
PATTERN-DRIVEN REUSE OF EMBEDDED CONTROL DESIGN
Behavioral and Architectural Specifications in Embedded Control System Designs

Miroslav Sveda, Ondrej Rysavy
Faculty of Information Technology, Brno University of Technology, Bozetechova 2, 61266 Brno, Czech Republic

sveda@fit.vutbr.cz

Radimir Vrba
Faculty of Electrical Engineering & Communication, Brno University of Technology, Brno, Czech Republic

vrbar@feec.vutbr.cz

Keywords: Embedded systems, Formal specification, Finite automata, Timed automata, Case-based reasoning.

Abstract: This paper deals with reuse of architectural and behavioral specifications of embedded systems employing
finite-state and timed automata. The contribution proposes not only how to represent a system’s formal
specification as an application pattern structure of specification fragments, but also how to measure
similarity of formal specifications for retrieval with case-based reasoning support. The paper provides also
an insight into case-based reasoning support as applied to formal specification reuse by application patterns
built on finite-state and timed automata. Those application patterns create a base for a pattern language
supporting reuse-oriented design process for a class of real-time embedded systems.

1 INTRODUCTION

Methods and approaches in systems engineering are
often based on the results of empirical observations
or on individual success stories. Every real-world
embedded system design stems from decisions based
on an application domain knowledge that includes
facts about some previous design practice.
Evidently, such decisions relate to system
architecture components, called in this paper as
application patterns, which determine not only a
required system behavior but also some presupposed
implementation principles. Application patterns
should respect those particular solutions that were
successful in previous relevant design cases. While
focused on the system architecture range that covers
more than software components, the application
patterns look in many features like well-known
software object-oriented design concepts such as
reusable patterns (Coad and Yourdon, 1990), design
patterns (Gamma et. al., 1995), and frameworks
(Johnson, 1997). By the way, there are also other
related concepts such as use cases (Jacobson, 1992),
architectural styles (Shaw and Garlan, 1996), or
templates (Turner, 1997), which could be utilized for

the purpose of this paper instead of introducing a
novel notion. Nevertheless, application pattern can
structure behavioral specifications and, concurrently,
they can support architectural components
specification reuse.

Nowadays, industrial scale reusability frequently
requires a knowledge-based support. Case-based
reasoning (see e.g. Kolodner, 1993) can provide
such a support. The method differs from other rather
traditional procedures of Artificial Intelligence
relying on case history: for a new problem, it strives
for a similar old solution saved in a case library. Any
case library serves as a knowledge base of a case-
based reasoning system. The system acquires
knowledge from old cases while learning can be
achieved accumulating new cases. Solving a new
case, the most similar old case is retrieved from the
case library. The suggested solution of a new case is
generated in conformity with the retrieved old case.

This paper proposes not only how to represent a
system’s formal specification as an application
pattern structure of specification fragments, but also
how to measure similarity of formal specifications
for retrieval. In this paper, case-based reasoning
support to reuse is focused on specifications by
finite-state and timed automata, or by state and

409

timed-state sequences. The same principles can be
applied for specifications by temporal and real-time
logics.

The following sections of this paper introduce
the principles of design reuse applied by the way of
application patterns. Then, employing application
patterns fitting a class of real-time embedded
systems, the kernel of this contribution presents two
design projects: petrol pumping station dispenser
controller and multiple lift control system. Via
identification of the identical or similar application
patterns in both design cases, this contribution
proves the possibility to reuse substantial parts of
formal specifications in a relevant sub-domain of
embedded systems. The last part of the paper deals
with knowledge-based support for this reuse process
applying case-based reasoning paradigm. The paper
provides principles of case-based reasoning support
to reuse in frame of formal specification-based
system design aiming at industrial applications
domain.

2 STATE OF THE ART

To reuse an application pattern, whose
implementation usually consists both of software
and hardware components, it means to reuse its
formal specification, development of which is very
expensive and, consequently, worthwhile for reuse.
This paper is aimed at behavioral specifications
employing state or timed-state sequences, which
correspond to Kripke style semantics of linear,
discrete time temporal or real-time logics, and at
their closed-form descriptions by finite-state or
timed automata (Alur and Henzinger, 1992).
Geppert and Roessler (2001) present a reuse-driven
SDL design methodology that appears closely
related approach to the problem discussed in this
contribution.

