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Abstract: We study active learning as a derandomized form of sampling. We show that full derandomization is not
suitable in a robust framework, propose partially derandomized samplings, and develop new active learning
methods (i) in which expert knowledge is easy to integrate (ii) with a parameter for the exploration/exploitation
dilemma (iii) less randomized than the full-random sampling (yet also not deterministic). Experiments are
performed in the case of regression for value-function learning on a continuous domain. Our main results
are (i) efficient partially derandomized point sets (ii) moderate-derandomization theorems (iii) experimental
evidence of the importance of the frontier (iv) a new regression-specific user-friendly sampling tool less-
robust than blind samplers but that sometimes works very efficiently in large dimensions. All experiments can
be reproduced by downloading the source code and running the provided command line.

1 INTRODUCTION

As pointed out in e.g. (Cohn et al., 1995a), the abil-
ity of the learner to select examples and modify its
environment in order to get better examples is one of
the main point in learning. In this model of learn-
ing, the learning algorithm is typically made of (i) a
sampler, that chooses points in the domain, and (ii) a
passive learner that takes these points and their labels
as provided by some unknown oracle (target concept
in classification or target function in regression). Var-
ious forms of active learning have been proposed:

1. Blind approaches in which points to be labelled
by the oracle are well distributed in the domain, e.g.
in a quasi-random manner, without taking into ac-
count the labels (Cervellera and Muselli, 2003); in
this case, the process can be splitted in 3 successive
steps: (i) sample the points, (ii) label by the oracle,
(iii) learn the target concept/function;

2. Non-blind approaches, in which the sam-
pler uses the labels provided by the oracle in order
to choose the next points to be labelled; possibly,
the learner is embedded in the sampler. These ap-
proaches use various criteria; (Lewis and Gale, 1994)
chooses examples with the maximum uncertainty of

the learner, (Seung et al., 1992) chooses examples
that reduce maximally the size of the version space.
Other approaches include (Schohn and Cohn, 2000),
with application to Support Vector Machines (SVM),
(Cohn et al., 1995b), with application to Neural Nets.

Limitations of non-blind approaches. In spite of
the fact that the second approach is much more gen-
eral, the superiority of non-blind approaches is often
unclear, due to the nice robustness properties of blind
approaches. If you exploit properties of the problem
to avoid sampling areas that are probably less inter-
esting, you can miss some ”surprisingly” interesting
areas. Pessimistic theorems on the possibility of ac-
tive learning can be found in e.g. (Vidyasagar, 1997),
in a worst-case scenario. Mainly, as a conclusion of
the state of the art, the best applied results for non-
blind active-learning concern moderately large fami-
lies of functions; classification more than regression,
decision trees more than neural networks or SVM.
In particular, we think that a main advantage of vi-
ability approaches in reinforcement learning is that it
reduces the problem (with loss of generality unfor-
tunately) to a classification problem in which active
learning is more stable (Chapel and Deffuant, 2006).
This is not very surprising as for example, choosing
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points close to boundaries, what makes sense in clas-
sification or with regression-trees but not in numeric
regression, is a good solution for efficient active learn-
ing. We propose in this paper a new non-blind ap-
proach, not always better than blind approaches as we
will see in the sequel, but that (i) is easy to use for
any type of state space (continuous or not) (ii) can
be parametrized continuously from the pure blind ap-
proach to a very deterministic sampling (iii) can easily
integrate expert information about the sampling.

Limitations of deterministic approaches. De-
terministic samplings are not always better than pure
random sampling. E.g. in numerical integration, de-
terministic blind samples are much better than ran-
dom points for various criteria in small dimensions,
but when the dimension increases, these strictly deter-
ministic approaches (Sloan and Woźniakowski, 1998)
have strong limitations (see also (Kearns et al., 1999;
Rust, 1997) for some interesting properties of random
sampling in the specific case of control problems).
Best results in the traditional field of quasi-random
sequences, namely integration, now come fromran-
domizedquasi-random sequences, in particular when
dimension increases (L’Ecuyer and Lemieux, 2002),
whereas former best sequences were strictly deter-
ministic ones. This is a somewhat surprising element
in the history of quasi-random sequences. We show
here both empirically and theoretically a similar su-
periority of randomized, yet non-naive, samplings in
the case of active learning. We also conclude em-
pirically to some related limitations of non-blind ap-
proaches w.r.t blind approaches in terms of robustness
but our theorems only concern almost-deterministic
samplings, and non-blind approaches are concerned
only if too strongly deterministic.

