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Abstract: This paper presents a methodology for designing a fault-tolerant control (FTC) system for linear parameter
varying (LPV) systems subject to actuator saturation fault. The FTC system is designed using linear matrix
inequality (LMI) and model estimation techniques. The FTC system consistsof a nominal control, fault
diagnostic, and fault accommodation schemes. These schemes are designed to achieve stability and tracking
requirements, estimate a fault, and reduce the fault effect on the system. Simulation studies are used to
illustrate the proposed design.

1 INTRODUCTION

In recent years, the field of designing FTC systems
has received considerable attention (Blanke et al.,
2001; Bodson, 1995; Isermann et al., 2002; Patton,
1997; Rauch, 1994; Stengel, 1991). For the case of
actuator fault, most of this research had addressed
fault accommodation for system subject to parame-
ter variation or frozen output. Other types of actua-
tor fault have been rarely considered. In this paper,
a methodology for designing FTC system for LPV
systems subject to a reduction in the actuator satura-
tion limit is presented. The LPV systems are defined
as a class of linear time-varying systems whose state
space matrices depend on a set of parameters that are
bounded and can be measured or estimated online.
In the case of using an analytical approach, the main
idea behind fault tolerance is the use of fault diagnos-
tic and accommodation schemes. A fault diagnostic
scheme driven by plant measurements is used to de-
tect, locate, and estimate faults; while a fault accom-
modation scheme driven by fault information from the
diagnostic scheme is used to modify the nominal con-
trol law in order to reduce the fault effect on the sys-
tem. Based on the above idea, the total task of the
proposed FTC system is divided into three parts:

• Plant control: attempts to stabilize the closed-loop
system and provide the desired tracking properties

in the absence of faults. The controller is designed
using LPV technique (Apkarian et al., 1995; Ap-
karian and Adams, 1998; Gahinet et al., 1996;
Kose et al., 1998; Tuan and Apkarian, 2002).

• Fault diagnosis: deals with the problem of satura-
tion fault detection, location, and level estimation.
To achieve that, a suitable LPV model is derived
to describe the faulty system. Then the results in
(Polycarpou and Helmicki, 1995) are used to con-
struct the diagnostic scheme.

• Fault accommodation: attempts to reduce the fault
effect on the system by modifying the nominal
control law through the reference reshaping fil-
ter and feed-forward gain. The accommodation
scheme is designed with the help of the bounded
real lemma for LPV system presented in (Gahinet
et al., 1996).

The notationH (A ,B ,C ,D ,E ,F ) is used through-
out the paper to denote the symmetric matrix
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2 PROBLEM STATEMENT

Consider a class of LPV systems of the form:

ẋs(t) = As(ρ(t))xs(t)+Bsu(t) (1)

y(t) = xs(t) (2)

wherexs(t) ∈ ℜn is the state vector,u(t) ∈ ℜm is the
control signal, andy(t) ∈ ℜn is the measured output
signal.As(ρ(t)) = Aso +∑N

i=1 ρi(t)Asi , andAsj andBs
are known constant matrices with appropriate dimen-
sions. Furthermore,ρ(t) = (ρ1(t), . . . ,ρN(t))T is the
vector of real time varying parameters ranging inside
the hyper-rectangle region defined byρi(t) ∈ [ρ

i
, ρ̄i ].

Also, its rate ρ̇(t) = (ρ̇1(t), . . . , ρ̇N(t))T is ranging
inside another hyper-rectangle region defined by
ρ̇i(t) ∈ [νi , ν̄i ].

The actuator saturation fault considered in this
study is given by Definition 1.

Definition 1 (Actuator Saturation Fault) The ac-
tuator saturation fault is defined mathematically as:

σ j(δ ju j) =

{
u j |u j | < δ j ū j
δ j ū j sign(u j) |u j | ≥ δ j ū j

whereu j is the input to thejth actuator,σ j is the out-
put of the jth actuator, and 0≤ δ j ≤ 1 is the reduced
level of the jth saturation limit ¯u j .

Remark 1 The value ofδ j represents the reduced
level of the actuator saturation limit whereδ j = 0
means a complete failure,δ j = 1 means no failure ex-
ists, and 0< δ j < 1 means the saturation limit has
been reduced to the value of±δ j ū j .

Now the main problem is presented.

Problem 1 Design an FTC system for the LPV sys-
tem (1)-(2) such that:

• In the absence of actuator saturation fault, the
nominal control objectives are achieved.

• In the presence of actuator saturation fault, the
control objectives are achieved as close as possi-
ble to the nominal one.

