
True Online TD(λ)-Replay
An Efficient Model-free Planning with Full Replay

Abdulrahman Altahhan, Member, IEEE

Abstract—In this paper, we present a new reinforcement
learning prediction method that extends the capabilities of the
true online TD(λ) to allow an agent to efficiently replay all of
its past experience, online in the sequence that they appear with.
We demonstrate that, for problems that benefit from experience
replay, our new method outperforms true online TD(λ), albeit
quadratic in complexity due to its replay capabilities. In addition,
we demonstrate that our method outperforms other methods with
similar quadratic complexity such as Dyna Planning and TD(0)-
Replay algorithms. We showcase the capabilities of our method
on two benchmarking domains, a random walk problem tested
with simple binary features and on a myoelectric domain that
is tested with features that are deeply extracted from sEMG
signals. Experimental results confirm the particular suitability
of this method for a deep architecture over other methods.

Index Terms—TD, TD(λ), true online TD with Replay, full
replay, experience replay.

I. INTRODUCTION

EXPERIENCE replay plays an important role in the
context of reinforcement learning algorithms. In this

paper we tackle the issue of building a robust method that
allows the agent to maximize its experience replay capability
with relatively cheap complexity. We will tackle multi-step
sequential replay algorithm where the agent replays a sequence
of past experience steps in the order they appeared with. This
issue have been partially attempted in [1] where the algorithm
used TD(0) update rules as its basis. In this work, we will
extend the ideas developed in [1] to the true online TD(λ)
updates. In particular, we build a new method based on two
requirements. First, we would like to be able to utilise a multi-
step targets for each replay update instead of the one step target
update of TD(0), this allows the method to choose how deep
its targets are for each replay update. The second requirement
is that the method should be efficiently incremental to allow a
vectorised implementation without being bound to the number
of past steps that will be replayed.

To achieve these goals we first introduce a method, namely
the interim λ-return TD-Replay, that takes experience replay
to its extreme by allowing the agent to replay all of its past
experience online in every time step. Unlike previous work,
this method allows us to utilize the multi-step interim λ-return
targets for each replay update instead of the one-step target of
TD(0). We introduce an online efficient incremental method,
namely the true online TD(λ)-Replay, that is equivalent to
online λ-return TD-Replay, but has a complexity that is not

A. Altahhan is with the School of Built Environment, Engineering
and Computing, Leeds Beckett University, Leeds, UK, LS6 3QS. e-mail:
a.altahhan@leedsbeckett.ac.uk.

related to the time step. Furthermore, we show that the true
online TD method is a special case of the true online TD-
Replay method.

We will deal with Markov Decision Process (S,A, p, r, γ)
to learn a value function vπ(s) for a policy π and state s;
where S is the state space and A is the action space available
for the agent, and r(s, a, ś) is the expected reward signal for
executing action a at state s then transitioning to state ś. We
denote the feature representation of state s as φ(s) and n
as the feature space dimension, i.e. |φ| = n. The feature
representation can be complex. For example, the features can
be obtained from an unsupervised deep architecture such as
an auto-encoder [2] or a set of stacked auto encoders [3] or
other similar architectures [4]. We can then employ whatever
algorithm we have to train on the resultant features [5] [6]. The
two learning modules; the feature extractor learning module
and value-function learning module, are dissected from each
other. The training can be either performed simultaneously
or sequentially. For many problems, this approach is simple,
helps to isolate the intrinsic RL prediction method capabilities
form those of the feature extractor and has the usual theoretical
convergence guarantees (with some technical conditions such
as the independence of the feature’s components and the
learning rate diminishing property [7] [8]). In this paper we
take this approach, and we train the two modules sequentially
and independently. Alternatively, one can take a more end-
to-end learning approach such as in [9] when the domain
is more complex. However, despite the impressive empirical
achievement of such models convergence guarantees do not
apply straight on a non-linear model [7]. The high performance
in the second approach can mainly be attributed to the stability
and agility provided by the replay memory that allowed for
batch updates to be used. The better performance of a random
replay depth can be attributed to the ability to choose a set of
trajectories and to break the strong correlation that can lead
to instability when non-linear function approximation is used.
However, we believe that replaying all the past experience as
a block has its own advantages. In particular, it allows the
agent to integrate and summarise all of its learning in each
time step so that it reduces variability and dependency on
the learning rate to balance out the experience. In effect, this
allows the agent to be robust and to act reliably at different
states. What is more, from a model perspective replaying
seems particularly useful for a deep learning architecture. Our
investigation confirms that an algorithm that employs replay
extensively such as the true TD-Replay is empirically more
suitable than other algorithms for a deep feature extractor
process.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. BUNDLED EXPERIENCE REPLAY

