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Abstract: This paper deals with reuse of architectural and behavioral specifications of embedded systems employing 
finite-state and timed automata. The contribution proposes not only how to represent a system’s formal 
specification as an application pattern structure of specification fragments, but also how to measure 
similarity of formal specifications for retrieval with case-based reasoning support. The paper provides also 
an insight into case-based reasoning support as applied to formal specification reuse by application patterns 
built on finite-state and timed automata. Those application patterns create a base for a pattern language 
supporting reuse-oriented design process for a class of real-time embedded systems. 

1 INTRODUCTION 

Methods and approaches in systems engineering are 
often based on the results of empirical observations 
or on individual success stories. Every real-world 
embedded system design stems from decisions based 
on an application domain knowledge that includes 
facts about some previous design practice. 
Evidently, such decisions relate to system 
architecture components, called in this paper as 
application patterns, which determine not only a 
required system behavior but also some presupposed 
implementation principles. Application patterns 
should respect those particular solutions that were 
successful in previous relevant design cases. While 
focused on the system architecture range that covers 
more than software components, the application 
patterns look in many features like well-known 
software object-oriented design concepts such as 
reusable patterns (Coad and Yourdon, 1990), design 
patterns (Gamma et. al., 1995), and frameworks 
(Johnson, 1997). By the way, there are also other 
related concepts such as use cases (Jacobson, 1992), 
architectural styles (Shaw and Garlan, 1996), or 
templates (Turner, 1997), which could be utilized for 

the purpose of this paper instead of introducing a 
novel notion. Nevertheless, application pattern can 
structure behavioral specifications and, concurrently, 
they can support architectural components 
specification reuse. 

Nowadays, industrial scale reusability frequently 
requires a knowledge-based support. Case-based 
reasoning (see e.g. Kolodner, 1993) can provide 
such a support. The method differs from other rather 
traditional procedures of Artificial Intelligence 
relying on case history: for a new problem, it strives 
for a similar old solution saved in a case library. Any 
case library serves as a knowledge base of a case-
based reasoning system. The system acquires 
knowledge from old cases while learning can be 
achieved accumulating new cases. Solving a new 
case, the most similar old case is retrieved from the 
case library. The suggested solution of a new case is 
generated in conformity with the retrieved old case.  

This paper proposes not only how to represent a 
system’s formal specification as an application 
pattern structure of specification fragments, but also 
how to measure similarity of formal specifications 
for retrieval. In this paper, case-based reasoning 
support to reuse is focused on specifications by 
finite-state and timed automata, or by state and 
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timed-state sequences. The same principles can be 
applied for specifications by temporal and real-time 
logics.  

The following sections of this paper introduce 
the principles of design reuse applied by the way of 
application patterns. Then, employing application 
patterns fitting a class of real-time embedded 
systems, the kernel of this contribution presents two 
design projects: petrol pumping station dispenser 
controller and multiple lift control system. Via 
identification of the identical or similar application 
patterns in both design cases, this contribution 
proves the possibility to reuse substantial parts of 
formal specifications in a relevant sub-domain of 
embedded systems. The last part of the paper deals 
with knowledge-based support for this reuse process 
applying case-based reasoning paradigm. The paper 
provides principles of case-based reasoning support 
to reuse in frame of formal specification-based 
system design aiming at industrial applications 
domain.  

2 STATE OF THE ART 

To reuse an application pattern, whose 
implementation usually consists both of software 
and hardware components, it means to reuse its 
formal specification, development of which is very 
expensive and, consequently, worthwhile for reuse. 
This paper is aimed at behavioral specifications 
employing state or timed-state sequences, which 
correspond to Kripke style semantics of linear, 
discrete time temporal or real-time logics, and at 
their closed-form descriptions by finite-state or 
timed automata (Alur and Henzinger, 1992). 
Geppert and Roessler (2001) present a reuse-driven 
SDL design methodology that appears closely 
related approach to the problem discussed in this 
contribution. 