3 FAULT-TOLERANT CONTROL
SYSTEM

The main schemes of the FTC system are shown in
Figure 1. These schemes are controller, fault diag-
nosis, and fault accommodation. Furthermore, the
fault accommodation scheme consists of reconfigura-
tion mechanism, feed-forward gain, and reference re-
shaping filter. The controller is designed to achieve
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Figure 1: Structure of fault-tolerant control system.

the desired system performances assuming that the
system is under normal operation. The fault diag-
nostic scheme is designed to detect, locate, and es-
timate a fault. The fault diagnostic scheme is driven
by the available system input and output signals. The
fault information (no fault, fault, location and magni-
tude of fault) is supplied to the reconfiguration mech-
anism to trigger an appropriate reconfiguration of the
feed-forward gain and reference reshaping filter. The
feed-forward gain and reference reshaping filter are
designed to fulfill the new physical constraints im-
posed by the fault.

3.1 Control Design

The controller is designed based on the concept of
affine quadratic stability (Gahinet et al., 1996) defined
below.

Definition 2 (Affine Quadratic Stability) The LPV
system ˙x = Ac(ρ)x is affinely quadratically stable
(AQS) if there exists N+1 symmetric matricesPi such
that the following inequalities:

P(ρ)= Po+ρ1P1+. . .+ρiPi+. . .+ρNPN>0 (3)

F(ρ, ρ̇)= Ac(ρ)TP(ρ)+P(ρ)Ac(ρ)+
dP(ρ)

dt
<0, (4)

where dP(ρ)
dt = ρ̇1P1 + . . . + ρ̇iPi + . . . + ρ̇NPN, hold

for all admissible trajectories of the parameter vec-
tor ρ. In this case, the functionV(x,ρ) = xTP(ρ)x
is a quadratic Lyapunov function for the LPV system
ẋ = Ac(ρ)x.

The difficulty associated with the control design us-
ing Definition 2 is that the matrix inequality (4) is
not linear in terms ofP(ρ) and Ac(ρ). However,
Lemma 1 (Bara et al., 2001) can be used instead of
Definition 2 to simplify a controller design.

Lemma 1 The LPV system ˙x(t) = Ac(ρ)x(t) is AQS
if there exist a constant matrix W and a symmetric
matrixP(ρ) such that the following LMI:

H (−W−WT ,WTAc(ρ)T +P(ρ),WT ,
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−P(ρ)+
dP(ρ)

dt
,0,−P(ρ)) < 0 (5)

holds for all admissible trajectories of the parameter
vectorρ.

Since the parameter vectorρ ranges over a polytope,
the LMI (5) involves infinite number of constraints.
Theorem 1 is used to reduce the infinite number of
constraints into a finite one, hence simplifying the
controller design.

Theorem 1 If there exist matrices W,Ri , and sym-
metric matricesPi such that the following LMIs:

H (−W−WT ,(As(Vei)W−BsRi +P(Vei))
T ,WT ,

−P(Vei)−Po +P(Ṽei),0,−P(Vei)) < 0 (6)

are feasible for all(Vei ,Ṽei) whereρ = ∑2N

i=1 αi(t)Vei ,

and ρ̇ = ∑2N

i=1 βi(t)Ṽei with ∑2N

i=1 αi(t) = 1,

∑2N

i=1 βi(t) = 1, αi(t) ≥ 0, and βi(t) ≥ 0. Then,

the control law u = −(∑2N

i=1 αi(t)Ki)x(t) where
Ki = RiW−1 stabilizes the system (1)-(2).

Proof: is omitted.

To implement the control law u =

−(∑2N

i=1 αi(t)Ki)x(t), αi(t) must be available on-
line. αi(t) can be computed from the relation

ρ = ∑2N

i=1 αi(t)Vei using the knownVei andρ(t).

3.2 Fault Diagnosis

To diagnosis a fault, consider the case where the sat-
uration limit of the jth actuator is reduced due to a
fault. Then, equation (1) is written as:

ẋs=As(ρ)xs+Bs1u1. . .+Bsj σ j(δ ju j). . .+Bsmum (7)

For fault diagnosis, equation (7) is expressed in terms
of control outputs by defining:

λ j =

{
σ j (δ j u j )

u j
−1 u j 6= 0

0 u j = 0

and then writing (7) as:

ẋs =

{
As(ρ)xs(t)+Bsu+λ jBsj u j u j 6= 0
As(ρ)xs+Bsu uj = 0

Theorem 2 is used to estimate the value ofλ j which
will be used to detect the fault and to estimate the sat-
uration levelδ j .