Replay can be categorized as sequential with specific fre-
quency (ex. replaying past sequence of 10 steps every other
step), which has been used in [1] and is the topic of this paper,
and non-sequential, for example the one used in [10] to mean
re-evaluating past target updates using what has been recently
learned by the agent, they tagged it as replay and is done
in an on-policy fashion. In this sense their algorithms redo
the same set of past updates, with the same initial learning
weights in each step, using updated targets, in order to benefit
from past experience. In their setting each bundle of updates
always starts from the same initial weight’s values, which is a
key issue. Although this simplifies finding incremental forms
for the learning process, however in that sense their approach
is more of reevaluating the target rather than actually replaying
past experience updates. From our perspective, replaying the
experience requires going through a bundle of past experience
updates and redo them as if the agent went through them again
but with its current set of weights [1]. Our intensive replaying
approach can be looked at as a special case of Combined
Experience Replay (CER) discussed in [11], since we include
all past steps including the latest current step in each bundle
of updates. The difference is that we replay all past steps and
we do not sample. Albeit a special case of replay (because it is
intensive and sequential), our approach for experience replay
resembles the Lin’s approach [12] from the sense of repeating
past updates but contrary to Lin’s approach it is sequential and
intensive to promote learning agility.

From a learning perspective, each time a new online inter-
action takes place between the agent and the environment, the
replay process should allow the model to start with a better
initialization of the weights.

III. TD-REPLAY WITH INTERIM λ-RETURN

Contrary to [1] we use interim λ-return as the target for
each update. Interim λ-returns takes advantage of all past
experience to obtain a more accurate estimate of the targets of
the TD updates. In this section we use the forward view of our
elaborate replay method using interim λ-returns similar to the
way true online TD(λ) was constructed [13]). The forward
true online TD(λ) algorithm is largely kept as is with one
important change. We will run through all past updates and
redo them all as a bundle, using the latest model weights, i.e
without reinitializing them back to their original values. We
assume that in each time step t, the algorithm will go back to
all past step trajectories and replay every single update based
on its latest weights. Index t will be used to represent current
time step, while index k will be used to represent past steps,
where 0 ≤ k ≤ t. For example, the model’s weights at time
step t that are used to replay past step k are denoted θtk, while
the weights that are the results of replaying past time step k
are denoted θtk+1. θii will be abbreviated as θi; i.e. θi : = θii,
for example when we see θt it stands for θtt. We will devote
our attention in this section to the last layer of the model that
is used to represent the value function V . Each one of the
forward TD replay updates can be written as

θt+1
k+1 = θt+1

k + αk∇θV
(
G
λ|t+1
k − V (s|θt+1

k)
)

(1)

where Gλ|t+1
k is the interim λ-return introduced in [13] and

is defined as:

G
λ|t
k =

t−k−1∑
i=1

λi−1G
(i)
k + λt−k−1G

(t−k)
k (2)

G
(i)
k = (1− λ)

i∑
j=1

γj−1Rk+j + γiV (Sk+j |θk+j−1) (3)

Note that when k = t − 1 then G
λ|t
k = G

(1)
t = Rt+1 +

γV (St+1|θt) which is the usual one-step target of TD(0). We
assume that the last layer is linear, hence a linear model is
used to express the value function, V (s|θ) = θ>φ(s), where
∇θV = φ(s). This assumption entails some restriction but
it does not prevent us from using a non-linear and complex
layers that come before this last layer in order to build a deep
learning model. Learning can take place in two ways. The
first, is performed by obtaining a good feature representation
through a separate stage (by utilizing an auto-encoder for
example) and then we feed these features into the last layer
to obtain a policy evaluation model. We will adopt the first
approach. Alternatively, model learning can be performed end-
to-end in the model where the error coming from the last layer
is backpropagated to previous layers.

