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Abstract: In this paper, a cooperative metaheuristic for the solution of the Unit Commitment problem is presented. 
This problem is known to be a large scale, mixed integer problem. Due to combinatorial complexity, the 
exact solution is often intractable. Thus, a metaheuristic based method has to be used to compute a near 
optimal solution with low computation times. A new approach is presented here. The main idea is to couple 
a genetic algorithm to compute binary variables (on/off status of units), and an ant colony based algorithm 
to compute real variables (produced powers). Finally, results show that the cooperative method leads to the 
tractable computation of a satisfying solution for medium scale Unit Commitment problems. 

1 INTRODUCTION 

The Unit Commitment problem is a mixed integer 
problem, referring to the optimal scheduling of 
several production units, satisfying consumer’s 
demand and technical constraints. Integer variables 
are the on/off status of production units, and real 
variables are produced powers. Numerous methods 
have been applied; see (Sen and Kothari, 1998). 

The first idea is to use an exact solution method: 
exhaustive enumeration, “Branch and Bound” (Chen 
and Wang, 1993), dynamic programming (Ouyang 
and Shahidehpour, 1991). Due to temporal coupling 
of constraints (time up / time down constraints), a 
large temporal horizon is required, leading to a large 
number of binary variables: exact methods suffer 
from combinatorial complexity. Approximated 
methods are required for tractable results.  

Deterministic approximated methods have been 
tested: priority lists in (Senjyu, et al., 2004) or expert 
systems. Due to numerous constraints, this kind of 
methods are often strongly suboptimal. Constraints 
are considered by the Lagrangian relaxation method, 
see (Zhai and Guan, 2002). Multi unit coupling 
constraints are relaxed. As a result, the unit 
Commitment problem is divided into several smaller 
optimization problems. However, due to the non 
convexity of the objective function, no guarantee 
can be given on the duality gap and the actual 
optimality of the solution. Further, an iterative 

procedure has to be used: solution of the 
optimization problems with fixed Lagrange 
multipliers, updates of these multipliers, and so on. 
This update can be performed with genetic 
algorithms as in (Cheng, et al., 2000) or by 
subgradient methods (Dotzauer, et al., 1999). 

Stochastic approximated algorithms, called 
metaheuristics are potentially interesting methods 
for Unit Commitment as they are able to compute 
near optimal solutions with low computation times. 
A simulated annealing approach is used in (Yin Wa 
Wong, 1998), tabu search is used in (Rajan and 
Mohan, 2004) and genetic algorithms are used in 
(Kasarlis, et al., 1996). Cooperative algorithms have 
been developed to couple the advantages of several 
optimization methods: genetic algorithms and 
simulated annealing are used in (Cheng, et al., 
2002); simulated annealing and local search in 
(Purushothama and Jenkins, 2003). 

In (Serban and Sandou, 2007), a mixed ant 
colony method has been proposed. The approach is 
interesting, but, due to the positive feedback of ant 
colony, may quickly converge to local minima. To 
circumvent this problem, a new cooperative strategy 
is defined in this paper. The idea is to use a 
knowledge based genetic algorithm for binary 
variables to achieve a deep exploration of the search 
space, and simultaneously an ant colony based 
algorithm for real variables.  

The paper is organized as follows. In section 2, 
the Unit Commitment problem is briefly called up. 
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The cooperative metaheuristic ant colony/genetic 
algorithm method is depicted in section 3. Both 
algorithms are described, together with the definition 
of a criterion guaranteeing feasibility of the solution. 
Numerical results are given in section 4. Finally, 
concluding remarks are drawn in section 5. 

2 UNIT COMMITMENT 
PROBLEM 

The Unit Commitment problem is a classical large 
scale mixed integer optimization problem. 
Following notations are used throughout the paper: 

 N: length of time horizon, 
 n: (subscript) : time interval number n, 
 K: number of production unit, 
 k (superscript): production unit number k, 
 k

nu : on/off status of production unit k during 
time interval n (binary variable), 
 k

nQ : power produced by production unit k 
during time interval n (real variable). 

2.1 Cost Function 

The objective function is the sum of production, 
start-up, and shut-down costs for all time intervals 
and all units: 
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kkk cc and,,, 012 ααα  are technical data of 
production unit k. 

2.2 Constraints 

Constraints are: 
 Capacity constraints 
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 Time up and time down constraints 
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Such constraints are temporally coupling 
constraints which express dynamics on production 
units. k

down
k

up
kk TT,Q,Q andmaxmin  are technical data. 

