
A Comparative Study of Classifiers for Thumbnail
Selection

Kyle Pretorious
Department of Computer Science

University of Pretoria
Pretoria, South Africa
u16234805@tuks.co.za

Nelishia Pillay
Department of Computer Science

University of Pretoria
Pretoria, South Africa

npillay@cs.up.ac.za

Abstract—As we move into the fourth industrial revolution
video streaming platforms like Netflix are turning to machine
learning techniques to maintain a competitive edge in the market.
Various problems such as clip creation, network optimization,
customer churn prediction, amongst others, have been solved for
video streaming platforms using machine learning. This paper
focuses on automatic thumbnail selection for movies and series.
Classifiers are used to automate the thumbnail selection. The
research firstly compares the performance of different convo-
lutional neural networks (CNNs), namely, VGG-19, Inception-
v3 and ResNet-50, for solving this problem. The performance
of two classifiers, namely, the best performing convolutional
neural network and a hybrid approach combining a CNN and
genetic programming, are compared for thumbnail selection. The
CNN is used for feature extraction and genetic programming for
classification. The ResNet-50 CNN outperformed the other CNNs.
Both classifiers were successful for thumbnail selection with the
convolutional neural network outperforming the hybrid classifier.

Index Terms—automatic thumbnail selection, convolutional
neural networks, genetic programming

I. INTRODUCTION

With advances in technology making reliable and inex-
pensive internet connections available to a larger percentage
of the world than ever before, video streaming platforms
have become highly popular. A key feature present on every
video streaming site is the use of video thumbnails. Video
thumbnails are cover images that attempt to capture the content
of the video in a visually appealing way. These thumbnails do
not only make it easier for users on these platforms to find
videos they are looking for [1], but a strong positive correlation
exists between the quality of a video thumbnail and the number
of views these videos receive [2].

Since the task of manually searching through thousands
of frames for thumbnails can become a time consuming
task, creating programs that are able to automatically select
thumbnails for videos have been studied in recent years [3]–
[6]. Automatic thumbnail selection is a complex problem for
programs to solve since the characteristics of a good thumbnail
cannot be objectively defined. A thumbnail should be able to
capture the attention of viewers and interest them in such a
way that they decide to view the video.

Automatic thumbnail selection is a fairly new problem
and hence not well researched. Existing research into solving

the problem of thumbnail selection consists of deterministic
approaches focused on extracting key frames from videos, and
convolutional neural networks. Given that convolutional neural
networks are considered to outperform other techniques, the
paper examines a convolutional neural network solution to the
problem. The research presented in this paper differs from
previous work in that different architectures of convolutional
networks are investigated for this problem. Genetic program-
ming [7] is an evolutionary algorithm, that has proven to be
successful at classification, that has not previously applied to
this problem. The paper also examines hybridizing a con-
volutional neural network with genetic programming, where
the convolutional neural network performs feature extraction
and the genetic programming algorithm classification. The
performance of the hybrid is compared with that of the best
performing convolutional neural network for thumbnail selec-
tion. Hence, the main contributions of the research presented
in this paper are:

• An investigation of classifiers for solving the thumbnail
selection problem which has not been sufficiently re-
searched.

• A comparison of convolutional neural network architec-
tures for thumbnail selection.

• A comparison of performance of convolutional neural
networks and a hybrid approach combining a CNN for
feature extraction and genetic programming for classifi-
cation for thumbnail selection.

The following section describes the automatic thumbnail
selection problem and section III presents an overview of
previous studies attempting to solve this problem. Section
IV presents the convolutional neural networks employed for
thumbnail selection. The hybrid approach combining a CNN
and genetic programming is presented in section V. The
experimental setup used to evaluate the CNNs and the hybrid
approach are presented in section VI. Section VII describes
and compares the performance of the CNNs and the hybrid
approach. A summary of the findings of the research and future
research is presented in section VIII.