Theorem 2 Consider the estimated model:

˙̂xs = As(ρ)xs+Bsu+ λ̂ jBsj u j +G(x̂s−xs)

wherex̂s ∈ R
n is the estimated state vector,G is the

constant matrix with negative eigenvalues, andλ̂ j ∈R

is the estimated parameter ofλ j adjusted as:

˙̂λ j=Γ(Bsj u j)
Te−χΓ

λ̂ j λ̂T
j

|λ̂ j |2
Γ(Bsj u j)

Te; λ̂ j(0) = 0 (8)

wheree= x− x̂ is the estimated error,Γ is the posi-
tive definite matrix, andχ is the indicator function for
the projection algorithm (to prevent parameter drift)
defined as:

χ=

{

0 (|λ̂ j |<M) or (|λ̂ j |=M andλ̂T
j Γ(Bsj u j)

Te≤0)
1 (|λ̂ j |=M and λ̂T

j Γ(Bsj u j)
Te>0)

Thenλ̂ j is uniformly bounded, andlimt−→∞e(t) = 0.

Proof: is omitted.

For fault detection, λ̂ j is tested for the likeli-
hood of saturation fault. A decision about the
existence of saturation fault is made as follows: if
ν j ≤ ε j , the saturation fault doest not exist; ifν j > ε j ,
the saturation fault exist.ν j = [ 1

α
R t+α

t (λ̂ j(τ))2dτ]1/2

is the average energy ofλ̂ j over the time interval
[t, t + α], α is the detection window, andε j is the
threshold.
For saturation level estimation, when the satura-
tion fault exists (i.e.,ν j > ε j ), λ̂ j has the value:

λ̂ j =
σ j (δ̂ j u j )

u j
− 1 =

δ̂ j ū j sign(u j )
u j

− 1 =
δ̂ j ū j
|u j |

− 1.

Then the saturation levelδ j can be estimated as:

δ̂ j =
|u j |
u j

(λ̂ j +1).

3.3 Fault Accommodation

To accommodate a saturation fault, a reference re-
shaping filter and feed-forward gain are used to ful-
fil the new input constraint|u j(t)| < δ j ū j . To enforce
this constraint thejth system inputu j(t) is generated
from the jth control outputuc j (t), which is a function
of a modified reference signal ¯r generated by the ref-
erence reshaping filter, and thejth feed-forward sig-
naluf j in order to get|u j(t) = uc j (t)+uf j (t)| < δ j ū j .
Furthermore, the modified reference signal ¯r should
be designed to fulfil the input constraint while devia-
tion from the reference signalr is minimized. Based
on these suggestions, Problem 2 is addressed as fol-
lows.

Problem 2 Given the:

• System:

{
ẋs(t) = As(ρ)xs(t)+Bsu(t)
y(t) = xs(t)

• Controller:

{
ẋc(t)=Ac(ρ)xc(t)+Bc(ρ)r̄(t)+Cc(ρ)xs(t)
uc(t)=Dc(ρ)xc(t)+Ec(ρ)r̄(t)+Fc(ρ)xs(t)
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• Saturation fault level:δ j

Design a:

• Reference reshaping filter:
{

ẋr(t) = Ar(δ j)xr(t)+Br(δ j)r(t)
r̄(t) = Cr(δ j)xr(t)+Dr(δ j)r(t)

• Feed-forward:uf (t) = F(δ j)r(t)

Such that the whole system is stable,|u j(t) = uc j (t)+
uf j (t)| < δ j ū j , and‖r̄(t)− r(t)‖2 is minimized.

The reference reshaping filter and feed-forward gain
are designed based on the concept of affine quadratic
H∞ performance (Gahinet et al., 1996) defined below.

Definition 3 (Affine Quadratic H∞ Performance)
The LPV system:

ẋ(t) = A(ρ)x(t)+B(ρ)r(t) (9)

u j(t) = Cj(ρ)x(t)+D j(ρ)r(t) (10)

has affine quadraticH∞ performanceγ j if there exist
N+1 symmetric matricesPi such that:

P(ρ) =Po +ρ1P1 + . . .+ρiPi + . . .+ρNPN > 0 (11)
H (A(ρ)P(ρ)+P(ρ)AT(ρ)+P(ρ̇)−Po,P(ρ)CT

j (ρ),

B(ρ),−γ j I ,D j(ρ),−γ j I) < 0 (12)

holds for all admissible parameter vectorρ. In such
a case, the Lyapunov functionV(x,ρ) = xTP(ρ)x es-
tablishes that the system (9) is asymptotically sta-
ble and itsL2 gain does not exceedγ j . That is,
|u j(t)| < γ j‖r(t)‖2 for all L2-boundedr(t) (provided
thatx(0) = 0).