Why active learning is very important in dy-
namic problems. The importance of the exploration
step is particularly strong in reinforcement learning,
where exploitation (learning) is deeply mixed with ex-
ploration (gathering information); this is why active
learning is decisive in particular for dynamic prob-
lems. A main trouble, with respect to elements above,
is that value functions used in reinforcement learn-
ing lead to regression problems and not classification
ones. Note that many works about active sampling of
the environment use simulations; see e.g. the pioneer
work (Barto et al., 1993) and many subsequent works.
We will here avoid these techniques, that have strong
advantages but also limitations as they can miss in-
teresting parts of the state space that are not seen
in simulations due to poor initial policies. We here
only consider sampling methods that sample as effi-
ciently as possible the ‘full’ domain. This is orthog-
onal to, and not competing with, simulation-based

samplers. Examples of non simulation-based active
learning for dynamic problems have been provided in
(Munos and Moore, 1999) (active discretization of the
domain), (Chapel and Deffuant, 2006) (active learn-
ing for SVM in a viability-framework which reformu-
lates the regression task in a classification task).

Overview of results. We will here study the fol-
lowing questions, in the case of regression:
1. Is non-blind active-learning better than blind ac-
tive learning? Essentially, we will see significant dif-
ferences in both senses; for some problems the re-
sults are indeed much worse. This is an experimen-
tal answer but we provide also proofs for the related
robustness of randomized techniques w.r.t too-much-
deterministic methods. A non-blind sampler termed
EAS is defined and tested.
2. Are deterministic blind-samplers better than ran-
dom ones? Essentially, we prove (th. 2.4) robust-
ness (universal consistency) results for random sam-
plers, and non robustness for deterministic samplers.
We then show that the quantity of randomness can be
strongly reduced, in a classical random-shift frame-
work preserving both (i) improved convergence rates
(as shown in (Cervellera and Muselli, 2003)) for
”smooth-enough” target-functions and (ii) universal
consistency (as shown in this paper) for any target
function. We propose and test an efficient blind-
sampler termed GLD.

2 MATHEMATICAL ANALYSIS

We study here the derandomized samplings, i.e. sam-
pling with less randomness. It has been shown
(Cervellera and Muselli, 2003) that derandomizing
improves convergence rates for smooth target func-
tions when compared to naive random samplers. We
show that however, some robustness properties re-
quire a random part (theorem 2.3), but that this ran-
dom part can be reduced to combine (i) the robust-
ness of naive random sampling (ii) the improved con-
vergence rates of deterministic samplers for ”easy”
cases.

Definition 2.1 Consider a domain D= [0,1]d. Note
E∗ the set of finite families of elements of E. Alearner
A on D is a computable mapping from(D×R)∗ to
R

D. Let A the set of learners. Asampler S on D
is a computable mapping from(D×R)∗ × A to D.
If S can be restricted to a computable mapping from
(D×R)∗ to D (i.e. if theA -component is not used)
then it is called ablind-sampler A sample-learner
on D, based on the sampler S and on a learner A,
and noted S+ A, is an algorithm that takes as input
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an effective method f on a domain D and that can be
written as follows:

1. set n← 0;
2. choose xn in D defined by xn ←

S((x0,y0) . . . ,(xn−1,yn−1),A);
3. define yn← f (xn);
4. set fn = A((x0,y0), . . . ,(xn,yn)).
5. set n← n+1 and go back to step 2.