II. THE AUTOMATIC THUMBNAIL SELECTION PROBLEM

Thumbnails are cover images that are used to represent a
video or attract viewers, and are commonly used on video

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

streaming platforms where users browse through many pos-
sible videos to watch. On competitive streaming sites, such
as Youtube, thumbnails have shown to play an important
role in the number of views that a video receives, and
content creators that are more successful generally have more
attractive thumbnails for their videos [2]. Studies such as [1]
have shown that thumbnails have a large impact on the rate
at which users are able to find content they are searching for
on platforms. Popular streaming platforms where there is no
competition between content creators, such as Showmax and
Netflix, use thumbnails to improve user experience by making
it easier for users to search through content. Selecting a good
thumbnail for a video becomes more difficult as the length of
the video increases, since the person selecting the thumbnail
should watch the entire video to be able to consider all the
frames. On large platforms, such as Netflix and Showmax,
with more than 7000 videos with an average length of more
than an hour, manually selecting a thumbnail for each video
becomes a task that requires many hours of manual labour.

A solution to this problem is using a program that can auto-
matically select or suggest thumbnails for a video. Optimally,
such a program should be able to consider every frame in
the video and rank each frame based on how well it meets
the criteria of a good thumbnail. A good thumbnail can be
seen as one that captures the content of the video while being
visually appealing and evoking the interest of the viewer.
However, considering every frame in a high-quality video of
more than an hour becomes very computationally expensive,
and therefore frames are sampled from the video by some
sampling techniques. Automatic thumbnail selection can easily
be converted into a binary classification problem with the two
possible classes being good and bad thumbnails. The good
class score of a frame can be used to rank each frame and
either the best frame can be automatically set as the thumbnail
for the video or a safer approach can be taken where the top
set of frames are reviewed by a human and the best is selected.

III. RELATED WORK

The problem of automatic thumbnail selection is in essence
highly similar to keyframe selection. Keyframe selection
places a higher importance on selecting frames that are
representative of a video, in contrast to thumbnail selection
that focuses more on attractive frames. The recent work on
keyframe selection of Ren et al. [8] uses a Siamese CNN
architecture together with a Piecewise ranking loss function to
learn the ranking of frames in short videos to select keyframes.

A method for automatic thumbnail selection that focuses
on selecting frames that are both representative and attractive
is described in [6]. This multi-step method first filters out
transition frames and frames of low quality, after which the
remaining frames are clustered and frames with the highest
stillness are selected from each cluster. The last step selects the
video thumbnail from the remaining keyframes by considering
both the frame attractiveness and relevance.

A thematic approach to thumbnail selection is proposed
in [5]. This is accomplished by using keywords related to

the video to retrieve related images from a visual database,
after which thumbnails are selected by taking into account the
similarity of frames with the retrieved images.

Work has also been done in dynamically selecting video
thumbnails or keyframes based on semantic information con-
tained in the video title or the search query used to find the
video [3], [4], [9], [10].

The work that is considered to be the most related to the
work presented in this paper is that of Arthurs et al. [2]. In
this study, two convolutional neural networks were applied to
this problem, a variant of AlexNet and a retrained VGGNet
model that was pre-trained on ImageNet. Techniques such as
dropout, L2 regularization and data augmentation were used
to prevent overfitting. The neural networks were tested on a
dataset from Youtube, where examples of good thumbnails
were obtained from videos with more than 1 million views,
and examples of bad thumbnails from videos with less than
100 views. The neural networks obtained accuracies of 80.9%
and 86.5% respectively.

The research presented in the paper differs from previous
work in terms of :

• The study compares different convolutional neural net-
work architectures for automatic thumbnail selection.

• Investigates the effectiveness of hybridizing a convolu-
tional neural network, for feature extraction, and genetic
programming for classification, for automatic thumbnail
selection.

The following section describes the convolutional neural
networks investigated.

IV. CONVOLUTIONAL NEURAL NETWORK FOR
THUMBNAIL SELECTION

The CNN operates as a classifier that outputs a value
between 0 and 1 using the sigmoid activation function on
the output neuron. Frames that would make good thumbnails
should be assigned a value near 1, while frames that would
make bad thumbnails should be assigned a value near 0. After
being trained on a data set containing examples of good and
bad thumbnails, the CNN is then applied to each frame within
a video to assign a score to each frame. Frames are then ranked
according to the scores assigned to them using the classifier
and the top set of frames can be suggested as thumbnails for
the given video. In this work, three different CNN architectures
were implemented for thumbnail selection, namely, VGG19
[11], Inception-V3 [12] and ResNet50 [13]. The performance
of the neural network architectures for thumbnail classification
are compared with the architecture found to perform best
described in section VI.