Software design reuse belongs to highly
published topics for almost 20 years, see namely
Frakes and Kang (2005), but also Arora and
Kulkarni (1998), Sutcliffe and Maiden (1998), Mili
et al. (1997), Holzblatt et al. (1997), and Henninger
(1997). Namely the state-dependent specification-
based approach discussed by Zaremski et. al. (1997)
and by van Lamsweerde and Wilmet (1998) inspired
the application patterns handling presented in the
current paper. To relate application patterns to the
previously mentioned software oriented concepts
more definitely, the inherited characteristics of the
archetypal terminology, omitting namely their
exclusive software orientation, can be restated as

follows. A pattern describes a problem to be solved,
a solution, and the context in which that solution
works. Patterns are supposed to describe recurring
solutions that have stood the test of time. Design
patterns are the micro-architectural elements of
frameworks. A framework -- which represents a
generic application that allows creating different
applications from an application sub-domain -- is an
integrated set of patterns that can be reused. While
each pattern describes a decision point in the
development of an application, a pattern language is
the organized collection of patterns for a particular
application domain, and becomes an auxiliary
method that guides the development process, see the
pioneer work by Alexander (1977).

Application patterns correspond not only to
design patterns but also to frameworks while
respecting multi-layer hierarchical structures.
Embodying domain knowledge, application patterns
deal both with requirement and implementation
specifications (Shaw and Garlan, 1996). In fact, a
precise characterization of the way, in which
implementation specifications and requirements
differ, depends on the precise location of the
interface between an embedded system, which is to
be implemented, and its environment, which
generates requirements on system’s services.
However, there are no strict boundaries in between:
both implementation specifications and requirements
rely on designer’s view, i.e. also on application
patterns employed.

A design reuse process involves several
necessary reuse tasks that can be grouped into two
categories: supply-side and demand-side reuse (Sen,
1997). Supply-side reuse tasks include identification,
creation, and classification of reusable artifacts.
Demand-side reuse tasks include namely retrieval,
adaptation, and storage of reusable artifacts. For the
purpose of this paper, the reusable artifacts are
represented by application patterns.

The following two sections provide two case
studies, based on implemented design projects, using
application patterns that enable to discuss concrete
examples of application patterns reusability.

3 PETROL DISPENSER
CONTROL SYSTEM

The first case study pertains to a petrol pumping
station dispenser with a distributed, multiple
microcomputer counter/controller (for more details
see Sveda, 1996). A dispenser controller is

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

410

interconnected with its environment through an
interface with volume meter (input), pump motor
(output), main and by-pass valves (outputs) that
enable full or throttled flow, release signal (input)
generated by cashier, unhooked nozzle detection
(input), product's unit price (input), and volume and
price displays (outputs).

3.1 Two-level Structure for Dispenser
Control

The first employed application pattern stems from
the two-level structure proposed by Xinyao et al.
(1994): the higher level behaves as an event-driven
component, and the lower level behaves as a set of
real-time interconnected components. The behavior
of the higher level component can be described by
the following state sequences of a finite-state
automaton with states "blocked-idle," "ready," "full
fuel," "throttled" and "closed," and with inputs
"release," (nozzle) "hung on/off," "close" (the preset
or maximal displayable volume achieved), "throttle"
(to slow down the flow to enable exact dosage) and
"error":

blocked-idle release→ ready hung off→ full_fuel hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled hung on→
 hung on→ blocked-idle
blocked-idle release→ ready hung off→ full_fuel throttle→ throttled close →
 close → closed hung on→ blocked-idle
blocked-idle error → blocked-error
blocked-idle release→ ready error → blocked-error
blocked-idle release→ ready hung off→ full_fuel error → blocked-error
blocked-idle release→ ready hung off→ full_fuel throttle → throttled error →
 error → blocked-error

The states "full_fuel" and "throttled" appear to be
hazardous from the viewpoint of unchecked flow
because the motor is on and the liquid is under
pressure -- the only nozzle valve controls an issue in
this case. Also, the state "ready" tends to be
hazardous: when the nozzle is unhooked, the system
transfers to the state "full_fuel" with flow enabled.
Hence, the accepted fail-stop conception necessitates
the detected error management in the form of
transition to the state "blocked-error." To initiate
such a transition for flow blocking, the error
detection in the hazardous states is necessary. On the
other hand, the state "blocked-idle" is safe because
the input signal "release" can be masked out by the
system that, when some failure is detected, performs
the internal transition from "blocked-idle" to
"blocked-error."