A sampler is saidalmost-deterministic (AD) if for
some n7→ k(n) finite it only uses k(n) random bits be-
fore choosing xn (i.e. before the nth epoch of the algo-
rithm above). A learner is saidalmost-deterministic
(AD) if for each run it only uses a finite number of ran-
dom bits that only depends on the length of its inputs.
A sample-learner on D is saiduniversally consistent
(UC) if, for any measurable f with values in[0,1], al-
most surely

R
D( fn(x)− f (x))2dx→ 0 as n→ ∞. We

say that a sampler S on D isuniversally consistent
(UC) if for at least one AD learner A, the sampler-
learner S+A is UC.

We require in the definition of UC for a sam-
pler that the learning algorithm is AD because other-
wise stochasticity of the learner can be used for ran-
domizing the sampler. Therefore, to distinguish AD-
samplers and non-AD-samplers, we have to add this
restriction.

Theorem 2.2 The random sampling is UC.

Proof: By any UC-algorithm (see e.g. (Devroye
et al., 1994)).

Theorem 2.3 (UC samplers are stochastic)
Consider S an AD-sampler. Then, for any AD-learner
A, S+A is not UC. Therefore, S is not UC.

Proof: ConsiderSandA, respectively an AD-sampler
and an AD-learner. Then, considerx0, . . . ,xn, . . . the
sequence of points provided by the sampler iff is the
constant function equal to 1 (this sequence might be
stochastic or not). By definition of AD,xi takes values
in a finite domain of cardinalci . Therefore, all thexn
take values in some countable domainV. Consider
nowgp, for p∈ [0,1[, the function equal to 1 inV, and
to p in D\V. If S+A is UC, then on a targetf = gp

almost surelyfn converges in normL2 to the constant
function equal top. However, for allf = gp, p∈ [0,1[,
fn is distributed in the same manner, asfn depends
only on the f values inV. With p = 0 andp = 1

2 for
example, this leads to a contradiction.S+ A can not
be UC.

We showed in theorem 2.2 that random sampling
is UC and in theorem 2.3 that no AD-sampling can
be UC. But where is the limit? We show in the fol-
lowing theorem that a moderate derandomization, yet

using a continuous random seed, can lead to univer-
sal consistency. Note that the result includes quasi-
random sequences with a simple random shift, and
therefore includes samplings that have proved faster
under some smoothness hypothesis than the random
sampling (Cervellera and Muselli, 2003).

Note that the theorem below has a very moder-
ate requirement in terms of discrepancy (only conver-
gence to 0, whereas low-discrepancy sequences typi-
cally verify O(log(n)d/n)).

Theorem 2.4 (A random shift is enough)Consider
a sampler S that outputs x0, . . . ,xn and defined as
follows:

1. randomly uniformly draw s∈ D.
2. y0, . . . ,yn, . . . is a deterministic sequence in D

with dispersion

sup
x∈D

inf
i∈[[1,n]]

||x−yi ||∞ = O(1/n1/d)

and discrepancy

sup
r∈[0,1]d

|1
n

#{i ∈ [[1,n]];∀ j,xi, j ≤ r j}−πi∈[[1,d]]r i | → 0

as n→ ∞ where xi, j is the jth component of xi .
3. for any n, xn = yn +s modulo1 (i.e. xn is such

that yn−xn ∈ Z
d and xn ∈ [0,1[d).

Then, S is UC.

Interpretation: Adding a uniform random shift
to a deterministic sequence is enough to get a UC
sampler with the same improved convergence rates
as in (Cervellera and Muselli, 2003) for smooth tar-
get functions. Comparing theorems 2.3 and 2.4 show
that randomness is required for UC, but the quantity
of randomness can be much smaller than in pure ran-
dom sampling.

Proof: See http://www.lri.fr/ ˜ teytaud/
ldsfordplong.pdf .

3 SAMPLING METHODS (SM)
AND APPLICATIONS

We present below (i) the problem of function value
learning (ii) some blind point-sets (iii) a non-blind
learner-independent sampler (iv) our experiments on
the OpenDP set of benchmark-problems.