V. HYBRID APPROACH

This section describes the hybrid approach combining a
CNN and genetic programming. While genetic programming
has shown to be effective at classifying images, one of
the challenges is genetic programming cannot deal with the
large number of features [14], [15] . For this reason feature
extraction has to be performed before applying the genetic

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

programming classifier. In the proposed approach, a CNN,
namely, VGG19 [11] has been employed for feature extraction.

The CNN is firstly trained on an initial set of data. The
dense layers of the CNN are removed up until the layer
that represents the flattened feature maps produced by the
CNN. Given a data set, each image can be run through the
convolutional layers to obtain a 1D vector representing the
extracted features, creating a new data set where each image
is only represented by the 1D feature vector. GP is then trained
to produce a classifier that is able to predict the class of the
image represented by the feature vector by only considering
the feature vector and not the original image itself.

Genetic programming evolves a classifier to classify each
frame in a movie or series as a good or bad thumbnail, in a
similar manner as that described for CNNs. From the literature
surveyed it is evident that arithmetic tree classifiers are most
effective for image processing [14]–[17] when employing
genetic programming. Furthermore, arithmetic trees are not
only able to produce continuous outputs as required for the
scoring of frames, they are also able to effectively operate on
the continuous inputs produced by the feature extraction phase.
Hence, each classifier is an arithmetic tree which produces a
numerical value which is transformed to a score between 0
and 1 using a sigmoid function, with a score of 1 indicating
that a frame would make a good thumbnail. Each element of
the initial population is created using the ramped half-and-half
method [7]. The terminal set is comprised of the features in the
1D feature vector produced by the CNN as well as ephemeral
constants in the range -1 to 1. The function set includes the
following arithmetic operators: addition, subtraction, multipli-
cation, protected division, min and max. The fitness of an
individual is calculated as the log loss obtained when using
by the individual to classify a sample drawn from the training
set. Tournament selection [7] is used to select parents which
the mutation and crossover operators are applied to, to create
the offspring of each generation. Subtree mutation uniformly
selects a node within the parent tree. A random subtree is
then generated and the subtree rooted at the selected node
is replaced by the generated subtree. Crossover is applied to
two parents, where the first parent will act as the main parent
and the second parent will act as the donor parent. A node
is uniformly selected from each of the two parents. After
which, the subtree rooted at the selected node in the main
parent is replaced by the subtree rooted at the node selected
in the donor parent. The new tree created is then returned as
the offspring. The process of fitness evaluation, selection and
application of the genetic operators continues for a set number
of generations.

VI. EXPERIMENTAL SETUP

This section provides an overview of the experimental setup
used to evaluate both the classifiers for thumbnail selection.

A. Data Set

The data set used to train the classifiers plays a large role
in the ability of the classifiers to select thumbnails. This is

because the classifiers will learn the mapping between good
and bad thumbnails as it is present in the data set.

It was found that there were not any publicly available data
sets for this problem that were of a high quality. For this
reason, a data set was created for the purpose of this study.
Since the data set has to be relatively large to allow for the two
methods being compared to effectively train on the data set
without overfitting, the process of the creating the data set was
done automatically. This was done using Youtube’s developer
API. Using this API it was possible to retrieve the video IDs
of popular movie and series trailers that have been uploaded
to Youtube. Movies and series were chosen as the content to
focus on since thumbnails are typically required for them in an
commercial environment where automatic thumbnail selection
would be applicable. Using the list of video IDs it was possible
to once again query the Youtube API for three thumbnails
selected by Youtube’s automatic thumbnail selection algorithm
from the start, middle and end of the video respectively. These
thumbnails served as examples of good thumbnails. To obtain
examples of bad thumbnails, three frames were randomly
selected from the same video. The reason for this is that
random frames within a video have a considerably higher
chance of making a bad thumbnail than a good one. Hence,
using this technique, it was possible to obtain 3 examples of
good thumbnails and 3 examples of bad thumbnails from each
video.

A total of roughly 2500 thumbnail examples were obtained
using this method, where the examples were close to being
equally divided between the two classes. To further improve
the data set, the examples were manually inspected and any
examples that were found to be in the wrong class were moved
to the opposite class. After which, the data set still remained
roughly balanced between the two classes. Finally, the data set
was split into a training set consisting of 75% of the examples
and a validation set consisting of the remaining examples.

