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Abstract: Designing KBS for dynamic environments requires the consideration of temporal knowledge reasoning and
representation (TRR) issues. Although humans present a natural abilityto deal with knowledge about time
and events, the codification and use of such knowledge in information systems still pose many problems.
Hence, the development of applications strongly based on temporal reasoning remains an hard and complex
task. Furthermore, albeit the last significant developments in TRR area,there is still a considerable gap for its
successful use in practical applications.
This paper presents a tool, named VERITAS, developed for temporal KBS verification. It relies in the com-
bination of formal methods and heuristics, in order to detect a large number of knowledge anomalies. The
underlying verification process addresses many relevant aspects considered in real applications, like the usage
of rule triggering selection mechanisms and temporal reasoning.

1 INTRODUCTION

The methodologies proposed in software engineering
showed to be inadequate for knowledge based sys-
tems (KBS) validation and verification, since KBS
present some particular characteristics (Gonzalez and
Dankel, 1993).

In last decades knowledge based systems became
a common tool in a large number of power sys-
tems control centres (CC) (Kirschen and Wollenberg,
1992). In fact, the number, diversity and complex-
ity of KBS increased significantly leading to impor-
tant changes in KBS structure. Designing KBS for
dynamic environments requires the consideration of
TRR (Temporal Reasoning and Representation) is-
sues. Although humans present a natural ability to
deal with knowledge about time and events, the cod-
ification and use of such knowledge in information
systems still pose many problems. Hence, the de-
velopment of applications strongly based on temporal
reasoning remains an hard and complex task. Further-
more, in despite of the last significant developments
in TRR area, there is still a considerable gap for its
successful use in practical applications.

This paper addresses the verification of knowl-

edge based systems through the combination of for-
mal methods and heuristics. The rest of the paper is
organized as follows: the section 2 provides a short
overview of the state-of-art of V&V and its most
important concepts and techniques. Section 3 , de-
scribes the the study case, SPARSE, a KBS used to
assist the Portuguese Transmission Control Centres
operators in incident analysis and power restoration.
Section 4 introduces the problem of verifying real
world applications. Finally, section 5 presents VER-
ITAS, describing the methods used to detect knowl-
edge anomalies.

2 RELATED WORK

In the last decades several techniques were proposed
for validation and verification of knowledge based
systems, including for instance, inspection, formal
proof, cross–reference verification or empirical tests
(Preece, 1998), regarding that the efficiency of these
techniques strongly depends on the existence of test
cases or in the degree of formalization used on the
specifications. One of the most used techniques
is static verification, that consists of sets of logical
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tests executed in order to detect possible knowledge
anomalies. An anomaly is a symptom of one, or
more, possible error(s). Notice that an anomaly does
not necessarily denotes an error (Preece and Shinghal,
1994).

Some well known V&V tools used different tech-
niques to detect anomalies. The KB–Reducer (Gins-
berg, 1987) system represents rules in logical form,
then it computes for each hypothesis the correspond-
ing labels, detecting the anomalies during the label-
ing process. Meaning, that each literal in the rule
LHS (Left Hand Side) is replaced by the set of con-
ditions that allows to infer it. This process finishes
when all formulas became grounded. The COVER
(Preece et al., 1992) works in a similar fashion using
the ATMS (Assumption Truth Maintaining System)
approach (Kleer, 1986) and graph theory, allowing to
detect a large number of anomalies. The COVADIS
(Rousset, 1988) successfully explored the relation be-
tween input and output sets.

The systems ESC (Cragun and Steudel, 1987),
RCP (Suwa et al., 1982) and Check (Nguyen et al.,
1987) and later, Prologa (Vanthienen et al., 1997)
used decision table methods for verification purposes.
This approach proved to be quite interesting, specially
when the systems to be verified also used decision
tables as representation support. These systems ma-
jor advantage is that tracing reasoning path becomes
quite clear. But in the other hand, there is a lack of so-
lutions for verifying long reasoning inference chains.

Some authors studied the applicability of Petri
nets (Pipard, 1989; Nazareth, 1993) to represent the
rule base and to detect the knowledge inconsisten-
cies. Colored Petri nets were later used (Wu and Lee,
1997). Although specific knowledge representations
provide higher efficiency while used to perform some
verification tests, arguably all of them could be suc-
cessful converted to production rules.