The set of the replay updates (1) can be written as

θt+1
k+1 = θt+1

k + αkφk

(
G
λ|t+1
k −

(
θt+1
k

)>
φk

)
(4)

θt+1
k+1 = Akθ

t+1
k + btk (5)

Ak :=
[
In×n − αkφkφ

>
k

]
(6)

btk := αkφkG
λ|t+1
k (7)

where Ak is a squared matrix, btk is a vector and n is the
number of weights used to encode the value function. The time
and space complexity of the above algorithm can be made
reasonable and be only related to n. Although each step is
entailing t updates with complexity O(t × n), we shall use
the formalism used by [14] and [13] to make the complexity
O(n2). This is useful for two reasons. First, it allows us to
take advantage of the efficiency of a vectorized incremental
implementation of the updates. Second, it is useful for early
episodes where normally t > n. In addition, it can be proven
[13] that:

G
λ|t+1
k −Gλ|tk = (λγ)t−k(Rt+1 + γθ>t φt+1 − θ

>
t−1φt)

G
λ|t+1
k = G

λ|t
k + (λγ)t−k δ́t (8)

We will use the same process performed in developing true
online TD, except we will force each bundle of updates to
initialise the first weight with the weight of the previous bundle
of updates. By doing so we will be replaying all past updates
in each time step. It should be noted that if we fixed the initial
weights of a bundle of update steps, then the algorithm turns
into just a revaluation of all past rules instead of replaying
past experience, this is what algorithms at [11], [14] and [13]
are performing, there is no replay process utilized in them.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Hence, based on our algorithm, the final weights θ44 for time
steps 4 can be calculated in terms of the initial weights θ33 by
backward substitutions as

θ4 =θ44 =A3A2A1A0θ
3
3+A3A2A1b

4
0+A3A2b

4
1+A3b

4
2+b43

Note that we need Gλ|4k to be able to calculate b4k. It can be
easily proven by induction that

θt+1
t+1 =

(
0∏
i=t

Ai

)
θtt +

t∑
k=0

(
k+1∏
i=t

Ai

)
bt+1
k (9)

It should be noted that this algorithm is different than the
algorithm that we developed in [1] in two main aspects; first
the basic updates of each replay step is based on true online
TD not on TD(0), i.e. our algorithm uses the interim λ-return
targets, the second difference is that the matrices Ak are
defined differently.

We call the above algorithm the interim λ-return TD-Replay
to emphasise that the algorithm is replaying all past experience
using interim λ-returns. This algorithm has a built in planning
capability due to the link between replaying and planning
which has been already established in [10] and further con-
firmed in other work with model-free structures. Authors in
[15], for example, confirmed that a deep neural network com-
bined with LSTM that uses Q-learning has characteristics that
are normally associated with a model-based RL planner. Our
approach goes even further by making planning built in the
RL method itself and decoupled form the model architecture
(since we use a linear model without an LSTM or a deep
neural network, although we used an autoencoder to study the
suitability of our method for deeply extracted features). Other
researchers have investigated the issue of planning by using
a specific model architecture that enabled planning. [16] for
example created a tree search architecture. Interim λ-return
TD-replay algorithm constitutes the non-incremental. Clearly,
this algorithm is expensive with a complexity of O(n× t) and
in its current form it is impractical. In the next section we
develop a more efficient and incremental algorithm that we
call the true online TD(λ)-replay to perform the same set of
updates.