The difficulty of using Definition 3 to design the ref-
erence reshaping filter and feed-forward gain resides
in the fact that matrix inequality (12) is not linear in
terms ofP(ρ) and A(ρ). Therefore, the matrix in-
equality (12) is not convex and thus difficult to solve.
To convert the problem into an LMI problem and
make it tractable, the following relaxations and selec-
tions are proposed:

• To get a LMI,Ar(δ j) andCr(δ j) are predesigned
and denoted as:Ar(δ j) = Ar j andCr(δ j) = Cr j ,
whereAr j has negative eigenvalues

• To satisfy|u j(t)| < δ j ū j , γ j should satisfy:γ j ≤
δ j ū j

max(‖r(t)‖2)

• Minimizing ‖r̄(t)− r(t)‖2 is relaxed and making
r̄(t) = Λ j r(t) is considered at the steady state,
that is Dr(δ j) = Λ j + Cr j A

−1
r j

Br(δ j), where Λ j

is a constant diagonal matrix with its elements
0 < µi, j ≤ 1

• The structures of the remaining design matrices
are selected as:Br(δ j) = δ jBr j andF(δ j) = δ jFj ,
whereBr j andFj are constant design matrices.

The state space representation of the plant with con-
troller, reference reshaping filter, and feed-forward
gain is given by:

ẋ(t) = A(ρ)x(t)+B(ρ)H j r(t) (13)

u j(t) = Cj(ρ)x(t)+D j(ρ)H j r(t) (14)

where

x(t) = (xT
s (t),xT

c (t),xT
r (t))T , H j = (ΛT

j ,B
T
r j
,FT

j )T ,

A(ρ)=





As(ρ)+BsFc(ρ) BsDc(ρ) BsEc(ρ)Cr j

Cc(ρ) Ac(ρ) Bc(ρ)Cr j

0 0 Ar j



,

B(ρ)=(((BsEc(ρ))T,BT
c (ρ),0)T

...((δ jBsEc(ρ)Cr j A
−1
r j

)T,

(δ jBc(ρ)Cr j A
−1
r j

)T ,δ j I)T
...(δ jBT

s ,0,0)T),
Cj(ρ)=jth row of {(Fc(ρ),Dc(ρ),Ec(ρ)Cr j )}, and

D j(ρ)=jth row of {(Ec(ρ)
...(δ jEc(ρ)Cr j A

−1
r j

)
...δ j I)}.

Corollary 1 is used to convert Problem 2 into
an LMI problem.

Corollary 1 Consider the LPV system (13)-(14)
with known δ j , Ar j , andCr j . If there exists a solu-
tion (Pi , H j , γ j ) that maximizeµi, j subject to:

P(ρ) = Po +ρ1P1 + . . .+ρiPi + . . .+ρNPN > 0 (15)

H (A(ρ)P(ρ)+P(ρ)AT(ρ)+P(ρ̇)−Po,P(ρ)CT
j (ρ),

B(ρ)H j ,−γ j I ,D j(ρ)H j ,−γ j I) < 0 (16)

γ j ≤
δ j ū j

max(‖r(t)‖2)
(17)

0 < µi, j ≤ 1 (18)

for all admissible parameter vectorsρ. Then, the
system (13) is asymptotically stable,|u j(t)| < δ j ū j ,
and ¯r(t) = Λ j r(t) ast −→ ∞ (provided thatr(t) is a
bounded constant reference).

Proof: is omitted.

The LMIs (15)-(16) need to be solved for all
admissible parameter vectorsρ which imply infinite
number of LMIs. However, the infinite number of
LMIs can be reduced to a finite number of LMIs
using the following procedures:

• Write the matrices in (13)-(14) as:A(ρ) = Ao +
∑N

i=1 ρiAi , B(ρ) = Bo + ∑N
i=1 ρiBi , Cj(ρ) = Cjo +

∑N
i=1 ρiCj i , andD j(ρ) = D jo +∑N

i=1 ρiD j i

• Use the matrix expressions in the previous step to
write the LMI (16) as:

Mo +
N

∑
i=1

ρ̇iMdot +
N

∑
i=1

ρiMi +
N

∑
i,l=1, i 6=l

ρiρl Mil
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+
N

∑
i=1

ρ2
i Mii < 0 (19)

where Mo = H (AoPo +
PoAT

o ,PoCT
jo,BoH j ,−γ j I ,D joH j ,−γ j I),

Mdot = H (Pi ,0,0,0,0,0), Mi = H (AoPi +AiPo +
PoAT

i + PiAT
o ,PoCT

j i + PiCT
jo,BiH j ,0,D j i H j ,0),

Mil = H (AiPl + Al Pi + PiAT
l + Pl AT

i ,PiCT
j l

+

PlCT
j i
,0,0,0,0), and Mii = H (AiPi +

PiAT
i ,PiCT

j i ,0,0,0,0).

