processing
limit (for example number of dynamic servers). We use x € L
to represent a position coordinate in the service zone L. Let
A(z,t) show the expected workload arrival rate in position x,
and 0(z,t) be the wireless transmission rate between the base
station and position x, which relies on the present uplink wire-
less channel conditions. So A(t) = > .- A(z,t) € [0, Mnaz)
is The total workload is taken to the edge system, where
Amaz 18 the maximum workload possible at the edge system.
The system determines the number of workload u(t) < A(%)
that will be handled locally. The remaining workload v(t) =
A(t) — p(t) will be transferred to the cloud for processing. The
edge system also determines at the beginning of the time slot
the number of servers used, represent by m(t) € [0, M], where
M is the maximum number of edge servers. These servers are
used to handle the local workload p(t). Because changing the
quantity of servers during work execution are troublesome and
much of the time inconceivable, we just permit deciding the
quantity of servers used at the beginning of each time slot but
not within the slot.

B. Delay cost

We model the base station as a queueing system [21], the
average usage of the base station is p(t) = > A(z,t)/6(x, 1),

and a total wireless access and transmission tardiness is
cwi(t) = >, Az, t)/[0(x,t)(1 — p(t))]. Next, we model
the latency of handling the workload generated at the edge
servers. For the workload is processed local, the tardiness cost
cqi(t) is mainly handle the latency due to limited computing
power at the local edge servers. The transmission tardiness
from end-user devices to local servers is negligible due to the
same location. We represent the tardiness performance in time
slot ¢ by cqi(m(t), u(t)). The service process at a server is
modeled as an M/G/1 queue and the tardiness cost of system
is ca(m(t), u(t)) = %, where S is the service rate
of each server in local.

For the workload is offloaded, the tardiness cost coff(t) is
primarily the transmission tardiness due to network round trip
time (RTT), which varies according to the network congestion
status. We model the network congestion status, represent
by k(t), including RTT and tardiness from the cloud for
simple. RTT can determine with basic RTT measurement
tools (like using the ping command) and the cloud latency
can be obtained from cloud service providers based on the
resources they provide. Thus, the offloaded tardiness cost is
Copf(k(t), A(2), u(t)) = k(t)(A(t) — p(t)). The total tardiness
cost of system is

Cdelay(k(t)v)‘(t)7 m(t)v M(t))

= car(m(t), p(t)) + copp (K(£), A(t), (1)) + cwi(A(2)) (1)

C. Power

In a time slot, the edge system needs an amount of power
to meet the power requirements of the base station and the
edge server. First, depend on the offloading and the autoscaling
plan, we represent the power consumption of base station by
Poase(A(t)) = Dsta +Dayn (A(t)) Where pg, is the static power
for the basic operation of base station and pgyn (A(t)) = . A(¢)
is the dynamic power consumption for transmitting workload
to system, where « is dynamic power consumption for trans-
mitting one unit of worload. The power supplied to edge
servers depends on the number of active servers to handle local
workload. We denote pegge (A(t), m(t), p(t)) as the computing
power of all edge servers, which linear with A(t), m(t) and
u(t), to represent the computing power demand. The total
power needs in time slot t is

p()\(t), m(t)’ :u(t)) = Pbase ()‘(t)) + pedge(A(t)a m(t)v M(t)()z)
We use g(t) as the green power budget. Because the lack of
certainty of the renewable energy supply, g(¢) is performed
after the system makes a decision about the offloaded workload
and the number of active servers. We rely on the state of the
environment e(t), so that the system can estimate its energy
budget in the current time slot. For example, the day in good
weather conditions will get much more solar energy. we model
g(t) and e(t) as an independent and identically distributed with
e(t) given, which satisfies a conditional probability distribution

By(g(t)le(t))-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

D. Battery

When the energy generated from renewable energy sources
is not enough to meet the power requirements, the battery will
be used ensure the stable operation of the system. We denote
B is the battery capacity. We represent the battery state at
starting point of time slot ¢ by b(t) € [0, B]. To guarantee
basic operation of the system, We represent b(¢t) = 0 to this
limit voltage.

At the start of each time slot ¢, the amount of renew-
able energy gained is unforeseeable. the edge system uses
a policy which meets pegge(A(t), m(t), u(t)) < max{b(t) —
Dpase(A(t)),0} to avoid activating redundant power supplies
by making offloading and autoscaling expansion decisions.