IV. TRUE ONLINE TD(λ)-REPLAY: AN INCREMENTAL
ONLINE VIEW

To arrive at a correct efficient form for the intensive replay
mechanism presented in the previous section, we need to
extend the mathematical formulation developed in deriving
the incremental forms of the true online TD(λ) to accom-
modate the replay process. This involves some considerable
mathematical derivations that we omit here for simplicity and
brevity. The basic ideas are to obtain a new matrix term Āt

that incorporates the replay process, and to convert the weights
updates into a new eligibility trace ēt update, both of which is
initialised in each episode. Given a set of n weights θ that are
due to the forward interim λ-return TD-replay method shown

earlier, we can obtain exactly θ incrementally according to the
following step updates

At =
[
In×n − αtφtφt

>
]

(10)

et = Atγλet−1 + αtφt (11)

ēt = Atēt−1 + et

(
δt + θ>t φt − θ

>
t−1φt

)
+ αtφtθ

>
t φt

(12)
Āt = AtĀt−1 (13)
θt+1 = Ātθt + ēt (14)

The initial conditions as per the definitions are set to Ā−1 =
In×n, Ā−1 = In×n, , e−1 = 0n×1 which yields the TD(0)
update for t = 0. Our true online TD(λ)-Replay method is
defined using the above updates.

V. EFFICIENT TRUE ONLINE TD-REPLAY(λ) ALGORITHM

By substituting At and reorganising the terms so that
we have vector × matrix multiplication and not matrix ×
matrix multiplication we obtain a more efficient form of the
true online TD(λ)-Replay method. Formulating this method
as a learning episodic algorithm for prediction is given in
Algorithm 1.

Algorithm 1 true Online TD(λ)-Replay Learning
Input: α, γ, λ,θinit
Output: θ

obtain initial φ
θ ← θinit
for all episodes do
e 0, ē 0, Ā I, Vold 0
while S is not Terminal do

obtain next feature vector φ′ and reward R
V θ>φ
V ′ θ>φ′

δ R+ γV ′ − V
e eγλ− αφ(γλe>φ− 1)
ē ē − αφ(ē>φ− Vold) + e(δ + V − Vold)
Ā Ā− αφ(φ>Ā)
θ Āθ + ē
Vold V ′

φ φ′

end while
end for

It should be noted that the true online TD(λ) can be viewed
as a special case of the true online TD(λ)-Replay by fixing
the weights used in the update rule (14). This is because when
θt = θ0 the true online TD(λ)-Replay algorithm reduces to
the usual linear true online TD(λ). To see how, we define
āt := Ātθ0, rule (14) becomes: θt+1 = āt + ēt. In addition,
Āt can be vectorized into āt by multiplying (13) by θ0 and
substituting by the āt definition: āt = āt−1−αtφt

(
ā>t−1φt

)
.

This equation can be combined with (12) by simple addition of
āt+ ēt and substituting them by θt+1, and substituting At by
its value in (7) we obtain the update rules of the true online
TD(λ) algorithm: θt+1 = θt + et(δt + θ>t φt − θ

>
t−1φt) −

αtφt(θ
>
t φt − θ

>
t−1φt).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. The Random walk task used to benchmark our algorithm.

VI. TRUE ONLINE TD(λ)-REPLAY APPLIED ON RANDOM
WALK

In this section we show the prediction performance of our
algorithm on a random walk task for benchmarking. Random
walk is an Markov reward process (MRP) that isolates the
effect of the dynamics of the environment since selecting an
action is randomised based on a fixed probability distribution.
This allows us to examine the prediction capability of an
algorithm. Fig. 1 shows our random walk task. It consists of
17 states, the process starts always form the far left hand side
state and the episodes ends when the process reaches the far
right state. However, we amended this MRP’s rewards scheme,
that is typically used, to activate the planning capabilities of
our algorithm. Unlike the typical MRPs used in the literature
[6] that is rewarded by 1 at the terminal state only, our process
is rewarded by 1/n for moving the current state towards
the right terminal state (but not reaching it), where n is the
number of non terminal states, and it gets a reward of 0
when it moves to the terminal state. While, transitioning to
the left is given a reward of −1/n and staying in the far
left state is given a reward of 0. Both transitions, left and
right have the same probability = 0.5 and no discount is
used, i.e. γ = 1. These settings allowed the RMSE error to
be bounded to 1, and further allowed us to benchmark with
other random walk problems. It can be easily proven that
the value of each state can be analytically calculated to be
V (Si) = i/n; i = 0, ..., n− 1. The features used are simple
basis binary features that represents each state as a vector of
zeros with one active feature at a time.