Software design reuse belongs to highly 
published topics for almost 20 years, see namely 
Frakes and Kang (2005), but also Arora and 
Kulkarni (1998), Sutcliffe and Maiden (1998), Mili 
et al. (1997), Holzblatt et al. (1997), and Henninger 
(1997). Namely the state-dependent specification-
based approach discussed by Zaremski et. al. (1997) 
and by van Lamsweerde and Wilmet (1998) inspired 
the application patterns handling presented in the 
current paper. To relate application patterns to the 
previously mentioned software oriented concepts 
more definitely, the inherited characteristics of the 
archetypal terminology, omitting namely their 
exclusive software orientation, can be restated as 

follows. A pattern describes a problem to be solved, 
a solution, and the context in which that solution 
works. Patterns are supposed to describe recurring 
solutions that have stood the test of time. Design 
patterns are the micro-architectural elements of 
frameworks. A framework -- which represents a 
generic application that allows creating different 
applications from an application sub-domain -- is an 
integrated set of patterns that can be reused. While 
each pattern describes a decision point in the 
development of an application, a pattern language is 
the organized collection of patterns for a particular 
application domain, and becomes an auxiliary 
method that guides the development process, see the 
pioneer work by Alexander (1977). 

Application patterns correspond not only to 
design patterns but also to frameworks while 
respecting multi-layer hierarchical structures. 
Embodying domain knowledge, application patterns 
deal both with requirement and implementation 
specifications (Shaw and Garlan, 1996). In fact, a 
precise characterization of the way, in which 
implementation specifications and requirements 
differ, depends on the precise location of the 
interface between an embedded system, which is to 
be implemented, and its environment, which 
generates requirements on system’s services. 
However, there are no strict boundaries in between: 
both implementation specifications and requirements 
rely on designer’s view, i.e. also on application 
patterns employed. 

A design reuse process involves several 
necessary reuse tasks that can be grouped into two 
categories: supply-side and demand-side reuse (Sen, 
1997). Supply-side reuse tasks include identification, 
creation, and classification of reusable artifacts. 
Demand-side reuse tasks include namely retrieval, 
adaptation, and storage of reusable artifacts. For the 
purpose of this paper, the reusable artifacts are 
represented by application patterns. 

The following two sections provide two case 
studies, based on implemented design projects, using 
application patterns that enable to discuss concrete 
examples of application patterns reusability. 

3 PETROL DISPENSER 
CONTROL SYSTEM 

The first case study pertains to a petrol pumping 
station dispenser with a distributed, multiple 
microcomputer counter/controller (for more details 
see Sveda, 1996). A dispenser controller is 
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interconnected with its environment through an 
interface with volume meter (input), pump motor 
(output), main and by-pass valves (outputs) that 
enable full or throttled flow, release signal (input) 
generated by cashier, unhooked nozzle detection 
(input), product's unit price (input), and volume and 
price displays (outputs). 

3.1 Two-level Structure for Dispenser 
Control 

The first employed application pattern stems from 
the two-level structure proposed by Xinyao et al. 
(1994): the higher level behaves as an event-driven 
component, and the lower level behaves as a set of 
real-time interconnected components. The behavior 
of the higher level component can be described by 
the following state sequences of a finite-state 
automaton with states "blocked-idle," "ready," "full 
fuel," "throttled" and "closed," and with inputs 
"release," (nozzle) "hung on/off," "close" (the preset 
or maximal displayable volume achieved), "throttle" 
(to slow down the flow to enable exact dosage) and 
"error": 
 
blocked-idle  release→    ready  hung off→    full_fuel  hung on→   blocked-idle 
blocked-idle  release→    ready  hung off→    full_fuel  throttle→    throttled  hung on→ 
        hung on→     blocked-idle 
blocked-idle  release→    ready  hung off→    full_fuel  throttle→    throttled  close  →  
                          close  →   closed  hung on→    blocked-idle 
blocked-idle  error   →   blocked-error 
blocked-idle  release→    ready  error   →  blocked-error 
blocked-idle  release→    ready  hung off→    full_fuel  error   →  blocked-error 
blocked-idle  release→    ready  hung off→     full_fuel  throttle →   throttled  error   →    
                          error   → blocked-error 
 