3.1 Active Function Value Learning

We introduce reinforcement learning and stochastic
dynamic programing (SDP) in a very short manner;
see (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,
1998) for more information. The general idea is that a
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good control for a control problem in discrete time is
reached if for each of the finitely many time steps, one
can learn efficiently the ”expected cost-to-go” (also
named Bellman-function or value-function in various
fields of mathematical programming and computer
science), i.e. a function that maps a statex and time
stept to the expected cost (for an optimal strategy)
starting from this statex at timet. This cost-to-go has
to be learnt from examples. These examples can be
sampled, and a procedure termedBellman-operator
(BO) provides the cost-to-go for each given example.

Roughly, the classical SDP algorithm, based on a
samplerS and a learnerL, is as follows. For each
time stept, backwards from the last time step to the
first: 1. Ssamples a finite set of examplesx1,. . . ,xn at
time stept; 2. The BO (detailed below) compute the
expected cost-to-go for each of these examples (us-
ing the previously learnt expected cost-to-go, i.e. the
cost-to-go at time stept +1); 3. L learns the expected
cost-to-goVt at time stept from these examples.

The BO-procedure computes the cost-to-go at
statex for time stept using simulations of the tran-
sition from time stept to time stept + 1 and using
the cost-to-go-functionVt+1 at stept + 1 as follows:
(i) simulate each possible random outcome (ii) for
each random outcome get by simulation the instanta-
neous cost and the future statey and use the cost-to-go
Vt+1(y) from y at time stept + 1 (available thanks to
the backward induction) for estimating the future-cost
(iii) add these two costs for each random outcome,
(iv) average all these results to get the required value,
i.e. the expected cost-to-goVt(x).

The sampler is important in order to reduce the
computational cost, a main issue of SDP. We here
use tools that are not specific of SDP. More specific
approaches for dynamic problems also exist; they
are more orthogonal to, than comparable to our ap-
proaches below. (Barto et al., 1993) showed the im-
portance of ”reducing” the domain, when possible,
by using simulations. If only a small subset of the
full state space is interesting, this approach restricts
the focus of the algorithm to the neighborhood of the
visited states. A drawback is that you need an ap-
proximate solution before applying simulations, and
you need simulations in order to reduce the domain
and apply dynamic programming; therefore, this ap-
proach leads to complex unstable fixed-point itera-
tions. However, this approach can deal with much
bigger domains than the approach sampling the whole
domain. (Thrun, 1992) studied how to avoid visiting
many times the same area (leading to better guaran-
teed rates in some theoretical framework), and then
reduce the curse of dimensionality.

3.2 Blind Active-Samplers

We present below point sets inD = [0,1]d. P will be
the notation for a set of pointsP1, . . . ,Pn. #E is the
cardinal of a setE. See e.g. (Tuffin, 1996; Owen,
2003; L’Ecuyer and Lemieux, 2002) for a general in-
troduction to ”well chosen” sets of points.

Low discrepancy. The most usual discrepancy is
defined as follows:

Disc(P)= sup
r∈[0,1]

∣

∣

∣

∣

area([0, r])− 1
n

#{i ∈ [[1,n]];Pi ≤ r}
∣

∣

∣

∣

where[0, r] is the set ofq such that∀i ∈ [[1,d]]0≤
qi ≤ r i and area() is Lebesgue’s-measure. In-
dependent uniform random points have discrep-
ancy roughly decreasing asO(1/

√
#P). Well cho-

sen deterministic or (non-naive) randomized points
achieveO(log(#P)d/#P). Seehttp://www.lri.fr/

˜ teytaud/ldsfordplong.pdf for further elements.
We will in the sequel call ”low-discrepancy sequence”
a classical Niedereiter sequence (see e.g. (Niederre-
iter, 1992)). We will refer to this sequence as a QR
(quasi-random) sequence in the sequel.