Our experiments shows that the true online TD(λ)-Replay
method has the least sensitivity to the step size and almost
always guarantees convergence with maximum speed (in terms
of the number steps needed to converge). Fig. 2 shows that
the true online TD(λ)-Replay method outperformed the true
online TD(λ) method for all λ values in this domain. It also
outperformed the TD(0)-Replay algorithm [1] as well as the
linear Dyna Planning algorithm [17] both of which have a
similar quadratic complexity. This shows that our algorithm
clearly outperforms those planning algorithms as well.

VII. TRUE ONLINE TD(λ)-REPLAY APPLIED ON
MYOELECTRIC DOMAIN

In [18] authors have shown how to allow a subject to
control a two-dimension cursor via a set of surface electromyo-
graphic (sEMG) signals obtained from the subject’s forearm
activities. They have used a supervised learning approach.
Fourteen abled-body subjects were studied one of which has a
congenital upper-limb deficiency. Their aim was to study the
effect of arm position and donning/doffing of a textile hose
that they used to obtain a set of sEMG signal readings. In

Fig. 2. Comparison of true online TD(λ)-Replay with true online TD(λ), as
well as TD(0)-Replay and Dyna Planning, on 17-state random walk process,
the RMSE results are averaged over 20 trials for the first 10 episodes, where
binary features are used. This shows the clear edge that our new method have
over other methods despite the simplicity of the problem.

their experiments, each subject controlled the cursor using a
set of sixteen sEMG sensory signals attached to the subject’s
forearm. In each experiment, a set of sixteen pre-specified
cursor locations were randomly selected to the subject one
after the other and the subject has to move the cursor to
the center of the screen. These tasks were performed in
approximation and sometimes a subject failed to do the task
in the allocated time. Each task is repeated for 33 times called
runs. The data set is publicly available [19].

Our aim in this study is to show how to predict the future
position of the cursor based on current raw sEMG arm signals,
hence simplifying and transforming the ways in which such
models are constructed and trained. We will use our algorithm
to predict the next position of the cursor on a screen based
on the sEMG signals. The sEMG signal is packed with noise
with large variations in its shape and intensity between the
subjects which makes the task challenging. This task has been
attempted using deep learning approach as in [20] under a su-
pervised learning settings. We conduct a comparison study to
show that our algorithm’s prediction accuracy can considerably
outperform other widely used reinforcement learning (RL) pre-
diction and planning algorithms such as the true online TD(λ)
and Linear Dyna Planning and as well as similar replaying
algorithm such as TD(0)-Replay. We conducted two sets of
experiments to compare these algorithms’ capabilities. The
first set uses the sEMG readings directly after normalisation,
and the second set uses features that are extracted from an
auto encoder (AE).

In [21] authors showed that TD can predict the next sensor
reading based on previous reading, they call it ‘nexting’. They
have shown that nexting can be performed on a large number
of sensory inputs to predict their next values in parallel. Their
task was a robot circling a pen continuously and their sensors
(lights and ultrasonic) were predicted. In [13] authors have

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

demonstrated how to predict two degrees of freedom task
that involved the grip force and motor angle signals of a
robotics hand but their data set is not publicly available. In
this context, the sensory input plays the role of a reward. The
point of view that rewards can be used to perform general
prediction has been explored in several settings. For example,
[22] used a variety of stimuli as a reward function to learn
animal behaviour and to model conditioning.