- If prase(A(t)) > b(t), Dedge(A(t), m(t), u(t)) will be zero,
that means the edge system transmits all workloads to the
cloud when the current battery power can’t even support basic
operation and transmission in the current slot. In this case, the
backup power source will be used to maintain basic operation
for the current slot. To activate the backup power needed a
cost is Cpak(t) = YPpase(A(t)), where p > 0 is a constant
representing the cost of backup power usage. The battery state
then changes to b(t + 1) = b(t) + g(¢) in next time slot.
- If ppase(A(t)) < b(t), the workload p(t) < A(t) be processed
at the edge servers, and the power demand must satisfy
pedge()‘(t)vm(t)hu(t)) < b(t) - pbase()\(t))- The battery
will be charged or discharged depending on the renewable
energy collected ¢(t) and the power of the edge servers
Pedge (A(t), m(t), u(t)), accordingly:
o If g(t) > p(A(t), m(t),u(t)), then the excess g(t) —
d(A\(t),m(t), u(t)) is stored in the battery until the bat-
tery is full capacity:

b(t+1) = max{b(t)+g(t)—p(A(t), m(t), u(t)), B} (3)

o If g(t) < p(A(t),m(t),u(t)), then the battery has
to be discharged to deal with the energy shortage

PA(E), m(t), u(t)) — g(b).
b(t +1) = b(t) + g(t) — p(A(), m(t), u(t)) (4)

We represent Cpqirery(t) as the battery devaluation cost
in a time slot. We ignore the case of system failure during
charging or discharging the battery for simplicity. Specifically,
Chattery () = w - maz{p(A(£),m(t), u(t)) — g(t).0} where
w > 0 is the normalized unit devaluation cost.

IV. PROBLEM STATEMENT: DECISION PROCESS

We model this resource provisioning problem as a MDP.
Next we introduce elements of this model.

A. Definitions

o State space: Each state s is a four-dimensional vector
consisting of the following parameters: A\ (the workload
arrival rate), b (the battery level), k£ (the congestion rate
in the network), and e (the indicator of green-power
harvesting potential). These values are from a continuous
range, which means the state space is infinite.

o Action space: The action a is a scale factor in the range
[0,1]. This value will determine the computing demand
Dedge from the continuous range [0, max peqqe], Where
max pedge = mln(b - pbaseypedge(mmazyA)) Based
on pPpese, the final autoscaling and offloading actions
(number of active servers m and amount of offload
workload u, respectively) is obtained by minimizing the
cost.

o Transition function: The transition functions of \, &, e
is independent of the action taken, and are modeled by
an implicit probability distribution.

The transition function of b, however, is deterministic,
specifically:

max(min(b(¢) + g(¢), B),0), if ppase > b(t)

max(min(b(t) — ppase(A(t)) — a(t) +

g(t), B),0), otherwise

e Cost: The cost function is the summation of delay cost
and energy cost (includes back-up power and battery
power):

c(t) = (1 = B)(Caetay (k(t), A(t), m(t), u(t)))
+ 6(Cbak()\(t)> + Chattery (pedge (t); g(t)))

where S(S € [0,1]) is the balance coefficient between
delay cost and energy cost. 5 = 0.5 means that delay
cost and energy cost have same priority in optimizing;
if 6 > 0.5, our mechanism focuses on minimizing delay
cost with higher priority than energy cost; inversely, 5 <
0.5, energy cost is more prioritized than delay cost.
Since the state transition does not depend on m(t) or
u(t), they can be optimized given s(t) and a(t) by solving
the following optimization problem:

Cdelay (k(t)7 A(t)v m(t)7 M(t))

« Policy: is a function that maps a state from the state space
to a probability distribution over the action space, that is,
it represents the likelihood that each action is taken given
the state.

b(t+1) =

min
m,p:d(m, 1) =pedge

B. Problem formulation

The resource provisioning problem in MEC network can be
formulated as follows:
Input:

State space A(t) x k(t) x b(t) x e(t) in time slot t with:

« workload at a time slot \(t),

« congestion state of network k(t),

o Dbattery level b(t),

« environment state e(t)
Output:

Optimal policy 7 : A(t) x k() x b(t) x e(t) — a(t)
Objective:

Minimize the cost function:

Cdelay (K(t), A(t), m(t), u(t)) — Min

In the next section, we solve this problem using a reinforce-
ment learning method.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

V. PROPOSED METHOD

In [20], the solution used a tabular learning method which
approximates the value function c, the expected discounted
total cost for a action state pair, (similar to Q). The policy
is determined by minimizing the value function c over the
set of actions for every state. This method is feasible for a
discrete action set, but impractical for a continuous one since
the minimizing operation can be tricky with non-linear ap-
proximation function. After this resource provisioning problem
is formulated as a continuous MDP, including state space,
action space, reward function and transition function, deep
reinforcement learning methods, such as PPO can be used.
Here we adopt an easy-to-implement framework of PPO2 [22].
Below, we will give a description of the algorithm 1.