The states "full_fuel" and "throttled" appear to be 
hazardous from the viewpoint of unchecked flow 
because the motor is on and the liquid is under 
pressure -- the only nozzle valve controls an issue in 
this case. Also, the state "ready" tends to be 
hazardous: when the nozzle is unhooked, the system 
transfers to the state "full_fuel" with flow enabled. 
Hence, the accepted fail-stop conception necessitates 
the detected error management in the form of 
transition to the state "blocked-error." To initiate 
such a transition for flow blocking, the error 
detection in the hazardous states is necessary. On the 
other hand, the state "blocked-idle" is safe because 
the input signal "release" can be masked out by the 
system that, when some failure is detected, performs 
the internal transition from "blocked-idle" to 
"blocked-error." 

3.2 Incremental Measurement for Flow 
Control 

The volume measurement and flow control represent 
the main functions of the hazardous states. The next 
applied application pattern, incremental 
measurement, means the recognition and counting of 
elementary volumes represented by rectangular 
impulses, which are generated by a photoelectric 
pulse generator. The maximal frequency of impulses 
and a pattern for their recognition depend on electro-
magnetic interference characteristics. The lower-
level application patterns are in this case a noise-
tolerant impulse detector and a checking reversible 
counter. The first one represents a clock-timed 
impulse-recognition automaton that implements the 
periodic sampling of its input with values 0 and 1. 
This automaton with b states recognizes an impulse 
after b/2 (b>=4) samples with the value 1 followed 
by b/2 samples with the value 0, possibly interleaved 
by induced error values, see an example timed-state 
sequence: 
 
(0, q1) inp=0 →  ... inp=0 →  (i, q1) inp=1 →  (i+1, q2) inp=0 →  ... inp=0 →  (j, q2) ... 
   ... inp=1 →  (k, qb/2+1) inp=1 →  ... 
... inp=1 →  (m, qb-1) inp=0 →  (m+1, qb) inp=1 →  ... inp=1 →   (n, qb)  inp=0/IMP   →      (n+1, q1) 
i, j, k, m, n are integers representing discrete time instances 
in increasing order. 
 

For the sake of fault-detection requirements, the 
incremental detector and transfer path are doubled. 
Consequently, the second, identical noise-tolerant 
impulse detector appears necessary. 

The subsequent lower-level application pattern 
used provides a checking reversible counter, which 
starts with the value (h + l)/2 and increments or 
decrements that value according to the "impulse 
detected" outputs from the first or the second 
recognition automaton. Overflow or underflow of 
the pre-set values of h or l indicates an error. 
Another counter that counts the recognized impulses 
from one of the recognition automata maintains the 
whole measured volume. The output of the letter 
automaton refines to two displays with local 
memories not only for the reason of robustness (they 
can be compared) but also for functional 
requirements (double-face stand). To guarantee the 
overall fault detection capability of the device, it is 
necessary also to consider checking the counter. 
This task can be maintained by an I/O watchdog 
application pattern that can compare input impulses 
from the photoelectric pulse generator and the 
changes of the total value; evidently, the appropriate 
automaton provides again reversible counting. 
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3.3 Fault Maintenance Concepts 

The methods used accomplish the fault management 
in the form of (a) hazardous state reachability 
control and (b) hazardous state maintenance. In safe 
states, the lift cabins are fixed at any floors. The 
system is allowed to reach any hazardous state when 
all relevant processors successfully passed the start-
up checks of inputs and monitored outputs and of 
appropriate communication status. The hazardous 
state maintenance includes operational checks and, 
for shaft controller, the fail-stop support by two 
watchdog processors performing consistency 
checking for both execution processors. To comply 
with safety-critical conception, all critical inputs and 
monitored outputs are doubled and compared; when 
the relevant signals differ, the respective lift is either 
forced (in case of need with the help of an substitute 
drive if the shaft controller is disconnected) to reach 
the nearest floor and to stay blocked, or (in the case 
of maintenance or fire brigade support) its services 
are partially restricted. The basic safety hard core 
includes mechanical, emergency brakes. 

