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Abstract: A topological model is presented for complex data sets in which the attributes can be cast into a dichotomy. 
It is shown that the relative dominance of the two parts in such a dichotomy can be measured by the 
corresponding areas in its star plot. An optimization model is proposed to maximize the resolution of such a 
measure by choice of configuration of the attributes, as well as the angles among them. The approach is 
illustrated with the case of online auction markets, where there is a buyer-seller dichotomy as to whether 
conditions are favourable to buyers or sellers. An implementation of the methodology in a spreadsheet 
based DSS is demonstrated. Its ease of use is promising for diverse applications. 

1 INTRODUCTION 

A topological model for a high dimensional data set 
is a simultaneous graphical display of all its relevant 
attributes, which provides a geometrical shape as a 
descriptive, visual statistics of the underlying 
construct engendering the data. In particular, when 
various dimensions can be identified to form a 
multi-attribute dichotomy, the area spanned by the 
two halves of the topological model can be used as a 
measure of the relative dominance of the two parts 
of the dichotomy. Using a reference subset of 
prejudged cases, the configuration of the dimensions 
and the angles among them can be optimized in a 
Goal Programming (Scniederjans, 1995) model for a 
topology that maximizes the resolution of such 
dichotomies. Applications abound in diverse fields, 
including diffusion of innovation (Ho, 2005), 
investment climate and business environment (Ho, 
2006a), marketing research and customer relations 
management (Ho, 2006b), and medical diagnostics. 

The implementation of the optimization model as an 
easy-to-use, spreadsheet based DSS is described. It 
is illustrated by the case of topological analysis of 
online auction markets (Ho, 2004) where it is of 
interest to discern whether particular markets are 
favourable to buyers or sellers.   

2 TOPOLOGICAL ANALYSIS 

Visualization has been a fast developing approach in 
data-mining (Hoffman and Grinstein, 2001) in which 
graphical models are constructed to provide visual 
cues for pattern recognition and knowledge 
discovery from complex data. In the study of 
financial markets (stock and commodity), the 
dimension of interest is primarily prices, or the 
fluctuation thereof. Complexity arises from the large 
number of instruments involved. The best known 
examples of visualization models for stock markets 
are based on the tree-map method (Shneiderman, 
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1992), and the minimum-spanning-tree method 
(Vandewalle et al, 2001). For auction markets, the 
game-theoretic dynamics itself gives rise to higher 
dimensional complexity. And with online auctions 
removing conventional constraints on time and 
space, their activities and impact on e-commerce can 
only be expected to grow exponentially. In this 
regard, the availability of operational data from 
eBay.com presents unprecedented challenges and 
opportunities for insight into online auction markets. 
In (Ho, 2004), twelve dimensions (i.e. attributes) are 
identified as follows. 

1. NET ACTIVITY (auctions with bids) 
2. PARTICIPATION (average number of bids per 

auction) 
3. SELLER DIVERSITY (distribution of offers) 
4. SELLER EXPERIENCE (distribution of sellers' 

ratings) 
5. MATCHING (auctions ending with a single bid) 
6. SNIPING (last minute winning bids) 
7. RETAILING (auctions ending with the Buy-It-

Now option) 
8. BUYER DIVERSITY (distribution of bidder 

participation) 
9. BUYER EXPERIENCE (distribution of buyers' 

ratings) 
10. DUELING (evidence of competitive bidding) 
11. STASHING (evidence of stock-piling) 
12. PROXY (use of proxy bidding as evidence of true 

valuation) 
 
Our topological model is based on the star plot for 
displaying multivariate data with an arbitrary 
number of dimensions (Chambers et al, 1983). Each 
data point is represented as a star-shaped figure (or 
glyph) with one ray for each dimension. As the 
resulting shapes depend on the configuration of the 
dimensions, we further analyse the observations 
along the dimensions identified above in an effort to 
present a visual model of the shape of online auction 
markets. 
  To discern whether particular market conditions 
are favourable to buyers or sellers, we divide the 
dimensions into a buyer-seller dichotomy as shown 
in Figure 1 where buyer dimensions (SELLER 
DIVERSITY, SELLER EXPERIENCE, MATCHING, 
SNIPING, RETAILING) are grouped to the right, and 
seller dimensions (BUYER DIVERSITY, BUYER 
EXPERIENCE, DUELING, STASHING, PROXY) are 
grouped to the left. The other dimensions (NET 
ACTIVITY, PARTICIPATION) are neutral and 
mapped to the vertical axis. 