To allow CNNs to train faster, input images were normalized
by dividing each pixel value by 255. Since the data set is rela-
tively small in size, it would be ideal to artificially increase the
size of the data by use of data augmentation techniques such as
random shearing, scaling, changes in brightness and flipping
the images. However, due to the nature of thumbnails, this was
not possible. This is because performing data augmentation to
good examples of thumbnails would likely impact the visual
appearance of the thumbnail negatively. For this reason, data
augmentation was not performed.

B. Performance Metrics

The metric used to measure the performance of the binary
classifiers produced is the binary cross-entropy error, otherwise
known as log loss. Log loss is effectively a measure of
the similarity of the probability distribution of the output
produced by the classifier with the distribution of the target
variables. Hence, a lower log loss indicates that the classifier is
able to more accurately predict the output class. This metric
will be used as the primary metric for any two classifiers.
More specifically, the best validation loss obtained by the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

classifier during training will be used as the validation loss for
comparison. This is because the classifiers are not guaranteed
to have reached their best performance at the end of training,
but could likely reach their best performance during training.
Secondly, the training and validation accuracy will also be
provided as a metric that is more interpretable, but will not be
used to make final decisions when comparing classifiers.

C. CNN Parameter Tuning

The CNN architecture comparison and parameter tuning
performed is discussed in detail in this section, where the
architecture and parameters that were found to perform the
best are selected for the performance comparison. The CNN
architectures chosen for comparison in this study have been
chosen due to their diversity in structure and performance in
the ILSVRC [18]. The following architectures are compared:

• VGG-19: A 19 convolutional layer deep VGG network
[11]

• Inception-v3: The third iteration of the Inception archi-
tecture [12]

• ResNet-50: A 50 convolutional layer deep ResNet [13]
For each architecture the following parameter values were

chosen based on observations made during training:
• Number of epochs and batch size: To improve training,

the batch size was set to the maximum size allowed by
the memory capacity of the machine used for training.
This was found to be a batch size of 16. The number
of epochs trained for were determined by examining the
training history of the neural network. It was observed
that models generally converge at around 20 epochs, after
which they start overfitting. For this reason, the number
of epochs were set to 30 with the best validation loss of
the model being tracked over the number of epochs, and
only saving the version of the model that obtained that
loss.

• Regularization: To further prevent overfitting, heavy regu-
larization was applied to the dense layers of the network.
This was accomplished by using dropout with a rate of
0.5 on the final flattened feature map of the convolutional
layers and the hidden layer.

• Batch Normalization: Batch normalization was applied to
all layers within the dense layers of the network. This was
done to improve training and for the regularizing effect
that batch normalization has shown to have.

The following parameters were empirically tested for each
architecture:

• Dense Layers Architecture: The architecture of the dense
layers in terms of the number of layers and the number
of neurons per layer was tuned. Each CNN was given a
single output neuron using a sigmoid activation function,
with the other neurons within the dense layers using
ReLU activation functions. It was observed that all CNN
architectures were able to easily overfit the training data,
this is likely because the data set is relatively small and
that no data augmentation could be applied. It was found

that CNNs using simple dense layers with only a single
hidden layer of 64 neurons were able to overfit, due to the
fact that the convolutional layers within the CNNs contain
such a large number of free parameters. For this reason,
the dense layers of all architectures were restricted to
a single hidden layer and an output layer with a single
neuron. Furthermore, the number of neurons in the hidden
layer were tested at 64 neurons to allow slight overfitting
and 32 neurons in an attempt to reduce overfitting.

• Optimization Algorithm: Two optimization algorithms
used for training were tested and compared for each
architecture and dense layer combination. The two meth-
ods that were compared are SGD [19] and Adam [20].
Additionally, different values for the hyper parameters of
these methods were tested based on previous experience.

• Transfer learning: Lastly, the effect of transfer learning
was tested on architecture and parameter combinations
that tended to perform well. This was done by comparing
the performance of the neural network when randomly
initializing weights within the convolutional layers with
initializing the weights to that of a neural network trained
on ImageNet.

The CNN architecture that was found to consistently per-
form the best in terms of its best validation loss as recorded
over a number of runs was ResNet-50, using 32 neurons within
the dense layer and trained using SGD with a learning rate of
0.01 and no momentum. Additionally, it was found that using
transfer learning on the convolutional layers of ResNet-50
trained on ImageNet, resulted in the model overfitting towards
the end of training while obtaining the best results in the early
stages of training. The parameters that were found to result in
the best performance are listed in Table I.