Low dispersion. Low dispersion is less widely used
than low-discrepancy, but has some advantages (see
e.g. discussions in (Lindemann and LaValle, 2003;
LaValle and Branicky, 2002)). The most usual crite-
rion (to be minimized) is

Dispersion(P) = sup
x∈D

inf
p∈P

d(x, p) (1)

whered is the euclidean distance. It is related to the
following (easier to optimize numerically, except for
some values of #P) criterion (to be maximized) :

Dispersion2(P) = inf
(x1,x2)∈D2

d(x1,x2) (2)

A main difference is that optimizing eq. 2 ”pushes”
points on the frontier. This effect can be avoided as
follows :

Dispersion3(P) = inf
(x1,x2)∈D2

d(x1,{x2}∪D′) (3)

whereD′ = {x∈R
d;x 6∈D}. We call ”low-dispersion

point set” (LD) a point set optimizing equation 2. We
call ”greedy-low-dispersion point set” (GLD) a point
set optimizing equation 2 in a greedy manner, i.e.
P1 = (0.5, ...,0.5) is the middle point of[0,1]d, P2 is
such thatDispersion2({P1,P2}) is maximal, andPn
is such thatDispersion2({P1, . . . ,Pn−1,Pn}) is max-
imal. Our implementation is based on Kd-trees but
Bkd-trees are possible (bkdtrees are similar to well-
known kdtrees, but also allow fast online adding of
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points; see (Procopiuc et al., 2002)). We call ”greedy-
low-dispersion point set far-from-frontier” (GLDfff)
the equivalent point set withdispersion3 instead of
dispersion2. We also tested the same dispersion with
other Lp-distances than the euclidean one, without
success. GLD is very successful, as shown in the se-
quel; we show a sample in figure 1.

Figure 1: A GLD-sample in dimension 2. Note that the
random choice of points among various possible optimal
points avoids (probably) too unequilibrated sets. The first
points are shown with darker circles. There is randomness
in the choice of the next point among a given gray-level.

3.3 A Non-blind Active-sampler

Many tools for active-learning exist (see introduc-
tion) but can not be used in our case as they are
classification-specific or known moderately efficient
in the regression case. We here propose the use of an
evolutionary algorithm. This approach is new in the
case of active learning and in the case of SDP, but it is
inspired by evolutionary sampling (Liang and Wong,
2001). Its advantages are (i) it is user-friendly (ii) it
works better than random and also than derandom-
ized blind point sets at least for a non-negligible set
of benchmarks.

Evolutionary algorithms (EA,(Baeck, 1995; Eiben
and Smith, 2003)) are a classical tool for robustly
optimizing a non-linear function without requiring
derivatives. We here use them as a sampling algo-
rithm, as follows: 1. generate an initial population
uniformly on the domain; 2. evolve the population un-
til the allowed number of fitness evaluations; 3. use as
active sample the union of all offsprings of all epochs.
Note that the learning algorithm is not embedded in
this approach which is therefore quite general.

We define precisely below our EA, but we point
out that any EA could be used as well. The pa-
rameters have not been specialized to our problem,
we have used a tool that has been designed for op-
timization purposes and not for our particular appli-
cation to sampling. Evolutionary algorithms exist
for various forms of domains, continuous, discrete
or mixed, and therefore our approach is quite gen-
eral. Estimation of distribution algorithms could be
used as well(Larranaga and Lozano, 2001). The EA
that we use can be found in thesgLibrary (http:
//opendp.sourceforge.net ). It implements a very
simple genetic algorithm where the mutation is an
isotropic Gaussian of standard deviationσd√n

with n

the number of individuals andd the dimension of
space. The crossover between two individualsx and
y gives birth to two individuals13x+ 2

3y and 2
3x+ 1

3y.
Let λ1,λ2,λ3,λ4 be such thatλ1 + λ2 + λ3 + λ4 = 1;
at each generation :

1. we copy thenλ1 best individuals (setS1).
2. we combine thenλ2 following best individu-

als with the individuals ofS1 (rotating amongS1 if
λ1 < λ2).

3. we mutatenλ3 individuals amongS1 (again ro-
tating amongS1 if λ1 < λ3).