3.2 Incremental Measurement for Flow
Control

The volume measurement and flow control represent
the main functions of the hazardous states. The next
applied application pattern, incremental
measurement, means the recognition and counting of
elementary volumes represented by rectangular
impulses, which are generated by a photoelectric
pulse generator. The maximal frequency of impulses
and a pattern for their recognition depend on electro-
magnetic interference characteristics. The lower-
level application patterns are in this case a noise-
tolerant impulse detector and a checking reversible
counter. The first one represents a clock-timed
impulse-recognition automaton that implements the
periodic sampling of its input with values 0 and 1.
This automaton with b states recognizes an impulse
after b/2 (b>=4) samples with the value 1 followed
by b/2 samples with the value 0, possibly interleaved
by induced error values, see an example timed-state
sequence:

(0, q1) inp=0 → ... inp=0 → (i, q1) inp=1 → (i+1, q2) inp=0 → ... inp=0 → (j, q2) ...
 ... inp=1 → (k, qb/2+1) inp=1 → ...
... inp=1 → (m, qb-1) inp=0 → (m+1, qb) inp=1 → ... inp=1 → (n, qb) inp=0/IMP → (n+1, q1)
i, j, k, m, n are integers representing discrete time instances
in increasing order.

For the sake of fault-detection requirements, the
incremental detector and transfer path are doubled.
Consequently, the second, identical noise-tolerant
impulse detector appears necessary.

The subsequent lower-level application pattern
used provides a checking reversible counter, which
starts with the value (h + l)/2 and increments or
decrements that value according to the "impulse
detected" outputs from the first or the second
recognition automaton. Overflow or underflow of
the pre-set values of h or l indicates an error.
Another counter that counts the recognized impulses
from one of the recognition automata maintains the
whole measured volume. The output of the letter
automaton refines to two displays with local
memories not only for the reason of robustness (they
can be compared) but also for functional
requirements (double-face stand). To guarantee the
overall fault detection capability of the device, it is
necessary also to consider checking the counter.
This task can be maintained by an I/O watchdog
application pattern that can compare input impulses
from the photoelectric pulse generator and the
changes of the total value; evidently, the appropriate
automaton provides again reversible counting.

PATTERN-DRIVEN REUSE OF EMBEDDED CONTROL DESIGN - Behavioral and Architectural Specifications in
Embedded Control System Designs

411

3.3 Fault Maintenance Concepts

The methods used accomplish the fault management
in the form of (a) hazardous state reachability
control and (b) hazardous state maintenance. In safe
states, the lift cabins are fixed at any floors. The
system is allowed to reach any hazardous state when
all relevant processors successfully passed the start-
up checks of inputs and monitored outputs and of
appropriate communication status. The hazardous
state maintenance includes operational checks and,
for shaft controller, the fail-stop support by two
watchdog processors performing consistency
checking for both execution processors. To comply
with safety-critical conception, all critical inputs and
monitored outputs are doubled and compared; when
the relevant signals differ, the respective lift is either
forced (in case of need with the help of an substitute
drive if the shaft controller is disconnected) to reach
the nearest floor and to stay blocked, or (in the case
of maintenance or fire brigade support) its services
are partially restricted. The basic safety hard core
includes mechanical, emergency brakes.

Because permanent blocking or too frequently
repeated blocking is inappropriate, the final
implementation must employ also fault avoidance
techniques. The other reason for the fault avoidance
application stems from the fact that only
approximated fail-stop implementation is possible.
Moreover, the above described configurations create
only skeleton carrying common fault-tolerant
techniques see e.g. (Maxion et al., 1987). In short,
while auxiliary hardware components maintain
supply-voltage levels, input signals filtering, and
timing, the software techniques, namely time
redundancy or skip-frame strategy, deal with non-
critical inputs and outputs.

