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Abstract: The standard method in optimization problems consists in a random search of the global minimum: a neuron 
network relaxes in the nearest local minimum from some randomly chosen initial configuration. This 
procedure is to be repeated many times in order to find as deep an energy minimum as possible. However 
the question about the reasonable number of such random starts and whether the result of the search can be 
treated as successful remains always open. In this paper by analyzing the generalized Hopfield model we 
obtain expressions describing the relationship between the depth of a local minimum and the size of the 
basin of attraction. Based on this, we present the probability of finding a local minimum as a function of the 
depth of the minimum. Such a relation can be used in optimization applications: it allows one, basing on a 
series of already found minima, to estimate the probability of finding a deeper minimum, and to decide in 
favor of or against further running the program. The theory is in a good agreement with experimental 
results. 

1 INTRODUCTION 

Usually a neural system of associative memory is 
considered as a system performing a recognition or 
retrieval task. However it can also be considered as a 
system that solves an optimization problem: the 
network is expected to find a configuration 
minimizes an energy function (Hopfield,1982). This 
property of a neural network can be used to solve 
different NP-complete problems. A conventional 
approach consists in finding such an architecture and 
parameters of a neural network, at which the 
objective function or cost function represents the 
neural network energy. Successful application of 
neural networks to the traveling salesman problem 
(Hopfield and Tank, 1985) had initiated extensive 
investigations of neural network approaches for the 
graph bipartition problem (Fu and Anderson, 1986), 
neural network optimization of the image processing 
(Poggio and Girosi, 1990) and many other 
applications. This subfield of the neural network 
theory is developing rapidly at the moment (Smith, 
1999), (Hartmann and Rieger, 2004), (Huajin Tang 
et al, 2004), (Kwok and Smith, 2004),  (Salcedo-
Sanz et al, 2004), (Wang et al, 2004, 2006).  

The aforementioned investigations have the same 
common feature: the overwhelming majority of 
neural network optimization algorithms contain the 
Hopfield model in their core, and the optimization 
process is reduced to finding the global minimum of 
some quadratic functional  (the energy) constructed 
on a given NN ×  matrix in an N-dimensional 
configuration space (Joya, 2002), (Kryzhanovsky et 
al, 2005). The standard neural network approach to 
such a problem consists in a random search of an 
optimal solution. The procedure consists of two 
stages. During the first stage the neural network is 
initialized at random, and during the second stage 
the neural network relaxes into one of the possible 
stable states, i.e. it optimizes the energy value. Since 
the sought result is unknown and the search is done 
at random, the neural network is to be initialized 
many times in order to find as deep an energy 
minimum as possible. But the question about the 
reasonable number of such random starts and 
whether the result of the search can be regarded as 
successful always remains open.  

In this paper we have obtained expressions that 
have demonstrated the relationship between the 
depth of a local minimum of energy and the size of 
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the basin of attraction (Kryzhanovsky et al, 2006). 
Based on this expressions, we presented the 
probability of finding a local minimum as a function 
of the depth of the minimum. Such a relation can be 
used in optimization applications: it allows one, 
based on a series of already found minima, to 
estimate the probability of finding a deeper 
minimum, and to decide in favor of or against 
further running of the program. Our expressions are 
obtained from the analysis of generalized Hopfield 
model, namely, of a neural network with Hebbian 
matrix. They are however valid for any matrices, 
because any kind of matrix can be represented as a 
Hebbian one, constructed on arbitrary number of 
patterns. A good agreement between our theory and 
experiment is obtained. 

2 DESCRIPTION OF THE 
MODEL 

Let us consider Hopfield model, i.e a system of N 
Ising spins-neurons 1±=is , Ni ,...,,21= . A state of 
such a neural network can be characterized by a 
configuration )...,,,( Nsss 21=S . Here we consider 
a generalized model, in which the connection 
matrix: 
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is constructed following Hebbian rule on M binary 
N-dimensional patterns )...,,,( )()()( m

N
mm

m sss 21=S , 

Mm ,1= . The diagonal matrix elements are equal to 
zero ( 0=iiT ). The generalization consists in the 
fact, that each pattern mS  is added to the matrix ijT  
with its statistical weight mr . We normalize the 
statistical weights to simplify the expressions 
without loss of generality. Such a slight modification 
of the model turns out to be essential, since in 
contrast to the conventional model it allows one to 
describe a neural network with a non-degenerate 
spectrum of minima. 