4. we randomly generaten×λ4 other individuals,
uniformly on the domain.
The parameters areσ = 0.08,λ1 = 1/10,λ2 =
2/10,λ3 = 3/10,λ4 = 4/10; these parameters are
standard ones from the library and have not been mod-
ified for the work presented in this paper. The popu-
lation size isn = Nα, whereα ∈]0,1] is a parameter
of the approach. Note that this algorithm is oriented
towards sampling small values of the target function.
Therefore, it is based on the idea that small values
are more interesting. In the case of SDP, the target
function is the sum of the instantaneous cost and the
expected cost-to-go. Thus, this active sampling is ef-
ficient if we are dealing with a problem in which it is
likely that trajectories are close to small values of this
target function. We will see in our experiments that
this is true in some problems, but not e.g. in stock
management, leading to poor results in that case. We
here see that the non-blind approach developed in
this section looks appealing, but has robustness draw-
backs. The tuning ofα is a possible solution:α = 1
leads to the pure random sampling; smallerα leads to
a more optimistic approach in which the sample is re-
inforced in parts for which costs are better (smaller),
at the price of a weaker ability to avoid very large
costs.

3.4 Experiments

The domain to be sampled is made of the continuous
state space and a discrete state space. The samplers
have then to sample a productS×M, with S the
continuous state space andM = {m1, . . . ,mk} discrete
and finite, being the exogenous Markov-Process. The
following SM are used:

1. The SMs GLD, QR, LD, GLDfff are the
blind approaches defined in section 3.2. The discrete
parts of the state-space are sampled in a simple
proportional manner: for samplingn points inS×M,
where S is the continuous state space andM is a
discrete domainM = {m1, . . . ,mk}, a GLD, QR,
LD or GLDfff point set is used for samplingS
with N = n/k points x1, . . . ,xN, and the sample is
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((x1,m1), . . . ,(xN,m1), . . . ,(x1,mk), . . . ,(xN,mk)).
2. We have various random samplings. The

SM RandomForAll denotes the pure blind (uniform,
independent) random sampling ofS× M. The
SM RandomOnlyForContinuousStates (ROFCS)
denotes the pure blind random sampling ofS, with
a proportional sampling ofM (i.e. m1 appears the
same number of times asm2, . . . , asmk). The SM
DeterministicForDim1 is equal to ROFCS, except
that for each valuemi , the first coordinate ofS is
sampled by a regular grid (other coordinates are
random). This is therefore deterministic ifS is
one-dimensional.

3. EAS-α denotes the non-blind approach using
EA-sampling, as explained in section 3.3. The
parameter is theα-parameter in section 3.3. All the
experiments have been performed with the OpenDP
library (Gelly and Teytaud, 2005) with the command
line options ”./runme.sh –nojava –nogui –test Opti-
mizationExperiments –outputFile myResultsFile.txt
–testedOptimizers ’[[GeneticAlgorithmOptimizer]]’
–testedRegressions ’[[AutomaticRegression]]’ –
numExampleWanted X –nbPointsSamplingMethod
500 –nbRuns 44 –nbTryEvaluationsOptimization
70” where X∈ N is the index of the problem. The
parameters of the experiments are as follows: 500
points are sampled on the domain (same number of
sampled points for each algorithm); all results are on
44 runs; the learner is the ”AutomaticRegression”
class from (Gelly and Teytaud, 2005), that uses the
Gaussian-SVM of SVMTorch (Collobert and Bengio,
2001) and a heuristic rule choice of hyper-parameters.
All problems are described in (Gelly et al., 2006)
and in (Gelly and Teytaud, 2005) (including free
downloads onhttp://opendp.sourceforge.net ).
The dimensionality of problems is the dimension of
the continuous state space, excluding the discrete
parts. The objective functions are to be minimized
(lower values = better results).

Results about derandomized blind sampling. Re-
sults are summarized in table 1. Due to length con-
straints, all the details with confidence intervals, and
results for other methods, are provided inhttp://
www.lri.fr/ ˜ teytaud/ldsfordplong.pdf . The
dimension refers to the dimension of the state space.
Columns QR (resp. GLD, GLDfff), refer to the fact
that QR-sampling (resp. GLD-sampling, GLDfff-
sampling) outperforms the baseline random algo-
rithm, namely ROFCS (in which the continuous part
is pure independent random and the discrete part is
proportional sampling); we also compared the algo-
rithms to pure random sampling, which is usually
worse than ROFCS (which can be seen as a very

simple preliminar derandomization). For the column
mentionning the fact that GLD is first-ranked, ”y”
stands for ”GLD is significantly better than all other
algorithms” and ”y(=ST)” stands for ”GLD is first-
ranked and significantly better than all other algo-
rithms except algorithm ST for which there’s no sta-
tistically significant difference”.