A. Online Simulation and the Data Set
The data set has been divided into trials each trial consists

10 random episodes that belongs to the same task (starting
position for the cursor), each episodes constitutes a task of
moving the cursor from a start position to the centre of a circle
on the screen using the subject sEMG signal. So the number
of steps of each episodes varies. In order to train a network to
perform a prediction for a task, we have bundled the episodes
related to each task together. The model has been left to
run to the end of each episode without a stop condition to
capture the full experience. The reward signal is taken to be the
normalised difference between current position and the target
position for the X coordinate and the Y coordinate separately.
The results are shown for predicting the X signal for brevity.
All episodes of the six starting positions that have significant
variation along the X axes are considered. All experiments
were performed online (so the states features and the rewards
were fed in a step by step manner without a priory knowledge
of the trajectories) and all arms positions were considered
equally without distinction. Runs 10-21 of each subject’s task
are deemed useful and were utilized in training the algorithm
(calibration runs and donning/doffing runs were corrupted and
were excluded). The maximum number of trials is 66 (11 for
each task for six tasks that vary X considerably) all of which
have been utilised to obtain the RMSE averages (in our settings
a trail is a set of 10 episodes). γ was set to 0.95 and we have
used the same representation across the tasks.

B. True Online TD(λ)-Replay Training with Normalised
sEMG Features

We have conducted a comparison study of true online
TD(λ)-Replay with true online TD(λ) for different λ values 0,
0.4, 0.8, 0.9, 0.95, 0.97, 0.99 and 1 as well as TD(0)-Replay
and Dyna Planning all of which are fed the same normalised
sEMG features that are mentioned in the previous section. No
deep learning feature extractor is employed. Fig. 3 shows that
our algorithm performance exceeds the performance of the true
online TD for any relatively high λ values (≥ 0.8) specifically
at high αvalues ≥ 0.05. The results are averaged for the first
10 episodes over 66 trials with α values that spans 0.0001
to 0.001 with 0.0003 steps. The figure clearly shows that
for high λ values TD(λ)-Replay is more advantageous than
true TD(λ). We note that our algorithm has a wider maximal
area and converges quicker to an optimal performance for a
wider range of learning steps α, making it more reliable and
stable. Note that Dyna Planning has struggled to learn the
predict the next cursor position. On the other hand, TD(0)-
Replay has performed relatively good as expected but could
not outperform true TD(0.9)-Replay onward.

Fig. 3. RMSE comparison of true online TD(λ)-Replay, true online TD(λ),
TD(0)-Replay and Dyna Planning. The methods are trained to predict the
next position of a screen cursor using the normalised sEMG features. All
results are averaged for the first 10 episodes over 66 trials with α values
that spans 0.001 to 0.1 with 0.005 steps. The figure clearly shows that for
high λ values the true online TD(λ)-Replay is more advantageous than the
true online TD(λ). We note that our algorithm has a wider maximal area and
converges quicker to an optimal performance for a wider range of learning
steps α, making it more reliable and stable. Note that Dyna Planning has
struggled to learn the environment’s dynamics due to deep learning mapping
the sEMG into a more elaborate but sparse space. On the other hand, TD(0)-
Replay has performed relatively good as expected but could not outperform
the true online TD(0.9)-Replay onward.

C. Deep Auto Encoder Structure and Pre-Training

To test the suitability of our algorithms with deeply ex-
tracted features we train a deep autoencoder to extract useful
features for the different RL algorithms. The training of the
autoencoder is separate from the training of the RL algorithms.
The structure of the Sparse Auto Encoder is as follows. The
encoder has five layers, the first treats the sEMG input as an
image. The second, is a convolutional neural (CNN) layer that
has 32 filters each of size 3 × 1 with a stride of 2 (yielding
8×32 features). This is fed into a rectified linear unit (ReLU)
activation function which is then followed by another CNN
layer that has a 64 filters each of size 3× 1 with a stride of 2
(yielding an output of 4× 64 = 256). The output of this layer
is fed into a ReLU activation function then flattened into 256
neurons, which is followed by a fully connected layer to a 256
latent variables with sigmoid activation function. No padding
has been applied. The decoder mirrors these layers in the usual
reversed manner (by using a transposed convolutional layers
instead of the convolutional), both deconvolutional CNN layers
have filter sizes of 2 × 1, no cropping has been applied. The
mission of the Sparse AE is to come up with a cleaner and a
sparse decompressed representation of the sEMG signal, i.e.
to map the 16 sEMG readings into 256 = 162 features each
specialised in a range of sEMG values.