Because permanent blocking or too frequently 
repeated blocking is inappropriate, the final 
implementation must employ also fault avoidance 
techniques. The other reason for the fault avoidance 
application stems from the fact that only 
approximated fail-stop implementation is possible. 
Moreover, the above described configurations create 
only skeleton carrying common fault-tolerant 
techniques see e.g. (Maxion et al., 1987). In short, 
while auxiliary hardware components maintain 
supply-voltage levels, input signals filtering, and 
timing, the software techniques, namely time 
redundancy or skip-frame strategy, deal with non-
critical inputs and outputs. 

4 MULTIPLE LIFT CONTROL 
SYSTEM 

The second case study deals with the multiple lift 
control system based on a dedicated multiprocessor 
architecture (for more details see Sveda, 1997). An 
incremental measurement device for position 
evaluation, and position and speed control of a lift 
cabin in a lift shaft can demonstrate reusability. The 
applied application pattern, incremental 
measurement, means in this case the recognition and 
counting of rectangular impulses that are generated 
by an electromagnetic or photoelectric 
sensor/impulse generator, which is fixed on the 

bottom of the lift cabin and which passes equidistant 
position marks while moving along the shaft. That 
device communicates with its environment through 
interfaces with impulse generator and drive 
controller. So, the first input, I, provides the values 0 
or 1 that are altered with frequency equivalent to the 
cabin speed. The second input, D, provides the 
values "up," "down," or "idle." The output, P, 
provides the actual absolute position of the cabin in 
the shaft. 

4.1 Two-level Structure for Lift 
Control 

The next employed application pattern is the two-
level structure: the higher level behaves as an event-
driven component, which behavior is roughly 
described by the state sequence 
 
initialization  →  position_indication  →  fault_indication 
 
and the lower level, which behaves as a set of real-
time interconnected components. The specification 
of the lower level can be developed by refining the 
higher level state "position_indication" into three 
communicating lower level automata: two noise-
tolerant impulse detectors and one checking 
reversible counter. 

4.2 Incremental Measurement for 
Position and Speed Control 

The first automaton models the noise-tolerant 
impulse detector in the same manner as in previous 
case, see the following timed-state sequence: 
 
(0, q1) inp=0 →  ... inp=0 →  (i, q1) inp=1 →  (i+1, q2) inp=0 →  ... inp=0 →  (j, q2) ... 
   ... inp=1 →  (k, qb/2+1) inp=1 →  ... 
... inp=1 →  (m, qb-1) inp=0 →  (m+1, qb) inp=1 →  ... inp=1 →   (n, qb)  inp=0/IMP   →      (n+1, q1) 
i, j, k, m, n are integers representing discrete time instances 
in increasing order. 
 
The information about a detected impulse is sent to 
the counting automaton that can also access the 
indication of the cabin movement direction through 
the input D. For the sake of fault-detection 
requirements, the impulse generator and the impulse 
transfer path are doubled. Consequently, a second, 
identical noise-tolerant impulse detector appears 
necessary. The subsequent application pattern is the 
checking reversible counter, which starts with the 
value (h + l)/2 and increments or decrements the 
value  according  to  the  “impulse detected”  outputs  
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Table 1:  Application patterns hierarchy. 

fault management based on fail-stop behavior approximations 

two-level (event-driven/real-time) structure 

incremental measurement 

noise-tolerant impulse detector   checking reversible counter /O watchdog 

 
 

 
 

from the first or second recognition automaton. 
Overflow or underflow of the preset values of h or l 
indicates an error. This detection process sends a 
message about a detected impulse and the current 
direction to the counting automaton, which 
maintains the actual position in the shaft. To check 
the counter, an I/O watchdog application pattern 
employs again a reversible counter that can compare 
the impulses from the sensor/impulse generator and 
the changes of the total value. 