1) Initialize a policy 6y of the policy network w(als,).

Our goal is to optimize this policy network.

2) Initialize the parameter wg to optimize the value function
network v(s,w). Since the value function has not been
implicitly defined in our problem, our agent have to learn
it during the optimizing process.

3) For each iteration, we have the following steps:

e Run our current policy over T time steps.
o Calculate the advantage estimator. The estimator we
use is:

Tt — (s, w;).

(&)

At:Tt+’YTt+1+...+’Y

« Optimize the surrogate objective function
L= LOYP(0) +c; LV F (w) + By (2 S[ma)(s4)] (6)

with respect to 6 and w using gradient descent. We
want to maximize this surrogate objective function.
The new 6 and w is updated.

Algorithm 1 PPO Algorithm

1: Initialize these parameter:

2: 6o of the policy network 7(als, 6)

3: wy of the value function network (s, w)
4: for i =0,1,2,...,N do

5 Run policy 7y, over T' time steps

6 Calculate advantage (5)

7: Optimize surrogate (6) w.r.t 6, w

8

9

Update 9i+1» Wi41
: end for

VI. PERFORMANCE EVALUATION
A. Experimental Settings

In our experimental study, we consider a system has 15
edge servers. The system data are updated at the beginning
of every timeslot, each of which is 15 minutes. The workload
to the system per second is randomly taken from 10 units
to 100 units. The network congestion per unit is is randomly
taken from 0.02 second to 0.06 second. The service rate is
20 units/second for each edge server. The battery volume is

TABLE I: Enviroment parameters

Parameter Value Unit
Number of servers 15 nodes
Length each time slot 15 minutes
Battery capacity 2000 watt hour (Wh)
Server service rate 20 units/second
Workload (\) [10,100] units/second
Network congestion (k) [0.02,0.06] second/unit
Environment state (e) {0, 1, 2}
Back up power coefficient ¢ 0.15
Battery depreciation coefficient w 0.01
Base station static power 300 Watt
Server power consumption 150 Watt
time steps per episode 96

2000 Wh. We use traces of harvesting green energy in the
real world from March 2016 to August 2016 in Belgium [23].
The environmental state is obtained by mapping from the
current time in the day to the range [0,2] in the following
manner: the time period of the day from 6 pm to 6 am
corresponds to the range [0,0.5) - indicating low potential of
energy harvesting, the time period from 6 am to 9 am and
3 pm to 6 pm corresponds to the range [0.5,1.5) - indicating
medium potential, and the time period from 9 am to 3 pm
corresponds to the range [1.5,2] - indicating high potential.
Other parameters are shown in Table I. Training setup. For
the training process, during each iteration the current policy
is run for 96 time steps - the equivalent of 1 day of data.
The model is trained for 96000 time slots which means 1000
iterations.

The settings of the experimental environment are shown in
Table II. The simulation and training were developed in Python
because it is a good support for running reinforcement learning
techniques.

TABLE II: Simulation Setup

System Intel® Core™™ i5, CPU 2.30GHz
Memory 8 GB
Simulator python

Operating system macOS High Sierra

Based on the above metrics, we compare the results obtained
by the proposed algorithm with two approaches: Random and
Fixed power.

e Q-learning [24]: finds an optimal policy in the sense that
it minimizes the the total cost over any and all successive
steps from the current state.

o Myopic: this approach bypasses the time correlation
between states and decisions of the system and minimizes
the cost function given in the current time state by using
all available battery power.

o Random power: this approach uses random computing
power for edge calculations in each time slot.

« Fixed power: this approach uses fixed computing power
(when the available power is insufficient, use maximum

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

power) for edge calculations in each time slot.

B. Experimental Results

Figure 1 compares the average total cost between the pro-
posed algorithm and the five others. The results were obtained
by running simulation for 1000 times slots with coefficient
balance 8 = 0.5.. It was evident that our proposed algorithm,
PPO, results in the lowest cost, only approximately 54.17%
of that of random power and fixed 1kW, respectively; 58, 18%
of that of fixed 0.4kW; 67.37%. We observed that the solution
that PPO found has a small average cost at 6.5 compared with
9.4, 9.5, 11, 12, 12.1 that Myopic, Q-learning, fixed 0.4kW,
random, fixed 1.0kW achieves, respectively. That means PPO
algorithm finds better solution. The best solution of PPO is
found earlier in 600" time slot, afterward, the result is stable.