Results about non-blind active regression. We
note EAS the algorithm with parameterα for non-
blind active sampling of the state space defined in 3.3.
In moderate dimension, the efficiency of EAS is very
moderate; we here present results with high dimen-
sionality and 500 points sampled per time step. We
compared EAS, GLD and the best blind sampler on
this problem. All results are averaged on 44 runs.

Due to length constraints, details for all problems
are provided in http://www.lri.fr/ ˜ teytaud/
ldsfordplong.pdf and we here show only results
for the ”Arm” and ”Multi-Agent” problem; in sum-
mary for other problems: for Avoid (dim=8) and
Walls (dim=8), GLD outperforms the EAS for any
value of α; for Arm (dim=12) and Multi-agent
(dim=8), EAS outperforms GLD for all values of
α; for Shoot (dim=12) there’s not significant differ-
ence in results; for Away (dim=8) the EAS outper-
form GLD moderately significantly or significantly

Table 1: Blind sampling methods. First, we see that GLD
is often the best blind SM. It outperforms the random-
sampling ROFCS in 7 out of 9 experiments. Second, other
derandomized samplings are only sometimes better than
random-sampling with proportional sampling for discrete
parts of the state space; essentially, the difference between
these other less-randomized samplings and ROFCS is not
significant. The pure naive random sampling, Random-
ForAll (which includes random sampling of the discrete
part also), is not presented in this table as it is meaning-
less in some cases (when there’s no discrete part); its re-
sults, when meaningful, are poor. As a conclusion, (i) de-
randomizing the sampling for the discrete part is strongly
better (of course, at least in problems for which there is a
discrete part) (ii) GLD is a stable and efficient partially-
derandomized sampler of continuous domains.

Problem GLD 1st QR GLD GLDfff
(dim) ranked

WallsX4 (8) y y y n
AvoidX4 (8) y y y y

Stock (4) y n y n
Avoid (2) y (=GLDfff) y y y
Arm (3) n n n n
Walls (2) y y y n

Multiag. (8) n n n y
Shoot (3) y y y y
Away (2) y (=QR) n y n

Total 7/9 5/9 7/9 4/9
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Table 2: Results for the ”arm” and ”multi-agent” problems.
For the ”multi-agent” problem, EAS is very efficient; this is
probably related to the fact that intuitively, the criterion fo-
cusing on ”good regions” (where the expected cost-to-go is
small) is satisfactory for this problem: large bad regions of
the domain are very unlikely thanks to the existence of rea-
sonnable good paths. These large bad regions are explored
by blind samplers. The criterion that we plug in EAS is rele-
vant for this case, and should be adapted for other problems
in order to get similar good results. EAS has a performance
equivalent to ROFCS for the ”arm” problem.

Arm dim.x4 = 12

Sampler Average score

EAS-0.2 10.34±0.21

EAS-0.3 10.17±0.20

EAS-0.4 10.46±0.23

EAS-0.5 10.62±0.21

EAS-0.6 10.49±0.20

EAS-0.7 10.54±0.23

EAS-0.75 10.53±0.22

EAS-0.8 10.37±0.20

EAS-0.85 10.17±0.20

EAS-0.9 10.44±0.20

EAS-0.95 10.38±0.21

ROFCS 10.39± 0.20

GLD 12.52±0.25

Biagent dim.x4 = 8

Sampler Average score

EAS-0.2 2295.23±16.08

EAS-0.3 2311.59±13.46

EAS-0.4 2179.09±15.62

EAS-0.5 2175.45±16.11

EAS-0.6 2156.59±15.66

EAS-0.7 2137.5±13.41

EAS-0.75 2167.95±14.26

EAS-0.8 2195±16.62

EAS-0.85 2184.09±13.91

EAS-0.9 2170.23±14.22

EAS-0.95 2245.91±12.39

best-blind

= GLD 2326.59±16.17

depending onα except forα = 0.95.