4.3 Lift Fault Management 

The approach used accomplishes a consequent 
application pattern, fault management based on fail-
stop behavior approximations, both in the form of 
(a) hazardous state reachability control and (b) 
hazardous state maintenance. In safe states, the lift 
cabins are fixed at any floors. The system is allowed 
to reach any hazardous state when all relevant 
processors have successfully passed the start-up 
checks of inputs and monitored outputs and of 
appropriate communication status. The hazardous 
state maintenance includes operational checks and 
consistency checking for execution processors. To 
comply with safety-critical conception, all critical 
inputs and monitored outputs are doubled and 
compared. When the relevant signals differ, the 
respective lift is either forced (with the help of a 
substitute drive if the shaft controller is 
disconnected) to reach the nearest floor and to stay 
blocked. 

The basic safety hard core includes mechanical, 
emergency brakes. Again, more detailed 
specification should reflect not only safety but also 
functionality with fault-tolerance support: also 
blocked lift is safe but useless.  Hence, the above 
described configurations create only skeleton 
carrying common fault-tolerant techniques. 

5 APPLICATION PATTERNS 
REUSE 

The two case studies presented above demonstrate 
the possibility to reuse effectively substantial parts 
of the design dealing with petrol pumping station 
technology for a lift control technology project. 
While both cases belong to embedded control 
systems, their application domains and their 
technology principles differ: volume measurement 
and dosage control seems not too close to position 
measurement and control. Evidently, the similarity is 
observable by employment of application patterns 
hierarchy, see Table 1. 

The reused upper-layer application patterns 
presented include the automata-based descriptions of 
incremental measurement, two-level (event-
driven/real-time) structure, and fault management 
stemming from fail-stop behavior approximations. 
The reused lower-layer application patterns are 
exemplified by the automata-based descriptions of 
noise-tolerant impulse detector, checking reversible 
counter, and I/O watchdog.  

Clearly, while all introduced application patterns 
correspond to design patterns in the above-explained 
interpretation, the upper-layer application patterns 
can be related also to frameworks. Moreover, the 
presented collection of application patterns creates a 
base for a pattern language supporting reuse-
oriented design process for real-time embedded 
systems.  

6 KNOWLEDGE-BASED 
SUPPORT 

Industrial scale reusability requires a knowledge-
based support, e.g. by case-based reasoning (see 
Kolodner, 1993), which differs from other rather 
traditional methods of Artificial Intelligence relying 
on case history. For a new problem, the case-based 
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reasoning strives for a similar old solution. This old 
solution is chosen according to the correspondence 
of a new problem to some old problem that was 
successfully solved by this approach. Hence, 
previous significant cases are gathered and saved in 
a case library. Case-based reasoning stems from 
remembering a similar situation that worked in past. 
For software reuse, case-based reasoning utilization 
has been studied from several viewpoints as 
discussed e.g. by Henninger (1998), and by 
Soundarajan and Fridella (1998). 

6.1 Case-based Reasoning 

The case-based reasoning method contains (1) 
elicitation, which means collecting those cases, and 
(2) implementation, which represents identification 
of important features for the case description 
consisting of values of those features. A case-based 
reasoning system can only be as good as its case 
library: only successful and sensibly selected old 
cases should be stored in the case library. The 
description of a case should comprise the 
corresponding problem, solution of the problem, and 
any other information describing the context for 
which the solution can be reused. A feature-oriented 
approach is usually used for the case description. 

Case library serves as the knowledge base of a 
case-based reasoning system. The system acquires 
knowledge from old cases while learning can be 
achieved accumulating new cases. While solving a 
new case, the most similar old case is retrieved from 
the case library. The suggested solution of the new 
case is generated in conformity with this retrieved 
old case. Search for the similar old case from the 
case library represents important operation of case-
based reasoning paradigm. 

6.2 Backing Techniques 

Case-based reasoning relies on the idea that 
situations are mostly repeating during the life cycle 
of an applied system. Further, after some period, the 
most frequent situations can be identified and 
documented in the case library. So, the case library 
can usually cover common situations. However, it is 
impossible to start with case-based reasoning from 
the very beginning with an empty case library. 

When relying on the case-based reasoning 
exclusively, also the opposite problem can be 
encountered: after some period the case library can 
become huge and very semi-redundant. Majority of 
registered cases represents clusters of very similar 
situations. Despite careful evaluation of cases before 

saving them in the case library, it is difficult to avoid 
this problem.     