 
Figure 1: Topological model of online auction market. 

3 MAXIMUM RESOLUTION 
TOPOLOGY 

In general, a multi-attribute dichotomy is any multi-
dimensional dataset in which the dimensions can be 
partitioned into two groups, each contributing to one 
part of the dichotomy. Given the star glyph of a 
multi-attribute dichotomy, as exemplified in Figure 
1, it will be both visually and intuitively appealing if 
the areas covered by the two parts can be used as a 
meaningful aggregate measure of their relative 
dominance. A larger area on the left side of the 
glyph means dominance by the left part, and vice 
versa. In the case of online auction markets, this 
asymmetry can be interpreted as market conditions 
being advantageous to either buyers or sellers. In 
mathematical terms, the aggregate value function 
takes the form of the sum of pair-wise products of 
adjacent attributes: V(X1, …, Xn) =  C Σ Xi Xj; 
where attributes i and j are adjacent; Xi is the value 
of attribute i, for i = 1, …, n; and C is some scaling 
constant. 

The concept of using the area of the parts of a 
dichotomy as an aggregate measure of their relative 
dominance is plausible, since increasing value of an 
attribute contributes positively to its designated part, 
as well as the latter’s area in the glyph. However, it 
must be refined to realize its potential, which arises 
from the degrees of freedom allowed by the 
topology of the glyph, namely, the configuration of 
the attributes, and the angles between adjacent pairs 
thereof. For any given arrangement of the attributes, 
the standard star plot produces a glyph along 
symmetrically spaced radial axes. Variations from 
this symmetry imply a feasible set of shapes and 
areas, which along with permutations of the 
configuration, offer the choice of topologies that 
may suit further criteria for a meaningful aggregate 
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measure function. In particular, we use a diverse 
subset of the data instances in an optimization model 
to derive a topology with maximum resolution in 
discerning dominance with respect to the reference 
subset (Ho and Chu, 2005). 

To this end, the first step is to render the glyph 
unit free by normalizing the data on each dimension 
to the unit interval [0, 1]. The second step is to 
render the glyph context free by harmonizing the 
dimensions as follows. For each attribute, the 
quartiles for the values in the entire dataset are 
computed. A spline function (Cline, 1974) is 
constructed to map these quartiles into the [0.25, 0.5, 
0.75] points of the unit interval. This way, a 
hypothetical data instance with all attributes at mean 
values of the dataset will assume the shape of a 
symmetrical polygon with vertices at the mid-point 
of each radial axis. In this frame of reference, all 
shapes and sizes are relative to this generic 
“average” glyph, and free of either units or specific 
context of the attributes. For our exploratory work, 
simple second-order (piecewise linear) splines are 
used. 

3.1 Dichotic Dominance with respect to 
Reference Subsets 

Next, to determine an optimal topology, we use the 
concept of a reference subset of the data instances to 
help define dichotic dominance. This concept is best 
explained in a medical scenario. Suppose a certain 
disease is monitored by a number of symptoms and 
tests, with a dichotic prognosis of “life” or “death”. 
Judging from the combination of data for any 
particular case, it may be difficult to predict. A 
reference subset is a collection of non-trivial, non-
obvious cases with known outcomes, namely life or 
death. In our exploratory analysis of online auction 
markets, there is no factual or expert judgment on 
whether any particular case is a “buyers” or “sellers” 
market. An initial collection from 34 diverse and 
well-established markets is used on an ad hoc basis 
as the reference subset. An arbitrary configuration of 
the attributes within each part of the dichotomy is 
selected with the attributes evenly spaced, as in 
Figure 1. This is analogous to selecting a portfolio of 
stocks to provide an index for a stock market. The 
performance of any stock can be gauged relative to 
the index, which may be arbitrarily chosen initially. 
With better knowledge of the significance of 
individual stocks, more useful indices can be 
established. By the same token, the choice of 
reference subsets for multi-attribute dichotomies can 