4 MULTIPLE LIFT CONTROL
SYSTEM

The second case study deals with the multiple lift
control system based on a dedicated multiprocessor
architecture (for more details see Sveda, 1997). An
incremental measurement device for position
evaluation, and position and speed control of a lift
cabin in a lift shaft can demonstrate reusability. The
applied application pattern, incremental
measurement, means in this case the recognition and
counting of rectangular impulses that are generated
by an electromagnetic or photoelectric
sensor/impulse generator, which is fixed on the

bottom of the lift cabin and which passes equidistant
position marks while moving along the shaft. That
device communicates with its environment through
interfaces with impulse generator and drive
controller. So, the first input, I, provides the values 0
or 1 that are altered with frequency equivalent to the
cabin speed. The second input, D, provides the
values "up," "down," or "idle." The output, P,
provides the actual absolute position of the cabin in
the shaft.

4.1 Two-level Structure for Lift
Control

The next employed application pattern is the two-
level structure: the higher level behaves as an event-
driven component, which behavior is roughly
described by the state sequence

initialization → position_indication → fault_indication

and the lower level, which behaves as a set of real-
time interconnected components. The specification
of the lower level can be developed by refining the
higher level state "position_indication" into three
communicating lower level automata: two noise-
tolerant impulse detectors and one checking
reversible counter.

4.2 Incremental Measurement for
Position and Speed Control

The first automaton models the noise-tolerant
impulse detector in the same manner as in previous
case, see the following timed-state sequence:

(0, q1) inp=0 → ... inp=0 → (i, q1) inp=1 → (i+1, q2) inp=0 → ... inp=0 → (j, q2) ...
 ... inp=1 → (k, qb/2+1) inp=1 → ...
... inp=1 → (m, qb-1) inp=0 → (m+1, qb) inp=1 → ... inp=1 → (n, qb) inp=0/IMP → (n+1, q1)
i, j, k, m, n are integers representing discrete time instances
in increasing order.

The information about a detected impulse is sent to
the counting automaton that can also access the
indication of the cabin movement direction through
the input D. For the sake of fault-detection
requirements, the impulse generator and the impulse
transfer path are doubled. Consequently, a second,
identical noise-tolerant impulse detector appears
necessary. The subsequent application pattern is the
checking reversible counter, which starts with the
value (h + l)/2 and increments or decrements the
value according to the “impulse detected” outputs

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

412

Table 1: Application patterns hierarchy.

fault management based on fail-stop behavior approximations

two-level (event-driven/real-time) structure

incremental measurement

noise-tolerant impulse detector checking reversible counter /O watchdog

from the first or second recognition automaton.
Overflow or underflow of the preset values of h or l
indicates an error. This detection process sends a
message about a detected impulse and the current
direction to the counting automaton, which
maintains the actual position in the shaft. To check
the counter, an I/O watchdog application pattern
employs again a reversible counter that can compare
the impulses from the sensor/impulse generator and
the changes of the total value.

4.3 Lift Fault Management

The approach used accomplishes a consequent
application pattern, fault management based on fail-
stop behavior approximations, both in the form of
(a) hazardous state reachability control and (b)
hazardous state maintenance. In safe states, the lift
cabins are fixed at any floors. The system is allowed
to reach any hazardous state when all relevant
processors have successfully passed the start-up
checks of inputs and monitored outputs and of
appropriate communication status. The hazardous
state maintenance includes operational checks and
consistency checking for execution processors. To
comply with safety-critical conception, all critical
inputs and monitored outputs are doubled and
compared. When the relevant signals differ, the
respective lift is either forced (with the help of a
substitute drive if the shaft controller is
disconnected) to reach the nearest floor and to stay
blocked.

The basic safety hard core includes mechanical,
emergency brakes. Again, more detailed
specification should reflect not only safety but also
functionality with fault-tolerance support: also
blocked lift is safe but useless. Hence, the above
described configurations create only skeleton
carrying common fault-tolerant techniques.

5 APPLICATION PATTERNS
REUSE

The two case studies presented above demonstrate
the possibility to reuse effectively substantial parts
of the design dealing with petrol pumping station
technology for a lift control technology project.
While both cases belong to embedded control
systems, their application domains and their
technology principles differ: volume measurement
and dosage control seems not too close to position
measurement and control. Evidently, the similarity is
observable by employment of application patterns
hierarchy, see Table 1.