The energy of the neural network is given by the 
expression: 
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and its (asynchronous) dynamics consist in the 
following. Let  S  be an initial state of the network. 
Then the local field ii sEh ∂−∂= / , which acts on a 

randomly chosen i-th spin, can be calculated, and the 
energy of the spin in this field iii hs−=ε  can be 
determined. If the direction of the spin coincides 
with the direction of the local field ( 0<iε ), then its 
state is stable, and in the subsequent moment ( 1+t ) 
its state will undergo no changes. In the opposite 
case ( 0>iε ) the state of the spin is unstable and it 
flips along the direction of the local field, so that 

)()( tsts ii −=+1  with the energy 01 <+ )(tiε . Such 
a procedure is to be sequentially applied to all the 
spins of the neural network. Each spin flip is 
accompanied by a lowering of the neural network 
energy. It means that after a finite number of steps 
the network will relax to a stable state, which 
corresponds to a local energy minimum. 

3 BASIN OF ATTRACTION 

Let us examine at which conditions the pattern mS  
embeded in the matrix (1) will be a stable point, at 
which the energy E of the system reaches its (local) 
minimum mE . In order to obtain correct estimates 
we consider the asymptotic limit ∞→N . We 
determine the basin of attraction of a pattern mS  as 
a set of the points of N-dimensional space, from 
which the neural network relaxes into the 
configuration mS . Let us try to estimate the size of 
this basin. Let the initial state of the network S  be 
located in a vicinity of the pattern mS . Then the 
probability of the network convergation into the 
point mS  is given by the expression: 
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where γerf   is the error function of the variable γ : 
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and n  is Hemming distance between  Sm and  S. The 
expression (3) can be obtained with the help of the 
methods of probability theory, repeating the well-
known calculation (Perez-Vincente, 1989)  for 
conventional Hopfield model. 
 It follows from (3) that the basin of attraction is 
determined as the set of the points of the 
configuration space close to mS , for which mnn ≤ : 
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where 
NNr /ln20 =  (6) 

 
Indeed, if mnn ≤  we have 1→Pr  for ∞→N , 

i.e. the probability of the convergence to the point 
mS  asymptotically tends to 1. In the opposite case 

( mnn > ) we have 0→Pr . It means that the 
quantity mn  can be considered as the radius of the 
basin of attraction of the local minimum mE  .  

It follows from (5) that the radius of basin of 
attraction tends to zero when 0rrm →  (Fig.1). It 
means that the patterns added to the matrix (1), 
whose statistical weight is smaller than 0r , simply 
do not form local minima. Local minima exist only 
in those points mS , whose statistical weight is 
relatively large: 0rrm > .  

 
Figure 1:  A typical dependence of the width of the basin 
of attraction  nm  on the statistical weight of the pattern rm . 
A local minimum exists only for those patterns, whose 
statistical weight is greater than  r0 . For  rm→r0  the size of 
the basin of attraction tends to zero, i.e. the patters whose 
statistical weight 0rrm ≤  do not form local minima. 

4 DEPTH OF LOCAL MINIMUM  

From analysis of Eq. (2) it follows that the energy of 
a local minimum Em can be represented in the form: 
 

2NrE mm −=  (7) 

 
with the accuracy up to an insignificant fluctuation 
of the order of  
 

21 mm rN −=σ  (8) 

 
Then, taking into account Eqs. (5) and (7), one can 
easily obtain the following expression: 
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which yield a relationship between the depth of the 
local minimum and the size of its basin of attraction. 
One can see that the wider the basin of attraction, the 
deeper the local minimum and vice versa: the deeper 
the minimum, the wider its basin of attraction (see 
Fig.2).  
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Figure 2: The dependence of the energy of a local 
minimum on the size of the basin of attraction: a) N=50;  
b) N=5000. 