In an effort to solve these two problems, the 
case-base reasoning can be combined with some 
other paradigm to compensate these insufficiencies. 
Some level of rule-based support can partially cover 
these gaps with the help of rule-oriented knowledge; 
see Sveda, Babka and Freeburn (1997). 

Rule-based reasoning should augment the case-
based reasoning in the following situations: 

  
• No suitable old solution can be found for a 

current situation in the case library and engineer 
hesitates about his own solution. So, rule-based 
module is activated. For a very restricted class of 
tasks, the rule-based module is capable to 
suggest its own solution. Once generated by this 
part of the framework, such a solution is then 
evaluated and tested more carefully. However, if 
the evaluation is positive, this case is later saved 
in the case library covering one of the gaps of the 
case-based module.  

• Situations are similar but rarely identical. To fit 
closer the real situation, adaptation of the 
retrieved case is needed. The process of 
adaptation can be controlled by the rule-based 
paradigm, using adaptation procedures and 
heuristics in the form of implication. Sensibly 
chosen meta-rules can substantially improve the 
effectiveness of the system.   
  

 The problem of adaptation is quite serious when 
a cluster of similar cases is replaced by one 
representative only - to avoid a high level of 
redundancy of the case library. The level of 
similarity can be low for marginal cases of the 
cluster.  So, adaptation is more important here. 

Three main categories of rules can be found in 
the rule-based module: 

 
• Several general heuristics can contribute to the 

optimal solution search of a very wide class of 
tasks. 

• However, the dominant part of the knowledge 
support is based on a domain-specific rule. 

• For a higher efficiency, metarules are also 
attached to the module. This “knowledge about 
knowledge” can considerably contribute to a 
smooth reasoning process. 
 
While involvement of an expert is relatively low 

for case-based reasoning module, the rules are 
mainly based on expert’s knowledge. However, 
some pieces of knowledge can also be obtained by 
data mining. 
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6.3 Similarity Measurement of  
State-based Specifications 

Retrieval schemes proposed in the literature can be 
classed based upon the technique used to index cases 
during the search process (Atkinson, 1998): (a) 
classification-based schemes, which include 
keyword or feature-based controlled vocabularies; 
(b) structural schemes, which include signature or 
structural characteristics matching; and (c) 
behavioral schemes; which seek relevant cases by 
comparing input and output spaces of components. 

The problem to be solved arises how to measure 
the similarity of state-based specifications for 
retrieval. Incidentally, similarity measurements for 
relational specifications have been resolved by 
Jilani, et al. (2001). The primary approach to the 
current application includes some equivalents of 
abstract data type signatures, belonging to structural 
schemes, and keywords, belonging to classification 
schemes. While the first alternative means for this 
purpose to quantify the similarity by the topological 
characteristics of associated finite automata state-
transition graphs, such as number and placement of 
loops, the second one is based on a properly selected 
set of keywords with subsets identifying individual 
patterns. The current research task of our group 
focuses on experiments enabling to compare those 
alternatives. 

7 CONCLUSIONS 

The original contribution of this paper consists in 
proposal how to represent a system’s formal 
specification as an application pattern structure of 
specification fragments. Next contribution deals 
with the approach how to measure similarity of 
formal specifications for retrieval in frame of case-
based reasoning support. The above-presented case 
studies, which demonstrate the possibility to 
effectively reuse concrete application pattern 
structures, have been excerpted from two realized 
design cases.  

The application patterns, originally introduced as 
“configurations” in the design project of petrol 
pumping station control technology based on 
multiple microcontrollers (Sveda, 1996), were 
effectively -- but without any dedicated development 
support -- reused for the project of lift control 
technology (Sveda, 1997). The notion of application 
pattern appeared for the first time in (Sveda, 2000) 
and developed in (Sveda, 2006). By the way, the 
first experience of the authors with case-based 

reasoning support to knowledge preserving 
development of an industrial application was 
published in (Sveda, Babka and Freeburn, 1997).  
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