—8— ppo
17.5 1 —a— random
myopic
15.0 4 fixed 0.4kw
—+— fixed 1kW
I learnin
3 1254 d o
]
L
o
o
5 10.0
=3
<
L)
E 75
=
5.0 1
3
2.5
T T T T T T
0 200 400 600 800 1000
Time Slot

Fig. 1: Comparing average total cost of PPO, random power,
Myopic, fixed power (0.4 and 1.0) and Q-learning

Figure 2 shows the average cost of energy for different
algorithms. By considering the average cost of energy, we
further demonstrate the efficiency of PPO over Myopic, Q-
learning, random, fixed 0.4kW and fixed 1.0kW algorithms.
The best performing methods are PPO and Deep Q Network
(DQN), understandably, since they are able to take into account
the implicit effects of the daily cycle of the environment states,
ie. the energy harvesting potential on the long term reward.
This means that they have the ability to make conservative
actions even though the current battery resource is abundant,
if there is an indication of future shortages in green power
collection. Indeed, the average cost of energy of the solution
found by PPO is just 0.99, while the solutions found by others
is 4 to 7 times greater than PPO.

Considering the average cost of time, Myopic and fixed
power 1.0kW perform slightly better than PPO as shown
in Figure 3 when saves about 10% comparing with PPO
algorithm. The Myopic strategy, unsurprisingly, achieves the
lowest delay cost among the 6 methods since it only considers
the immediate outcome. While this method is the best at

—8— ppo
—a— random
myopic
fixed 0.4kw
fixed 1kw
q learning

12 4

10 A

Time Average Energy Cost

T T T T T
200 400 600 800 1000

Time Slot

o 4

Fig. 2: Comparing average energy cost (back-up power and
battery) of PPO, random power, Myopic, fixed power (0.4 and
1.0) and Q-learning

o
2]
]
>
il
8 44
L
o
o
g 31
<
] —8— ppo
£ 5]
= —a&— random
myopic
14 fixed 0.4kw

fixed 1kw
q learning

T T T T T
0 200 400 600 800 1000

Time Slot

Fig. 3: Comparing average time cost of PPO, random power,
Myopic, fixed power (0.4 and 1.0) and Q-learning

optimizing the proximate reward, the battery is drained quickly
to serve the optimization purpose, leaving the future workload
depending on back-up energy, which brings up the long-term
reward significantly. On the contrary, using PPO or DQN, the
system is willing to spend a little extra time to get energy
efficiency and still ensure services without relying on back-up
power sources. Overall, this trade-off is rather small (10%)
compared with the entire delay cost.

The components that make up the total cost of the PPO and
Q-learning algorithms in the 1,000 time slots are shown in
Figure 4. The proposed PPO algorithm helps to significantly
reduce standby electricity costs by avoiding standby energy.
while Q-learning consumes 20 times more power. DQN per-
forms worse out of the two because this requires an expensive
dicretization process which is undesirable. However, since

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

PPO

Time Average Cost

g

BN Delay cost EEE Backup cost EEE Battery cost

LR

; ; i 7
200 400 600 800
Time Slot

o

1000

(a) PPO

10

Time Average Cost

Bl Backup cost

EEE Battery cost

O

2 -
I Bl Delay cost
0- u

; 7 7
0 200 400 600 800
Time Slot

1000

(b) Q-learning

Fig. 4: Components of average cost of PPO and Q-learning:
energy (back-up power and battery) and time (delay)

DQN is more sample efficient than PPO, its training time is
way shorter (only 20% that of PPO).

Figure 5 indicates the affect of balance coefficient 5 in
energy cost and time cost achieved by PPO algorithm in 1000
time slots. In case S = 0, time cost is minimized, however,
energy is too large at value of 16 because we only care about
improving the time cost. When § to 0.5, energy cost decreases
8 times while time cost increases 1.085 times comparing with
case 5 = 0.

The above results demonstrate that the PPO algorithm can
reach better trade-off between energy cost and time cost than
others schemes (Q-learning, Myopic, random power, fix power
0.4 kW, fixed power 1.0 kW).