TABLE I
BEST CNN ARCHITECTURE AND PARAMETER COMBINATION FOUND

Parameter Value
Convolutional layers architecture ResNet-50
Number of hidden dense layers 1
Number of neurons per hidden dense layer 32
Number of output neurons 1
Output neuron activation function Sigmoid
Hidden layers activation function ReLU
Optimizer SGD
Learning rate 0.01
Momentum None
Transfer learning Convolutional layers only
Regularization Dropout on fully connected layers
Dropout rate 0.5
Batch Normalization Applied to all fully connected layers

D. Genetic Programming Parameter Tuning

This section describes the parameter tuning that was per-
formed for the GP algorithm used within the hybrid ap-
proach. The parameter tuning performed aimed to minimize
the validation loss of the best classifier produced by the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

algorithm. The following parameter values were selected based
on observations made during the training process:

• Population size: It was observed that increasing the
population size to a size larger than 500 individuals had
no observable positive impact on the training performance
achieved. Hence, a population size of 500 was used.

• Number of generations: During most tests performed for
different parameter values, it was observed that the best
solution found on the training set was found within 500
generations. For this reason, 500 generations were set as
the maximum number of generations.

Using the above described population size and number of
generations, tests were conducted to empirically determine
optimal values for the following parameters:

• Mutation and Crossover probability: The mutation and
crossover probabilities determine the probability of per-
forming mutation and crossover to selected individuals
to produce offspring. The higher the crossover probabil-
ity the faster the search will converge, the higher the
mutation probability the closer the search becomes to
random search. These following mutation and crossover
probabilities were tested for the following value pairs
(0.1, 0.9), (0.2, 0.8), (0.3, 0.7) and (0.4, 0.6) respectively.

• Initial maximum depth: This parameter determines the
maximum depth for trees used in the ramped half and half
method to generate the initial population. The minimum
depth used was kept fixed at 2, with maximum depths of
3, 5, 10 and 15 being tested.

• Parsimony coefficient: A coefficient that determines the
penalty that should be assigned to large trees to prevent
bloat. Values were tested in the range of 0.001 - 0.1.

• Tournament size: The tournament size determines the size
of the group of individuals selected for comparison during
tournament selection. Values of 3, 5 and 7 were tested.

Tests were run where combinations of parameter values
from the above described list were chosen non-exhaustively.
Parameter value combinations were chosen based on past
experience and adjusted based on the effect in validation loss
observed. The main focus of the parameter tuning was to
prevent overfitting while at the same time allowing trees to
be large enough to consider a sufficient subset of the features
to make accurate predictions. The parameters that were found
to obtain the best results in the experiments conducted are
listed in Table II below.

TABLE II
GP PARAMETER VALUES

Parameter Value
Crossover probability 0.8
Mutation probability 0.2
Initial maximum depth 10
Parsimony coefficient 0.001
Tournament size 5
Population size 500

E. Performance Comparison

The comparison of CNNs and the hybrid approach for
thumbnail selection will be done using two main comparisons.
Firstly, the difference in classification performance of the
two methods will be compared and statistical tests will be
performed to determine if there is a statistical difference in
results. This will be done by training each method 30 times
on the training data set and measuring the best validation loss
obtained during each run, as well as the training accuracy,
training loss and validation accuracy accompanied by the best
validation loss for each run. To compare the classification
performance of the methods, a two tailed z-test will be
performed with α = 0.05 to determine if there is a significant
difference in results obtained between the two methods.

Secondly, both methods will be applied to select three
thumbnails for a set of trailers for movies and series that
will act as the test set for this study. These trailers will be
introduced in the results section together with the thumbnails
selected by both methods for each trailer. The selected thumb-
nails are then compared and discussed.

VII. RESULTS AND DISCUSSION

This section reports on and compares the performance of
ResNet-50 and the hybrid approach for thumbnail selection.
The best validation log loss obtained by each method was
recorded for each run, together with the training accuracy,
training loss and validation accuracy of the classifier at the
time that the best validation loss was obtained in the run. The
results obtained on the training and validation data sets are
presented in Tables 2 and 3 respectively.