 We have introduced here also a constant Emax , 
which we make use of in what follows. It denotes 
the maximal possible depth of a local minimum. In 
the adopted normalization, there is no special need 
to introduce this new notation, since it follows from 
(7)-(9) that 2NE −=max . However for other 
normalizations some other dependencies of  Emax  on 
N are possible, which can lead to a 
misunderstanding. 

The quantity Emin introduced in (10) characterizes 
simultaneously two parameters of the neural 
network. First, it determines the half-width of the 
Lorentzian distribution (9). Second, it follows from 
(9) that: 
 

minmax EEE m ≤≤  (11) 
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i.e.  Emin  is the upper boundary of the local 
minimum spectrum and characterizes the minimal 
possible depth of the local minimum. These results 
are in a good agreement with the results of computer 
experiments aimed to check whether there is a local 
minimum at the point  Sm  or not. The results of one 
of these experiments ( N=500, M=25) are shown in 
Fig.3. One can see a good linear dependence of the 
energy of the local minimum on the value of the 
statistical weight of the pattern. Note that the 
overwhelming number of the experimental points 
corresponding to the local minima are situated in the 
right lower quadrant, where  0rrm >   and Em < Emin . 
One can also see from Fig.3 that, in accordance with 
(8), the dispersion of the energies of the minima 
decreases with the increase of the statistical weight.  
 

 
Figure 3: The dependence of the energy mE  of a local 
minimum on the statistical weight mr  of the pattern. 

5 THE PROBABILITY OF 
FINDING THE MINIMUM 

Let us find the probability W  of finding a local 
minimum mE  at a random search. By definition, this 
probability coincides with the probability for a 
randomly chosen initial configuration to get to the 
basin of attraction of the pattern mS . Consequently, 
the quantity )( mnWW =  is the number of points in a 
sphere of a radius mn , reduced to the total number 
of the points in the N -dimensional space: 
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 Equations (5) and (12) define implicitly a 
connection between the depth of the local minimum 
and the probability of its finding. Applying 
asymptotical Stirling expansion to the binomial 

coefficients and passing from summation to 
integration one can represent (12) as  
 

NheWW −= 0  (13) 

 
where h  is generalized Shannon function 
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Here 0W  is an insignificant for the further analysis 
slow function of mE . It can be obtained from the 
asymptotic estimate (13) under the condition 

1>>mn , and the dependence )( mnWW =  is 
determined completely by the fast exponent. 
 It follows from (14) that the probability of finding 
a local minimum of a small depth ( min~ EEm ) is 

small and decreases as NW −2~ . The probability W 
becomes visibly non-zero only for deep enough 
minima minEEm >> , whose basin of attraction 
sizes are comparable with 2/N . Taking into 
account (9), the expression (14) can be transformed 
in this case to a dependence )( mEWW =  given by 
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 It follows from (14) that the probability to find a 
minimum increases with the increase of its depth. 
This dependence“the deeper minimum → the larger 
the basin of attraction → the larger the probability to 
get to this minimum” is confirmed by the results of 
numerous experiments. In Fig.4 the solid line is 
computed from Eq. (13), and the points correspond 
to the experiment (Hebbian matrix with a small 
loading parameter 10./ ≤NM  ). One can see that a 
good agreement is achieved first of all for the 
deepest minima, which correspond to the patterns 

mS  (the energy interval 2490 NEm .−≤  in Fig.4). 
The experimentally found minima of small depth 
(the points in the region 2440 NEm .−> ) are the so-
called “chimeras”. In standard Hopfield model 
( Mrm /1≡ ) they appear at relatively large loading 
parameter 050./ >NM . In the more general case, 
which we consider here, they can appear also earlier. 
The reasons leading to their appearance are well 
examined with the help of the methods of statistical 
physics in (Amit et al, 1985), where it was shown 
that the chimeras appear as a consequence of 
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interference of the minima of mS .  At a small 
loading parameter the chimeras are separated from 
the minima of mS  by an energy gap clearly seen in 
Fig.4.  
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Figure 4: The dependence of the probability W  to find a 
local minimum on its depth mE : theory - solid line, 
experiment – points.  