• To reduce the number of parameters (ρ̇i , ρi , ρiρl ,
andρ2

i ) and hence to reduce the design complex-
ity, define fewer parametersσi , i = 1,2, . . . ,K, to
bound the parameterṡρi , ρi , ρiρl , andρ2

i . Then,
the LMIs (15) and (19) will be a function ofσi .

• Solve the LMIs (15), (17), (18), and (19) forPi ,
H j , andγ j at all vertices of theσ parameter space.
In this case, the existing solutions guarantee the
feasibility of the LMIs for all admissible param-
eter vectorσ, see for example (Gahinet et al.,
1996).

The following procedures are implemented inside the
reconfiguration mechanism scheme in order to adapt
the right reference reshaping filter and feed-forward
gain after estimating the level of saturation fault.

• If there is no saturation fault, i.e.v j(k) ≤ ε j , set
Fj = 0 and ¯r(t) = r(t), then stop. Otherwise, go
to the next step.

• Given the estimated level̂δ j ∈ Sj , whereSj =

{κ j ≤ δ̂ j ≤ κ j : 0 ≤ κ j ,κ j ≤ 1}, adapt the ref-
erence reshaping filter and feed-forward gain de-
signed using the above procedures∀ δ̂ j ∈ Sj , then
stop.

4 ILLUSTRATION EXAMPLE

In this section a second-order LPV model is used to il-
lustrate the proposed design. The LPV model is given
by:

(
ẋs1
ẋs2

)

︸ ︷︷ ︸

ẋs

=

(
ρ(t) 1

0 −1

)

︸ ︷︷ ︸

As(ρ)

(
xs1
xs2

)

+

(
1
0

)

︸ ︷︷ ︸

Bs

u (20)

y = xs1 (21)

where -0.5= ρ ≤ρ(t)≤ ρ̄ =0.1.

4.1 Control System

To design a controller using the result of Theo-
rem 1, the LPV model (20) is written in the polytopic
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Figure 2: Simulation results of nominal control system.

form ẋs = (α1As(ρ̄)+ α2As(ρ))xs+Bsu, whereα1 =

(ρ(t)− ρ)/(ρ̄ − ρ), and α2 = (−ρ(t) + ρ̄)/(ρ̄ − ρ).
Then the results of Theorem 1 are used to design the
controller to stabilize the closed loop system, and to
track the desired constant reference signal. Figure 2
shows that the controlled system output reaches the
desired set point with ”almost” perfect tracking.

4.2 Fault Diagnosis

The proposed design of saturation fault diagnosis is
simulated for the LPV model (20). Figure 3 shows
the results of fault diagnostic system with the satura-
tion level ofδ = 0.5. The fault is occurred at 5.00 sec
and detected at 6.12 sec using the threshold value of
0.05. The results of Theorem 2 are used to estimate
the saturation level. The learning rateΓ is chosen as
Γ = 10, and the filter pole is set top = −60. Figure 3
shows that after the occurrence of the fault, the level
of the saturation fault is converged to the true value
within about 3 sec. The result indicates that the esti-
mation scheme provides an accurate estimation of the
saturation level within a reasonable time.

4.3 Fault Accommodation

Once the saturation level is estimated and sent to the
reconfiguration mechanism scheme. An appropriate
reconfiguration of the feed-forward gain and refer-
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Figure 3: Simulation results of fault diagnostic scheme.

ence reshaping filter is triggered to accommodate the
fault. Figure 4 shows the simulation results of the
control system with and without fault accommoda-
tion for the case of 0.2 reduction in the saturation
limit. Without fault accommodation, the input sig-
nal reaches its limit and the output diverges from the
desired set point. With fault accommodation, on the
other hand, the input signal is reduced within its new
limit and the output tracks the desired set point.

5 CONCLUSION

Designing a FTC system for LPV systems subject to
actuator saturation fault is considered. The FTC sys-
tem consists of a nominal control, fault diagnostic,
and fault accommodation schemes in order to achieve
control objectives in the absence and presence of ac-
tuator saturation fault. Simulation results demonstrate
the effectiveness of the proposed FTC system.
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