TABLE III
TRAINING PERFORMANCE COMPARISON

Training Accuracy Training Loss
Method Best Mean Standard Best Mean Standard

Deviation Deviation
CNN 0.93 0.91** 0.02 0.18 0.25** 0.05

Hybrid 0.74 0.72 0.02 0.39 0.41 0.02

TABLE IV
VALIDATION PERFORMANCE COMPARISON

Validation Accuracy Validation Loss
Method Best Mean Standard Best Mean Standard

Deviation Deviation
CNN 0.83 0.82** 0.01 0.4 0.44** 0.02

Hybrid 0.72 0.69 0.02 0.55 0.59 0.02

From these results it can be seen that there was a statistically
significant difference in results obtained by the two methods,
with the ResNet-50 outperforming the hybrid approach on
all metrics recorded. More specifically, the CNN was able
to obtain an average validation loss of 0.44 and an average
validation accuracy of 82% in comparison to the average
validation loss of 0.59 and average validation accuracy of 69%

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

obtained by the hybrid approach . The difference in results
could be attributed to two main factors. Firstly, the CNN
is able adjust the weights within the convolutional layers to
extract features that are likely more suited to the problem at
hand, wheres the hybrid approach method was not able to
adjust the weights within the convolutional layers and had to
work with more general extracted features. However, when
using transfer learning with CNNs where the convolutional
layers were frozen, CNNs were still found to outperform the
hybrid approach. Hence, this is likely not a main factor that
led to a large difference in results observed. The second factor
considered is the fact that the set of features extracted by
convolutional layers are likely still too large for the GP to
efficiently operate on. The set of 512 features require large
arithmetic trees to effectively consider most features, likely
making the program space highly complex to search. Hence,
it is likely that neural networks naturally scale to larger sets
of features than GP.

It can also be noted that there is a relatively large difference
in results obtained by the CNN on the training and validation
set, with the CNN obtaining an average training accuracy of
91%, while obtaining an average validation accuracy of 82%.
Hence, the CNN was able to heavily overfit the training data
set. This could likely be remedied by using a larger data set,
since the number of free parameters within the CNN have
already been restricted by using few neurons within the dense
layers.

The two methods are compared based on their ability to
select thumbnails from trailers. Each method is used to select
the top 3 frames from each trailer, with frames sampled at a
rate of 1 frame per second. Three examples of the top three
thumbnails selected by each method are given in figures 1, 2
and 3.

Fig. 1. Selected thumbnails for Thor: by CNN(top) and hybrid (bottom).
Thumbnail score decreasing from left to right.

Fig. 2. Selected thumbnails for Jumanji: by CNN(top) and hybrid (bottom).
Thumbnail score decreasing from left to right.

From the figures it can be seen that in general, the CNN
was able to select appropriate thumbnails more consistently in

Fig. 3. Selected thumbnails for Game of Thrones: by CNN(top) and hybrid
(bottom). Thumbnail score decreasing from left to right.

comparison to the hybrid approach. The thumbnails selected
by the CNN are more consistently in focus and well centered
on a character present in the trailer. However, the hybrid
approach was able to identify two thumbnails that can be
considered competitive with those selected by the CNN in
Fig1. These results are to be expected as it was shown that
the CNN outperformed the hybrid approach on the training
and validation data sets.

It can also be noted that the trailer from Fig 3 was likely
the most difficult to select thumbnails for since the thumbnails
selected by the CNN are not of the same quality as those
selected for other trailers. Furthermore, the hybrid approach
was not able to select any suitable thumbnails for that specific
trailer. This is likely due to the fact that this trailer contains
many scenes that are either dark or of a monotone nature when
compared to the other trailers.

VIII. CONCLUSION AND FUTURE RESEARCH

The main contribution of the research presented is finding a
solution to the thumbnail selection problem. The research also
compares different convolution neural networks for thumbnail
selection and the performance of CNNs with that of a hybrid
approach combining a CNN for feature extraction and genetic
programming for classification. The ResNet-50 convolutional
neural network was found to perform the best for thumbnail
selection, outperforming the other CNNs evaluated as well as
the hybrid approach.