The reused upper-layer application patterns
presented include the automata-based descriptions of
incremental measurement, two-level (event-
driven/real-time) structure, and fault management
stemming from fail-stop behavior approximations.
The reused lower-layer application patterns are
exemplified by the automata-based descriptions of
noise-tolerant impulse detector, checking reversible
counter, and I/O watchdog.

Clearly, while all introduced application patterns
correspond to design patterns in the above-explained
interpretation, the upper-layer application patterns
can be related also to frameworks. Moreover, the
presented collection of application patterns creates a
base for a pattern language supporting reuse-
oriented design process for real-time embedded
systems.

6 KNOWLEDGE-BASED
SUPPORT

Industrial scale reusability requires a knowledge-
based support, e.g. by case-based reasoning (see
Kolodner, 1993), which differs from other rather
traditional methods of Artificial Intelligence relying
on case history. For a new problem, the case-based

PATTERN-DRIVEN REUSE OF EMBEDDED CONTROL DESIGN - Behavioral and Architectural Specifications in
Embedded Control System Designs

413

reasoning strives for a similar old solution. This old
solution is chosen according to the correspondence
of a new problem to some old problem that was
successfully solved by this approach. Hence,
previous significant cases are gathered and saved in
a case library. Case-based reasoning stems from
remembering a similar situation that worked in past.
For software reuse, case-based reasoning utilization
has been studied from several viewpoints as
discussed e.g. by Henninger (1998), and by
Soundarajan and Fridella (1998).

6.1 Case-based Reasoning

The case-based reasoning method contains (1)
elicitation, which means collecting those cases, and
(2) implementation, which represents identification
of important features for the case description
consisting of values of those features. A case-based
reasoning system can only be as good as its case
library: only successful and sensibly selected old
cases should be stored in the case library. The
description of a case should comprise the
corresponding problem, solution of the problem, and
any other information describing the context for
which the solution can be reused. A feature-oriented
approach is usually used for the case description.

Case library serves as the knowledge base of a
case-based reasoning system. The system acquires
knowledge from old cases while learning can be
achieved accumulating new cases. While solving a
new case, the most similar old case is retrieved from
the case library. The suggested solution of the new
case is generated in conformity with this retrieved
old case. Search for the similar old case from the
case library represents important operation of case-
based reasoning paradigm.

6.2 Backing Techniques

Case-based reasoning relies on the idea that
situations are mostly repeating during the life cycle
of an applied system. Further, after some period, the
most frequent situations can be identified and
documented in the case library. So, the case library
can usually cover common situations. However, it is
impossible to start with case-based reasoning from
the very beginning with an empty case library.

When relying on the case-based reasoning
exclusively, also the opposite problem can be
encountered: after some period the case library can
become huge and very semi-redundant. Majority of
registered cases represents clusters of very similar
situations. Despite careful evaluation of cases before

saving them in the case library, it is difficult to avoid
this problem.

In an effort to solve these two problems, the
case-base reasoning can be combined with some
other paradigm to compensate these insufficiencies.
Some level of rule-based support can partially cover
these gaps with the help of rule-oriented knowledge;
see Sveda, Babka and Freeburn (1997).

Rule-based reasoning should augment the case-
based reasoning in the following situations:

• No suitable old solution can be found for a

current situation in the case library and engineer
hesitates about his own solution. So, rule-based
module is activated. For a very restricted class of
tasks, the rule-based module is capable to
suggest its own solution. Once generated by this
part of the framework, such a solution is then
evaluated and tested more carefully. However, if
the evaluation is positive, this case is later saved
in the case library covering one of the gaps of the
case-based module.

• Situations are similar but rarely identical. To fit
closer the real situation, adaptation of the
retrieved case is needed. The process of
adaptation can be controlled by the rule-based
paradigm, using adaptation procedures and
heuristics in the form of implication. Sensibly
chosen meta-rules can substantially improve the
effectiveness of the system.

 The problem of adaptation is quite serious when
a cluster of similar cases is replaced by one
representative only - to avoid a high level of
redundancy of the case library. The level of
similarity can be low for marginal cases of the
cluster. So, adaptation is more important here.