be adaptively refined as the study progresses. 
      Once an optimal topology is derived with respect 
to a given reference subset, any other data instance, 
an online auction market in our case,  can be plotted 
and visualised as a maximum resolution dichotomy. 
Moreover, the total enclosed area in the plot, 
including both parts of the dichotomy may be used 
as a relative measure of the overall activity of all the 
attributes. We can consider this as an indicator of the 
“robustness” of the market. Whereas, the difference 
in the areas of the left and right parts of the 
dichotomy provides an index of dichotic dominance 
among market conditions favouring buyers and 
sellers. In our settings, a left dominance favours 
sellers, and a right dominance favours buyers. 

3.2 A Goal Programming Optimization 
Model 

Subject to the constraints of preserving the 
prejudged dominance in the reference subset of 
dichotomies, an optimal topology (configuration of 
attributes and angles between adjacent pairs) is 
sought that maximises the discriminating power, or 
resolution, as measured by the sum of absolute 
differences in left and right areas for the reference 
subset. Such an optimal configuration will be called 
a maximum resolution topology (MRT). For any 
given configuration of the attributes, maximization 
of the discriminating power can be formulated as a 
linear program (LP). However, LP produces 
extreme-point solutions, which may reduce some of 
the angles between attributes to zero, thus collapsing 
the glyph. To avoid such degeneration, 
maximization with bounded variation of the angles 
is modelled as a goal program (GP) in (Ho and Chu, 
2005). 

4 DSS FOR MRT 

To facilitate the computation of a maximum 
resolution topology (MRT) for a given set of data 
from a multi-attribute dichotomy, an easy-to-use 
decision support system (DSS) has been built on 
Excel spreadsheet software. Such an MRT-DSS 
system has both its front end and report routine 
integrated in the same Excel spreadsheet workfile, 
into which the input data records can be placed (for 
example, imported from a database); and outputs of 
values and MRT-star plots displayed.  

To find the solution, the user only needs to copy 
and paste the records of training data (the “reference 
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set”) to the ‘Training Data’ worksheet and click the 
‘Solve!’ item button on the ‘MRT’ menu. MRT-DSS 
will permute over all possible configurations and 
dynamically generate the input data for each 
configuration. The training data will be passed to a 
linear programming solver (LINGO Version 8) to 
find the solution based on the MRT-GP model. 
MRT-DSS will store the solution of each 
configuration on the ‘Work’ worksheet, as well as 
the best solution on the ‘Best solution’ worksheet. It 
will also keep the optimal MRT configuration and 
angles in the ‘StarPlot’ worksheet for preparing the 
test data for plotting. 

By completing the training of MRT-DSS and 
obtaining the optimal configuration, the system can 
then be used to evaluate new cases of the dichotic 
model. With data copied to the ‘Testing Data’ 
worksheet, the ‘Prepare StarPlot Data’ item on the 
‘MRT’ menu is selected. MRT-DSS will transpose 
and store the data in the ‘StarPlot’ worksheet. It will 
also compute for each test case the areas of the left 
(A) and right (B) parts of the dichotomy and their 
difference (A-B). The user can easily evaluate the 
test cases based on these numerical results. To 
visualize and further analyze a particular data 
record, the user can choose the ‘Plot Solution’ item 
on the ‘MRT’ menu to draw its StarPlot diagram 
under the maximum resolution topology. By 
inspecting and comparing records under the optimal 
configuration and angles in the diagrams, and by 
studying the left-right differentials provided by 
MRT-DSS, substantial topological analysis can be 
performed for insight into the model under study. 

5 CONCLUSIONS 

We presented an optimization model to derive a 
maximum resolution topology for complex data sets 
that can be cast as multi-attribute dichotomies. 
While we used only the buyer-seller dichotomy for 
online auction markets as illustration, applications 
have already resulted in diverse fields (Ho, 2005, 
2006a, b). For future work, we expect ample 
innovative applications of the methodology with the 
help of the easy-to-use DSS. 
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