3 COOPERATIVE 
METAHEURISTIC SOLUTION 

3.1 Algorithm Principles 

As already mentionned, Unit Commitment is a large 
scale mixed integer programming problem. Genetic 
algorithm is a well known algorithm for 
combinatorial optimization problems. In this study, a 
specific criterion is defined (see section 3.2), based 
on particular penalty functions to guarantee the 
solution feasibility. Genetic algorithm is used to 
compute binary variables and is depicted in section 
3.3. Further, a stochastic algorithm is simultaneously 
used to compute real variables, based on ant colony 
optimization. It is presented in section 3.4. 

3.2 Optimization Criterion 

3.2.1 Criterion Expression 

Consider that a feasible solution is known with a 
cost cf. The following optimization criterion is 
defined: 
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where: 
 ε  is a small positive real, 
 )( yh  is a penalty function for non feasible 
solutions, 
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 )( yB  is a boolean function (1 for non feasible 
solutions and 0 for feasible ones). 

With this criterion, any unfeasible solution has a 
higher cost than the feasible known solution: any 
unconstrained optimization algorithm can solve the 
problem. Thus, an elitist genetic algorithm can be 
used. The definition of criterion (7) only supposed 
that a feasible solution is known. It can be easily 
computed using a simple priority list. This is a very 
suboptimal solution, but the quality of this first 
feasible solution is not crucial, as the criterion can 
be updated when new feasible solutions are known. 

3.2.2 Penalty Expression 

The following variables are added:  
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With these variables, time-up and time-down 
constraints are expressed by linear expressions:  
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Capacity constraints and consumers’ demands 
satisfaction are linear. All constraints can be 
expressed by a linear equation, cc BxA ≤ , where x is 
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to a high tractability of the boolean and the penalty 
functions computation. 

3.3 Genetic Algorithm for on/off 
Variables 

3.3.1 Algorithm Principles 

Genetic algorithm is a well known optimization 
method. Fig. 1 and 2 represent classical cross-over 
and mutation operators for Unit Commitment 
problem.  
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Figure 1: Classical crossing over operator. 
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Figure 2: Classical mutation operator. 

Individuals are in a matrix form. Crossover 
operator create 2 potentially low cost children from 
2 parents by merging their variables (or genes). The 
mutation operator allows the introduction of new 
genes in the population by randomly changing one 
of the variables. Finally, the selection operator is 
performed with a classical biased roulette method. 

3.3.2 Knowledge Based Operators 

It has been observed that the genetic algorithm can 
be more efficient by using some knowledge based 
operators. New genetic operators are added, 
considering properties of the problem. The first 
operator is a “selective mutation operator”. Consider 
unit scheduling of fig. 3. Due to time-up and time-
down constraints, a classical mutation leads very 
often to an infeasible solution. To increase the 
probability of reaching a new feasible point, a 
“selective mutation operator” is introduced: this 
operator detects switching times and allows a 
random mutation only for these genes. 

 

1 1 1 1 1 1 0 0 0 0 

Switching times : 
Authorized 
mutations

 

Figure 3: Selective mutation operator. 
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Figure 4: Exchange operator. 

The second operator is an exchange operator, 
introduced by (Kasarlis, et al., 1996). Some 
production units are profitable or have larger 
capacities. It may be interesting to exchange a part 
of the planning of two production units (see fig. 4).  

Finally, all-on and all-off operator are 
introduced. Consider fig. 5. If the unit has a time 
down constraints of two hours, it may be difficult to 
go from feasible point a) to feasible point b). The 
all-on (resp. all-off) operator randomly select two 
time intervals and a production unit and switch on 
(resp. switch off) the production unit between these 
time intervals: the idea is to increase the probability 
of “crossing the infeasible space”. 
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2=downT  
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Figure 5: All-on operator. 

3.4 Continuous Ant Colony 
Optimization for Produced Powers 

Ant colony optimization was firstly introduced by 
Marco Dorigo. Ants’ behaviour has been used as a 
metaphor to design algorithms for combinatorial 
optimization problems such as the Travelling 
Salesman Problem (Dorigo, et al. 1997). Extensions 
for continuous search spaces have been proposed by 
(Socha and Dorigo, 2006) and have been used in 
(Serban and Sandou, 2007) in a pure ant colony 
solution of Unit Commitment. Results are here 
called up. For each binary solution, 
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to be associated. To compute these real variables, a 

matrix T of s real solutions, called “archive matrix 
of solutions”, is stored:  
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These solutions are evaluated with respect to the 
objective function (1). Costs are stored in H:  
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The solutions are sorted according to their costs. 
From these costs, weights are defined according to 
the ranks of the solutions in the matrix. For the 
solution with rank r, the weight is defined by:  
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Finally, a discrete probability distribution is 
defined from these weights:  
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q is a tuning parameter of the algorithm. To 
compute a new real solution, the following 
procedure is performed: 

 a “model ant”, say l, is chosen, according to 
this discrete probability distribution (14). 
 Each real variable i

newx , i = 1,…,KN, is 
chosen with a Gaussian probability whose 
mean and standard deviation is computed by:  
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ξ is also a tuning parameter of the algorithm. 
When real variables have been chosen, consumer’s 
demands (5) may not be fulfilled. Furthermore, the 
selection of produced powers may lead to 
overproduction. To get rid of these problems, the 
following improvement procedure is used: 

 Select k
nQ  with the previous algorithm. 