4 CONCLUSION

This paper studies theoretically and practically active
learning, in the case of regression. As pointed out
in the introduction, the classification case is very dif-
ferent and non-blind approaches look much more ap-
pealing in that case. Our conclusions hold for regres-
sion and our experiments are performed in the SDP
case in which robustness of sampling is particularly
important.

It is sometimes argued that randomness provides
robustness (Rust, 1997). We confirm in theorem 2.3
that derandomization should not be complete for the
sake of robustness (strict determinism or almost deter-
minism lead to the loss of universal consistency), but
we show in theorem 2.4 that a strong derandomiza-
tion, with only a moderate random part, is enough for
UC. In particular, derandomized sequences as used
in theorem 2.4 combine (i) known convergence rates
(Cervellera and Muselli, 2003) of quasi-random se-
quences for learning smooth target functions and (ii)
robustness of random sampling in terms of UC as in
(Devroye et al., 1994).

This conclusion about the best ”quantity” of ran-
domness is exemplified in our experiments by, in
some cases, the weakness of methods too strongly

focusing on parts looking promising (EAS withα <
1). On the other hand, these methods are sometimes
very efficient for difficult cases (see Table 2). Also,
we note that the best blind-method is GLD, often
by far, and GLD is a very natural randomized low-
dispersion sequence (see (Lindemann and LaValle,
2003; LaValle and Branicky, 2002) on this topic).

We believe in the importance of research about
blind or non-blind active learning as active learningis
a main bottleneck in reinforcement learning or SDP.
We have the following positive conclusions for active
regression:

1. Our new blind sampling method, namely
GLD, outperforms all other blind samplers in most
cases (see table 1). In particular, it is a natural ex-
tension to any number of points and any dimension-
ality of regular grid-samplings (see figure 1 for small
number of points, different (and better than, at least
in our experiments) from the low-dispersion approach
LD, GLDfff, RandomForAll, QR, etc. This blind ap-
proach is the most stable one in our experiments (first
ranked in most experiments); it has weaknesses in
cases in which the frontier is not relevant. It is known
that quasi-random-sequence have to be randomized
for various no-bias properties (see e.g. (L’Ecuyer
and Lemieux, 2002) about randomized quasi-Monte-
Carlo sequences); in this paper we have (i) shown the-
oretical similar results for active learning pointing out
thatrandomness is necessary in active sampling(ii)
provided with GLDa natural randomization as we
simply randomly pick up, for each point, one of the
optimal points for the greedy criterion in equation 2
(see figure 1).

2. Ournew non-blind sampling methodis very
easy to use; it iseasy to put expert knowledge in
it (increasingα for more carefully exploring the do-
main, reducingα for focusing on optimistic parts,
changing the criterion, adding diversity in the evolu-
tionary algorithm). However, experiments show that
the criterion tested here is not universal; it works
very efficiently for the ”multi-agent” problem, pro-
viding strategies with smaller expected cost than all
blind techniques tested, but not for some other prob-
lems. This is somewhat disappointing, but we guess
that non-blind sampling methods do require some
tuning. EAS moves continuously, thanks to theα-
parameter, from random sampling (or possibly quasi-
random sampling, but this has not been studied here)
to a focus on areas verifying some used-defined cri-
terion. Results appear robust w.r.t toα, but the cri-
terion is probably a much stronger parameter; here,
it focuses on areas with small costs; but for other
problems it is probably much better to sample areas
with large costs (e.g. when strong penalties can occur

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

204



when hitting boundaries). A main advantage of EAS
is that it works inhigh dimensionalities in which
very few published papers have good active-results.

3. In some cases, GLD is far better than GLDfff,
but in one case GLD is the worst algorithm and
GLDfff is (very significantly) the best one. As the
main difference between these two algorithms is that
GLD samples more strongly the frontier, this points
out the simple fact thatthe frontier of the state-
spacecan be very important: sometimes it is very
relevant (e.g. stock management, in which marginal
costs have a first approximation thanks to cost-to-go
at corners) and sometimes it is pointless and expen-
sive (GLD puts 2d points on the corners among the
2d +1 first points!).
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