Three main categories of rules can be found in
the rule-based module:

• Several general heuristics can contribute to the

optimal solution search of a very wide class of
tasks.

• However, the dominant part of the knowledge
support is based on a domain-specific rule.

• For a higher efficiency, metarules are also
attached to the module. This “knowledge about
knowledge” can considerably contribute to a
smooth reasoning process.

While involvement of an expert is relatively low

for case-based reasoning module, the rules are
mainly based on expert’s knowledge. However,
some pieces of knowledge can also be obtained by
data mining.

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

414

6.3 Similarity Measurement of
State-based Specifications

Retrieval schemes proposed in the literature can be
classed based upon the technique used to index cases
during the search process (Atkinson, 1998): (a)
classification-based schemes, which include
keyword or feature-based controlled vocabularies;
(b) structural schemes, which include signature or
structural characteristics matching; and (c)
behavioral schemes; which seek relevant cases by
comparing input and output spaces of components.

The problem to be solved arises how to measure
the similarity of state-based specifications for
retrieval. Incidentally, similarity measurements for
relational specifications have been resolved by
Jilani, et al. (2001). The primary approach to the
current application includes some equivalents of
abstract data type signatures, belonging to structural
schemes, and keywords, belonging to classification
schemes. While the first alternative means for this
purpose to quantify the similarity by the topological
characteristics of associated finite automata state-
transition graphs, such as number and placement of
loops, the second one is based on a properly selected
set of keywords with subsets identifying individual
patterns. The current research task of our group
focuses on experiments enabling to compare those
alternatives.

7 CONCLUSIONS

The original contribution of this paper consists in
proposal how to represent a system’s formal
specification as an application pattern structure of
specification fragments. Next contribution deals
with the approach how to measure similarity of
formal specifications for retrieval in frame of case-
based reasoning support. The above-presented case
studies, which demonstrate the possibility to
effectively reuse concrete application pattern
structures, have been excerpted from two realized
design cases.

The application patterns, originally introduced as
“configurations” in the design project of petrol
pumping station control technology based on
multiple microcontrollers (Sveda, 1996), were
effectively -- but without any dedicated development
support -- reused for the project of lift control
technology (Sveda, 1997). The notion of application
pattern appeared for the first time in (Sveda, 2000)
and developed in (Sveda, 2006). By the way, the
first experience of the authors with case-based

reasoning support to knowledge preserving
development of an industrial application was
published in (Sveda, Babka and Freeburn, 1997).

ACKNOWLEDGEMENTS

The research has been supported by the Czech
Ministry of Education in the frame of Research
Intention MSM 0021630528: Security-Oriented
Research in Information Technology, and by the
Grant Agency of the Czech Republic through the
grants GACR 102/05/0723: A Framework for
Formal Specifications and Prototyping of
Information System’s Network Applications and
GACR 102/05/0467: Architectures of Embedded
Systems Networks.

REFERENCES

Alexander, C. (1977) A Pattern Language: Towns /
Buildings / Construction, Oxford University Press.

Alur, R. and T.A. Henzinger (1992) Logics and Models of
Real Time: A Survey. In: (de Bakker, J.W., et al.)
Real-Time: Theory in Practice. Springer-Verlag,
LNCS 600, 74-106.

Arora, A. and S.S. Kulkarni (1998) Component Based
Design of Multitolerant Systems. IEEE Transactions
on Software Engineering, 24(1), 63-78.

Atkinson, S. (1998) Modeling Formal Integrated
Component Retrieval. Proceedings of the Fifth
International Conference on Software Reuse, IEEE
Computer Society, Los Alamitos, California, 337-346.

Coad, P. and E.E. Yourdon (1990) Object-Oriented
Analysis, Yourdon Press, New York.

Frakes, W.B. and K. Kang (2005) Software Reuse
Research: Status and Future. IEEE Transactions on
Software Engineering, 31(7), 529-536.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995)
Design Patterns -- Elements of Reusable Object-
Oriented Software, Addison-Wesley.

Geppert, B. and F. Roessler (2001) The SDL Pattern
Approach – A Reuse-driven SDL Design
Methodology. Computer Networks, 35(6), Elsevier,
627-645.