 If dem
n

K
k

k
n

k
n QuQ >∑ =1  (resp. < ), then 

randomly choose, if possible, one of switched 
on units, and decrease (resp. increase) the 
corresponding produced power until 
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n QuQ =∑ =1 . If it is not sufficient, 

choose several production units, if possible.  
When all new solutions have been computed, the 

best new solutions are stored in matrix T, replacing 
solutions whose costs were too high. This is an 
analogy with physical evaporation of pheromone. 

4 NUMERICAL RESULTS 

4.1 Algorithm Implementation 

The proposed cooperative method has been tested 
with Matlab 6.5 with a Pentium IV 2.5 GHz. When 
the stochastic cooperative algorithm is completed, a 
final local search is performed: binary values are set 
to their final values, and a real optimization based on 
Semi Definite Programming is performed to solve 
this particular economic dispatch problem. As 
stochastic algorithms are considered, 70 tests are 
performed, and statistical data about the results are 
given. Optimization horizon is 24 hours with a 
sampling time of one hour. 

4.2 “4 unit” Academic Example 

A 4 unit case is considered (see table 1). 

Table 1: Characteristics for the “4 unit case”. 

 Qmin 
(MW) 

Qmax 
(MW) 

α0 
(€) 

α1 con 
(€) 

coff 
(€) 

Tdown 
(h) 

Tup 
(h) 

1 10 40 25 2.6 10 2 2 4 
2 10 40 25 7.9 10 2 2 4 
3 10 40 25 13.1 10 2 3 3 
4 10 40 25 18.3 10 2 3 3 

 
At time 0, all units are switched off and can be 

switched on. Note that linear costs have been chosen 
(α2 = 0). For this relative small scale cases, and for 
linear costs, an exact solution has been computed by 
“Branch and Bound”. Consumer’s demand is 
depicted in fig. 6. This demand can be fulfilled by 2 
production units (see 2 units limit in fig. 6), except 
for hour number 9. Because of time up constraints 
this unit will be switched on for 3 hours. The 
optimal solution is given in fig. 7.  

The corresponding optimization problem is made 
of 96 binary variables (24 hours and 4 units) and 96 
real variables. Table 2 shows results of optimization. 
Statistical results are given: best case, mean, number 
of success (a test is successful if the best solution is 
found).  

The following parameters were used: 

 
Figure 6: Consumer’s demand. 

 
Figure 7: Optimal solution for “4 unit case”. 

 Genetic population size: 50, 
 Cross-over rate: 70%, 
 Mutation rate: 5%, 
 Knowledge based operators rate: 10%, 
 Archive matrix size: s = 20, 
 Tuning parameters 8.0;1 == ξq . 

Results show that interesesting solutions can be 
computed with relatively low computation times. 

Table 2: Optimization results “4 unit case”. 

Case Best Mean Nb. 
Success 

Time 

100 iter. 8778 € 
(+0%) 

9449 € 
(+7.6%) 

8/70 22 s 

200 iter. 8778 € 
(+0%) 

9004 € 
(+2.6%) 

32/70 45 s 

500 iter. 8778 € 
(+0%) 

8922 € 
(+1.6%) 

45/70 115 s 

4.3 Medium Scale Case 

A “10 unit” case is now considered (see table 3). 
This a medium scale case. Low start up and start 
down costs have been considered, leading to the 
possibility of guessing the optimal solution. The 
corresponding optimal cost is 29795 €. For a 24 hour 
optimization, this problem is made of 240 binary 
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optimization variables and 240 real variables. 
Results for the cooperative method are given in table 
4. As in previous examples, 70 tests are performed 
and statistical results are given (best case, mean). 
The same values were used for parameters. 

Table 3: Characteristics for the “10 unit case”. 

 Qmin 
MW 

Qmax 
MW 

α0 
€ 

α1 con 
€ 

coff 
€ 

Tdow

n h 
Tup 
h 

1 10 40 25 2.6 10 2 2 4 
2 10 40 25 5.2 10 2 2 4 
3 10 40 25 7.9 10 2 3 6 
4 10 40 25 10.5 10 2 3 6 
5 10 40 25 13.1 10 2 3 4 
6 10 40 25 15.7 10 2 3 4 
7 10 40 25 18.3 10 2 3 4 
8 10 40 25 21.0 10 2 3 4 
9 10 40 25 23.6 10 2 3 4 
10 10 40 25 26.2 10 2 3 4 

 
Results show the viability of the cooperative 

method to solve mixed integer optimization 
problems. Low computation times are observed, 
even for this medium scale case. 