We start by training the AE in the usual unsupervised
training fashion to learn the best representation for the sEMG
sensor readings. We used a minibatch size of 512 and the
learning rate is set to 10−3. We have trained our deep learning

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

feature extractor using all the available data regardless of the
positions and the runs (so all sixteen positions are considered).
The input was normalised by re-scaling for each component
of the 16 sEMG readings. After training the AE, we use the
encoder to encode all sEMG signals in a 256 features that
corresponds to the number of latent variables. The number of
epochs for training the AE was set to 10 where the loss was
reduced to reach around 0.05.

D. True Online TD(λ)-Replay Training with Deeply Extracted
Features

We have conducted a comparison study of true online
TD(λ)-Replay with true online TD(λ) for different λ values 0,
0.4, 0.8, 0.9, 0.95, 0.97, 0.99 and 1 as well as TD(0)-Replay
and Dyna Planning all of which are fed the same deeply
extracted features. Fig. 4 shows this comparison. Clearly,
the true online TD(λ)-Replay outperforms the true online
TD(λ) for all λ values in this domain. The figure shows that
the differences between our algorithm and other algorithms
is more prominent than in our previous experiments with
normalised sEMG features. There is a clear jump in the
differences of performances between this figure the Fig. 3
demonstrating the suitability of our algorithm to this type
of deep learning extraction. We note that the true online
TD(λ)-Replay converges quicker to an optimal performance
making it agile. Another important property to note, is that
the algorithm starts almost readily with low RMSE levels and
quickly converges to its optimal performance for a small to
intermediate α (learning rate) values . This demonstrates that
our algorithm is suitable for real time and critical applications
that require minimal training and quick response. Note that λ
performed best for 0.9 as is normally expected. Fig. 5 shows
that α values that keep all methods convergent are the range
shown in Fig. 4 over which TD(λ)-Replay outperformed all
other methods. Note that Dyna Planning is included but hardly
can be seen due to its divergence for α values beyond 0.002.

VIII. CONCLUSION

In this paper we have introduced a novel reinforcement
learning method, namely the true online TD(λ)-Replay that
extends the capabilities of the true online TD(λ) method to
allow an agent to replay all of its past experience efficiently.
The parameter λ allows the agent to choose the depth of
its targets as per norm for TD(λ) methods. The cost of the
algorithm is quadratic in the number of weights and the
algorithm is suitable for a built-in planning that is model-free.
This work paves the way to design an algorithm that can scan
the full spectrum between full and partial replaying ability. We
have tested the efficacy of our algorithm on two benchmarking
domains, in one of which we have combined our algorithm
with a sparse autoencoder that utilises multiple CNN layers.
Both domains confirmed the utility and high performance of
our algorithm in comparison to other algorithms. Further, the
results shows that our algorithm constituted a good match for a
deep learning extractor, paving the way for further integration
and investigation in the future. Future work includes showing
that our methods can be used to produce new control methods,

Fig. 4. RMSE comparison of true online TD(λ)-Replay, true online TD(λ),
TD(0)-Replay and Dyna Planning. The methods are trained to predict the next
position of a screen cursor, where 16 normalised sEMG signals are fed into
a sparse auto encoder to extract a more elaborate set of features (162). All
results are averaged for the first 10 episodes and over 66 trials with α values
that spans 10−4 to 10−2 with 3×10−4 increment. The figure clearly shows
that when using deeply learned features true online TD(λ)-Replay outperforms
the true online TD(λ) for all λ values with a considerable margin.

Fig. 5. Same as for Fig. 4 but over a wider range of values of α. It shows that
for this type of features the smaller learning rate α values generates better
results for the different algorithms.

in addition to tackling an end-to-end training of a deep
reinforcement learning model that is based on our method as
well as parametrising the depth of the replay process.

REFERENCES

[1] A. Altahhan, “TD(0)-replay: An efficient model-free planning with full
replay,” in 2018 International Joint Conference on Neural Networks
(IJCNN), 2018, Conference Proceedings, pp. 1–7.