Future work will focus on improving the performance of
both CNN and the hybrid approach in solving this problem.
The results obtained by the CNN could likely be improved
by increasing the size of the data set, since the data set only
contained 2500 examples, which allowed the CNN to easily
overfit the training data. Not only will an increased size in
the data set prevent the CNN from overfitting, but will also
allow larger architectures to be applied to the data set to learn a
more complex mapping. The hybrid approach appeared to still
struggle with the large number of features present after feature
extraction. Hence, this method could possibly be improved by
applying further feature reduction before applying GP to the
features. Furthermore, other GP representations could be tested
such as rule induction trees that have shown to perform well at
naturally performing feature selection as part of the evolution
process.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

ACKNOWLEDGMENT

The authors would like to thank the Multichoice Group
for funding this research as part of the Multichoice Machine
Learning Chair.

REFERENCES

[1] M. Christel, “Evaluation and user studies with respect to
video summarization and browsing,” in Proc. SPIE 6073,
Multimedia Content Analysis, Management, and Retrieval, 2006,
p. https://doi.org/10.1117/12.642841.

[2] N. Aruthurs, S. Birnbaum, and N. Gruver, “Selecting
youtube video thumbnails via convolutional neural networks,”
http://cs231n.stanford.edu/reports/2017/pdfs/710.pdf2017, 2017.

[3] L. W., M. T., Z. Y., C. C., and L. J., “Multi-task deep visual-semantic
embedding for video thumbnail selection,” in Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 3707–3715.

[4] L. C., H. Q., and J. S, “Query sensitive dynamic web video thumb-
nail generation,” in Proceedings of the 2011 18th IEEE International
Conference on Image Processing, vol. 9, 2011, pp. 2449–2452.

[5] G. Y. and a. X. J. Zhang T., “Thematic video thumbnail selection,” in
16th IEEE International Conference on Image Processing (ICIP), 2009,
pp. 4333–4336.

[6] Y. Song, M. Redi, J. Vallmitjana, and A. Jaimes, “To click or not
to click: Automatic selection of beautiful thumbnails from videos,”
in Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, ser. CIKM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 659–668.
[Online]. Available: https://doi.org/10.1145/2983323.2983349

[7] J. R. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection. MIT Press, 1992.

[8] J. Ren, X. Shen, Z. Lin, and R. Mech, “Best frame selection in a short
video,” in Proceedings of the 2020 Winter Conference on Applications
of Computer Vision (WACV 2020), 2020, pp. 3212–3221.

[9] Y. Yuan, L. Ma, and W. Zhu, “Sentence specified dynamic video
thumbnail generation,” in Proceedings of the 27th ACM International
Conference on Multimedia, ser. MM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2332–2340. [Online].
Available: https://doi.org/10.1145/3343031.3350985

[10] A. B. Vasudevan, M. Gygli, A. Volokitin, and L. Van Gool,
“Query-adaptive video summarization via quality-aware relevance
estimation,” in Proceedings of the 25th ACM International Conference
on Multimedia, ser. MM ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 582–590. [Online]. Available:
https://doi.org/10.1145/3123266.3123297

[11] K. Simonyan and A. Zisserman. (2015) Very deep convolutional
networks for large-scale image recognition. [Online]. Available: Very
deep convolutional networks for large-scale image recognition.

[12] C. Szegedy, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings
of 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, pp. 770–778.

[14] D. Agnelli, A. Bollini, and L. L., “Image classification: An evolutionary
approach,” Pattern Recognition Letters, vol. 23, no. 1, pp. 303–309,
2002.

[15] R. Nandi, A. Nandi, R. Rangayyan, and S. D., “Classification of
breast masses in mammograms using genetic programming and feature
selection.” Medical and Biological Engineering and Computing, vol. 44,
no. 8, pp. 683–694, August 2006.

[16] H. Al-Sahaf, A. Song, K. Neshatian, and Z. M., “Two-tier genetic
programming: Towards raw pixel-based image classification,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301, 2012.

[17] R. Poli, “Genetic programming for image analysis.” in Proceedings of
the 1st Annual Conference on Genetic Programming, 1996, pp. 363–368.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[19] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a
regression function.” Annals of Mathematical Statistics, vol. 23, no. 3,
pp. 462–466, 1952.

[20] K. Diederik and B. Jimmy, “Adam: A method for stochastic opti-
mization,” in Proceedings of International Conference on Learning
Representations, vol. 12, 2014.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