Table 4: Optimization results “10 unit case”. 

 Best Mean Time 
500 iter. 30210 € 

(+1.4%) 
32695 € 
(+9.7%) 

275 s 

1000 iter. 29851 € 
(+0.2%) 

32138 € 
(+7.8%) 

550 s 

5 CONCLUSION 

In this paper, a cooperative method ant 
colony/genetic algorithm for Unit Commitment 
solution has been proposed. The main idea is to use 
a genetic algorithm with knowledge based operators 
to compute binary variables and a real ant colony 
algorithm to compute real variables. To guarantee 
the feasibility of the final solution, a criterion has 
also been defined. Finally, the proposed method 
leads to near optimal solutions, with guarantees of 
feasibility and with low computation times. 

Some dedicated methods are able to find better 
solutions than the proposed cooperative algorithm, 
and can consider larger scale cases. However, this 
cooperative method seems to be promising and the 
study has proven its viability.  

Forthcoming works deal with the use of such a 
cooperative metaheuristic method to solve generic 
non linear mixed integer optimization problems, as 
the use of the method does not require any structural 
property of the problem. 

REFERENCES 

Chen C.-L and Wang S.-C. (1993), Branch and Bound 
scheduling for thermal generating units, IEEE Trans. 
on Energy Conversion, Vol. 8(2), pp.184-189. 

Cheng C.-P., Liu C.-W., Liu C.-C. (2000), Unit 
Commitment by Lagrangian Relaxation and Genetic 
Algorithms, IEEE Trans. on Power Systems, Vol. 
15(2), pp. 707-714. 

Cheng C.-P., Liu C.-W., Liu C.-C. (2002), Unit 
Commitment by annealing-genetic algorithm, 
Electrical Power and Energy Systems, Vol. 24, pp. 
149-158. 

Dorigo M., Gambardella, L. M. (1997), Ant Colony 
System: a Cooperative Learning Approach to the 
Traveling Salesman Problem, IEEE Trans. on 
Evolutionary Computation, Vol. 1, pp. 53-66. 

Dotzauer E., Holmström K., Ravn H. F. (1999), Optimal 
Unit Commitment and Economic Dispatch of 
Cogeneration Systems with a Storage, Proceedings of 
the 13th Power Systems Computation Conference 1999 
PSCC’99, Trondheim, Norway, pp. 738-744. 

Kasarlis S. A., Bakirtzis A. G. and Petridis V. (1996), A 
genetic algorithm solution to the unit commitment 
problem, IEEE Trans. on Power Systems, Vol. 11(1),  
pp. 83-92. 

Ouyang Z. and Shahidehpour S. M. (1991), An intelligent 
dynamic programming for unit commitment 
application, IEEE Trans. on Power Systems, Vol. 6(3), 
pp. 1203-1209. 

Purushothama G. K., Jenkins L. (2003), Simulated 
annealing with local search – a hybrid algorithm for 
Unit Commitment, IEEE Trans. on Power Systems, 
Vol. 18(1), pp. 273-278. 

Rajan C. C. A and Mohan M. R. (2004), An evolutionary 
programming-based tabu search method for solving 
the unit commitment problem, IEEE Trans. on Power 
Systems, Vol. 19(1), pp. 577-585. 

Sen S., Kothari D. P. (1998), Optimal Thermal Generating 
Unit Commitment: a Review, Electrical Power & 
Energy Systems, Vol. 20(7), pp. 443-451. 

Senjyu T., Shimabukuro, K., Uezato K. and Funabashi T. 
(2004), A fast technique for Unit Commitment 
problem by extended priority list, IEEE Trans. on 
Power Systems, Vol. 19(4), pp. 2119-2120. 

Serban A. T, Sandou G. (2007), Mixed ant colony 
optimisation for the Unit Commitment problem, 
Lecture Notes in Computer Science, n°4431/4432, pp. 
332-340. 

Socha K., Dorigo M. (2006), Ant colony optimization for 
continuous domains, Accepted to special issue of 
EJOR on adapting metaheuristics to continuous 
optimization. 

Yin Wa Wong S. (1998), An Enhanced Simulated 
Annealing Approach to Unit Commitment, Electrical 
Power & Energy Systems, Vol. 20(5), pp. 359-368. 

Zhai Q; and Guan X. (2002), Unit Commitment with 
identical units: successive subproblems solving 
method based on Lagrangian relaxation, IEEE Trans. 
on Power Systems, Vol. 17(4), pp. 1250-1257. 

DISCRETE GENETIC ALGORITHM AND REAL ANT COLONY OPTIMIZATION FOR THE UNIT COMMITMENT
PROBLEM

261