[2] B. Yoshua, Learning Deep Architectures for AI, ser. Learning
Deep Architectures for AI. now, 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/8187120

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

[3] A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Stacked deep
convolutional auto-encoders for emotion recognition from facial ex-
pressions,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, Conference Proceedings, pp. 1586–1593.

[4] A. Altahhan, “Deep feature action processing with mixture of updates,”
in 2015 International Conference on Neural Information Processing,
ser. Neural Information Processing. Springer International Publishing,
2015, Conference Proceedings, pp. 1–10.

[5] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific, 2019.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2017.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[8] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, vol. 42, no. 5, pp. 674–690, 1997.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, p. 529, 2015. [Online].
Available: https://doi.org/10.1038/nature14236

[10] H. Vanseijen and R. Sutton, “A deeper look at planning as
learning from replay,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 2314–2322. [Online]. Available:
http://proceedings.mlr.press/v37/vanseijen15.html

[11] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” eprint
arXiv:1712.01275, p. arXiv:1712.01275, 2017. [Online]. Available:
https://ui.adsabs.harvard.edu/#abs/2017arXiv171201275Z

[12] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3, pp. 293–
321, 1992. [Online]. Available: https://doi.org/10.1007/BF00992699

[13] H. van Seijen, A. Rupam Mahmood, P. M. Pilarski, M. C. Machado,
and R. S. Sutton, “True online temporal-difference learning,” Journal of
Machine Learning Research, vol. 17, no. 145, pp. 1–40, 2016. [Online].
Available: https://ui.adsabs.harvard.edu/#abs/2015arXiv151204087V

[14] H. van Hasselt and R. S. Sutton, “Learning to predict independent
of span,” CoRR, vol. abs/1508.04582, 2015. [Online]. Available:
http://arxiv.org/abs/1508.04582

[15] A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racanière, T. Weber,
D. Raposo, A. Santoro, L. Orseau, T. Eccles, G. Wayne,
D. Silver, and T. P. Lillicrap, “An investigation of model-free
planning,” CoRR, vol. abs/1901.03559, 2019. [Online]. Available:
http://arxiv.org/abs/1901.03559

[16] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson, “Treeqn
and atreec: Differentiable tree planning for deep reinforcement
learning,” CoRR, vol. abs/1710.11417, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11417

[17] R. S. Sutton, C. Szepesvari, A. Geramifard, and M. P. Bowling,
“Dyna-style planning with linear function approximation and prioritized
sweeping,” eprint arXiv:1206.3285, p. arXiv:1206.3285, 2012. [Online].
Available: https://ui.adsabs.harvard.edu/#abs/2012arXiv1206.3285S

[18] H.-J. Hwang, J. M. Hahne, and K.-R. Müller, “Real-
time robustness evaluation of regression based myoelectric
control against arm position change and donning/doffing,”
PloS one, vol. 12, no. 11, pp. e0 186 318–e0 186 318, 2017.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29095846
https://www.ncbi.nlm.nih.gov/pmc/PMC5667774/

[19] M. Atzori, A. Gijsberts, I. Kuzborskij, S. Elsig, A. M. Hager, O. De-
riaz, C. Castellini, H. Müller, and B. Caputo, “Characterization of a
benchmark database for myoelectric movement classification,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 23,
no. 1, pp. 73–83, 2015.

[20] Y. Li, “Deep reinforcement learning,” ArXiv, vol. abs/1810.06339, 2018.
[21] J. Modayil, A. White, and R. Sutton, “Multi-timescale

nexting in a reinforcement learning robot,” Adaptive Behavior,
vol. 22, no. 2, pp. 146–160, 2014. [Online]. Available:
https://doi.org/10.1177/1059712313511648

[22] E. A. Ludvig, R. S. Sutton, and E. J. Kehoe, “Evaluating the td model
of classical conditioning,” Learning & Behavior, vol. 40, no. 3, pp.
305–319, Sep 2012. [Online]. Available: https://doi.org/10.3758/s13420-
012-0082-6

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