6 DISCUSSION 

Our analysis shows that the properties of the 
generalized model are described by three parameters 
r0 , Emin and Emax . The first determines the minimal 
value of the statistical weight at which the pattern 
forms a local minimum. The second and third 
parameters are accordingly the minimal and the 
maximal depth of the local minima. It is important 
that these parameters are independent from the 
number of embeded patterns M .  
 

 
Figure 5: The comparison of the predicted probabilities 
(solid line) and the experimentally found values (points 
connected with the dashed line).  

Now we are able to formulate a heuristic approach 
of finding the global minimum of the functional (2) 
for any given matrix (not necessarily Hebbian one). 
The idea is to use the expression (15) with unknown 
parameters 0W  , minE  and maxE . To do this one 
starts the procedure of the random search and finds 
some minima. Using the obtained data, one 
determines typical values of minE  and maxE  and the 
fitting parameter 0W  for the given matrix. 
Substituting these values into (15) one can estimate 
the probability of finding an unknown deeper 
minimum mE  (if it exists) and decide in favor or 
against (if the estimate is a pessimistic one) the 
further running of  the program. 
 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

-0.65 -0.60 -0.55 -0.50 -0.45 -0.40

 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

-0.65 -0.60 -0.55 -0.50 -0.45 -0.40

a

b

 
Figure 6: The case of matrix with a quasi-continuous type 
of spectrum.  a) The upper part of the figure shows the 
spectrum of minima distribution – each vertical line 
corresponds to a particular minimum. The solid line 
denotes the spectral density of minima (the number of 
minima at length EΔ ). The Y-axis presents spectral 
density and the X-axis is the normalized values of energy 
minima 2NE / .   b) Probability of finding a minimum 
with energy E . The Y-axis is the probability of finding a 
particular minimum (%) and the X-axis is the normalized 
values of energy minima. 

This approach was tested with Hebbian matrices at 
relatively large values of the loading parameter 
( 1020 ÷≥ ./ NM ). The result of one of the 
experiments is shown in Fig.5. In this experiment 
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with the aid of the found minima (the points A ) the 
parameters 0W  , minE  and maxE  were calculated, 
and the dependence )( mEWW =  (solid line) was 
found. After repeating the procedure of the random 
search over and over again ( 510~  random starts) 
other minima (points B ) and the precise 
probabilities of getting into them were found. One 
can see that although some dispersion is present, the 
predicted values in the order of magnitude are in a 
good agreement with the precise probabilities. 
 In conclusion we stress once again that any given 
matrix can be performed in the form of Hebbian 
matrix (1) constructed on an arbitrary number of 
patterns (for instance, ∞→M ) with arbitrary 
statistical weights. It means that the dependence “the 
deeper minimum ↔ the larger the basin of attraction 
↔ the larger the probability to get to this minimum” 
as well as all other results obtained in this paper are 
valid for all kinds of matrices. To prove this 
dependence, we have generated random matrices, 
with uniformly distributed elements on [-1,1] 
segment. The results of a local minima search on 
one of such matrices are shown in Fig. 6. The value 
of normalized energy is shown on the X-scale  and 
on the Y-scale the spectral density is noted.  As we 
can see, there are a lot of local minima, and most of 
them concentrated in central part of spectrum (Fig 
6.a). Despite of such a complex  view of the  
spectrum of minima, the deepest minimum is found 
with maximum probability (Fig 6.b). The same 
perfect accordance of the theory and the 
experimental results are also obtained in the case of 
random matrices, the elements of which are 
subjected to the Gaussian distribution with a zero 
mean. 
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