Henninger, S. (1997) An Evolutionary Approach to
Constructing Effective Software Reuse Repositories.
Transactions on Software Engineering and
Methodology, 6(2), 111-140.

Henninger, S. (1998) An Environment for Reusing
Software Processes. Proceedings of the Fifth
International Conference on Software Reuse, IEEE
Computer Society, Los Alamitos, California, 103-112.

Holtzblatt, L.J., R.L. Piazza, H.B. Reubenstein, S.N.
Roberts and D.R. Harris (1997) Design Recovery for

PATTERN-DRIVEN REUSE OF EMBEDDED CONTROL DESIGN - Behavioral and Architectural Specifications in
Embedded Control System Designs

415

Distributed Systems. IEEE Transactions on Software
Engineering, 23(7), 461-472.

Jacobson, L. (1992) Object-Oriented Software
Engineering: A User Case-Driven Approach, ACM
Press.

Jilani L.L., J. Deshamais and A. Mili (2001) Defining and
Applying Measures of Distance Between
Specifications. IEEE Transactions on Software
Engineering, 27(8), 673-703.

Johnson, R.E. (1997) Frameworks = (Components +
Patterns), Communications of the ACM, 40(10),
39-42.

Kolodner, J. (1993) Case-based Reasoning, Morgan
Kaufmann, San Mateo, CA, USA.

Mili, R., Mili, A. and Mittermeir, R.T. (1997) Storing and
Retrieving Software Components: A Refinement
Based System. IEEE Transactions on Software
Engineering, 23(7), 445-460.

Sen, A. (1997) The Role of Opportunity in the Software
Reuse Process. IEEE Transactions on Software
Engineering, 23(7), 418-436.

Shaw, M. and D. Garlan (1996) Software Architecture,
Prentice Hall.

Soundarajan, N. and S. Fridella (1998) Inheritance: From
Code Reuse to Reasoning Reuse. Proceedings of the
Fifth International Conference on Software Reuse,
IEEE Computer Society, Los Alamitos, California,
206-215.

Sutcliffe, A. and N. Maiden (1998) The Domain Theory
for Requirements Engineering. IEEE Transactions on
Software Engineering, 24(3), 174-196.

Sveda, M. (1996) Embedded System Design: A Case
Study. IEEE Proc. of International Conference and
Workshop ECBS'96, IEEE Computer Society, Los
Alamitos, California, 260-267.

Sveda, M., O. Babka and J. Freeburn (1997) Knowledge
Preserving Development: A Case Study. IEEE Proc. of
International Conference and Workshop ECBS'97,
Monterey, California, IEEE Computer Society, Los
Alamitos, California, 347-352.

Sveda, M. (1997) An Approach to Safety-Critical Systems
Design. In: (Pichler, F., Moreno-Diaz, R.) Computer
Aided Systems Theory, Springer-Verlag, LNCS 1333,
34-49.

Sveda, M. (2000) Patterns for Embedded Systems Design.
In: (Pichler, F., Moreno-Diaz, R., Kopacek, P.)
Computer Aided Systems Theory--EUROCAST'99,
Springer-Verlag, LNCS 1798, 80-89.

Sveda, M. and R. Vrba (2006) Fault Maintenance in
Embedded Systems Applications. Proceedings of the
Engineering of Computer-Based Systems. Proceedings
of the Third International Conference on Informatics
in Control, Automation and Robotics (ICINCO 2006),
INSTICC, Setúbal, Portugal, 183-186.

Turner, K.J. (1997) Relating Architecture and
Specification. Computer Networks and ISDN Systems,
29(4), 437-456.

van Lamsweerde, A. and L. Willemet (1998) Inferring
Declarative Requirements Specifications from

Operational Scenarios. IEEE Transactions on Software
Engineering, 24(12), 1089-1114.

Xinyao, Y., W. Ji, Z. Chaochen and P.K. Pandya (1994)
Formal Design of Hybrid Systems. In: (Langmaack,
H., W.P. de Roever and J. Vytopil) Formal Techniques
in Real-Time and Fault-Tolerant Systems, Springer-
Verlag, LNCS 863, 738-755.

Zaremski, A.M. and J.M. Wing (1997) Specification
Matching of Software Components. ACM Trans. on
Software Engineering and Methodology, 6(4), 333-
369.

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

416