VII. CONCLUSION

In this work, we focus on resource provisioning problem
in MEC network. A algorithm based on a reinforcement

12.0 16
rl4
11.519
rl2
o —~2 {10
8 11.01 g
o ¢ o
S Fr8 =
=)
> (1]
&] &
8 10.5 / r6
/ a
10.01
L a r2
—e— Delay time Cost | —— E:mergykA Lo
)
9.5 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Coefficient

Fig. 5: Energy and time as the balance coefficient 8 changes

learning technique was proposed and evaluated performance.
Comparing with other methods use random of fix power for
edge calculations in each time slot, Our learning method gives
three times better results. In the future, we will research,
improve, apply more algorithms to solve the problem, espe-
cially reinforcement learning algorithms. In addition, we plan
to expand problem by focusing on optimizing many other
goals, such as execution time, transmission costs, computing
resources, satisfy users. Constraints of resource limitation
budget can be added for greater practicality.

ACKNOWLEDGMENT

This research is funded by Ministry of Education and
Training of Vietnam under grant number B2020-BKA-13.

REFERENCES

[1] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al.,
“Mobile-edge computing introductory technical white paper,” White
paper, mobile-edge computing (MEC) industry initiative, pp. 1089-7801,
2014.

[2] F. Computing, “Fog computing and the internet of things: Extend the
cloud to where the things are,” 2016.

[31 S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,

applications and issues,” in Proceedings of the 2015 workshop on mobile

big data. ACM, 2015, pp. 37-42.

A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,

“Fog computing: Principles, architectures, and applications,” in Internet

of Things. Elsevier, 2016, pp. 61-75.

[5] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen, “An
evolutionary algorithm for solving task scheduling problem in cloud-
fog computing environment,” in Proceedings of the Ninth International
Symposium on Information and Communication Technology, 2018, pp.
397-404.

[6] B. M. Nguyen, H. Thi Thanh Binh, B. Do Son et al., “Evolutionary

algorithms to optimize task scheduling problem for the iot based bag-

of-tasks application in cloud—fog computing environment,” Applied

Sciences, vol. 9, no. 9, p. 1730, 2019.

L. Ji and S. Guo, “Energy-efficient cooperative resource allocation in

wireless powered mobile edge computing,” IEEE Internet of Things

Journal, 2018.

[8] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Communications Surveys & Tutorials,
vol. 13, no. 3, pp. 443-461, 2010.

[4

=

[7

—

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and
K. Huang, “Energy harvesting wireless communications: A review of
recent advances,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 3, pp. 360-381, 2015.

H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao, P. Calyam,
and K. Palaniappan, “Energy-aware mobile edge computing for low-
latency visual data processing,” in 2017 IEEE 5th International Confer-
ence on Future Internet of Things and Cloud (FiCloud). IEEE, 2017,
pp. 128-133.

Z. Yang, J. Hou, and M. Shikh-Bahaei, “Energy efficient resource
allocation for mobile-edge computation networks with noma,” in 2018
IEEE Globecom Workshops (GC Wkshps). 1EEE, 2018, pp. 1-7.

Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590—
3605, 2016.

C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1757-1771, 2016.
S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177-4190, 2018.

S. Mao, S. Leng, K. Yang, X. Huang, and Q. Zhao, “Fair energy-efficient
scheduling in wireless powered full-duplex mobile-edge computing
systems,” in GLOBECOM 2017-2017 IEEE Global Communications
Conference. 1EEE, 2017, pp. 1-6.

N. Janatian, I. Stupia, and L. Vandendorpe, “Optimal offloading strategy
and resource allocation in swipt-based mobile-edge computing net-
works,” in 2018 15th International Symposium on Wireless Communi-
cation Systems (ISWCS). 1EEE, 2018, pp. 1-6.

X. Hu, K.-K. Wong, and K. Yang, “Wireless powered cooperation-
assisted mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 17, no. 4, pp. 2375-2388, 2018.

B. Li, Z. Fei, J. Shen, X. Jiang, and X. Zhong, “Dynamic offloading for
energy harvesting mobile edge computing: Architecture, case studies,
and future directions,” IEEE Access, vol. 7, pp. 79 877-79 886, 2019.
F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximiza-
tion in uav-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp.
1927-1941, 2018.

J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Transactions on
Cognitive Communications and Networking, vol. 3, no. 3, pp. 361-373,
2017.

E. Oh, K. Son, and B. Krishnamachari, “Dynamic base station switching-
on/off strategies for green cellular networks,” IEEE transactions on
wireless communications, vol. 12, no. 5, pp. 2126-2136, 2013.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

“https://www.elia.be/en/grid-data/power-generation.”

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