Albeit there is no general agreement on the V&V
terminology, the following definitions will be used for
the rest of this paper.

Validation means building the right system
(Boehm, 1984). The purpose of validation is to as-
sure that a KBS will provide solutions with similar
(or higher if possible) confidence level as the one pro-
vided by domain experts. Validation is then based on
tests, desirably in the real environment and under real
circumstances. During these tests, the KBS is consid-
ered as ablack box, meaning that, only the input and
the output are really considered important.

Verification means building the system right
(Boehm, 1984). The purpose of verification is to as-
sure that a KBS has been correctly designed and im-
plemented and does not contain technical errors. Dur-

ing the verification process the interior of the KBS is
examined in order to find any possible errors, this ap-
proach is also calledcrystal box.

3 SPARSE – A CASE STUDY

Control Centers (CC) are very important in the op-
eration of electrical networks receiving real–time in-
formation about network status. CC operators should
take, usually in a short time, the most appropriate ac-
tions in order to reach the maximum network perfor-
mance.

Concerning SPARSE , in the beginning it started
to be an expert system (ES) and it was developed for
the Control Centers of the Portuguese Transmission
Network (REN). The main goals of this ES were to
assist Control Center operators in incident analysis al-
lowing a faster power restoration. Later, the system
evolved to a more complex architecture (Vale et al.,
2002), which is normally referred as a knowledge
based system (see Fig.1).
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Figure 1: SPARSE Architecture.

One of the most important components of
SPARSE is the knowledge base (KB) (see the formula
1):

KB = RB∪FB∪MRB (1)

where:

• RB stands for rule base;

• FB stands for facts base;

• MRB stands for meta–rules base;

The rule base is a set of Horn clauses with the fol-
lowing structure:

RULE ID: ’Description’:
[
[C1 AND C2 AND C3]
OR
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[C4 AND C5]
]
==>
[A1,A2,A3].

The rule’s LHS (Left Hand Side) is a set of con-
ditions (C1 to C5 in this example) of the following
types:

• A fact, representing domain events or status mes-
sages. Typically these facts are time–tagged;

• A temporal condition over facts;

• Previously asserted conclusions

The actions/conclusions to be taken in RHS (Right
Hand Side) (A1 to A3 in this example) may be of one
of the following types:

• Assertion of facts (conclusions to be inserted in
the knowledge base);

• Retraction of facts (conclusions to be deleted from
the knowledge base);

• Interaction with the user interface.

The meta–rule base is a set of triggers, used by
rule selection mechanism, with the following struc-
ture:

trigger(Fact, [(R1,Tb1,Te1), . . . ,(Rn,Tbn,Ten)])

standing for:

• Fact – the arriving fact (external alarm or a previ-
ously inferred conclusion);

• (Rulex,Tb1,Te1) – the tuple is composed by:
Rulex, the rule that should be triggered in when
fact arrives;Tb1 the delay time before rule trig-
gering, used to wait for remaining facts needed to
define an event;Te1 the maximum time for trying
to trigger the each rule.

The inference process relies on the cycle. In
the first step, SPARSE collects onemessagefrom
SCADA1, then the respectivetrigger is selected and
some rules are scheduled. The temporal window were
the ruleX could by triggered is defined in the inter-
val [Tb,Te]. The schedulerselects the next rule to
be tested, (the inference engines tries to prove its ve-
racity). Notice that, when a rule succeeds, the con-
clusions (on the RHS) will be asserted and later pro-
cessed in the same way as the SCADA messages.

1Supervisory Control And Data Acquisition, this sys-
tems collects messages from the mechanical/electrical de-
vices installed in the network

4 THE VERIFICATION
PROBLEM

Traditionally the verification problem through
anomaly detection relies on the computation of all
possible inference chains (expansions) that could be
entailed during the reasoning process. Later, some
logical tests are performed in order to detect if any
constraints violation takes place (see Fig.2 core).
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Figure 2: The verification problem.

SPARSE presents some features, namely, tem-
poral reasoning and rule triggering mechanism (see
Fig.2), that makes the verification work harder. These
features demand the use of more complex techniques
during anomaly detection and introduce significant
changes in the number and type of anomalies to de-
tect.

4.1 Rule Triggering Selection
Mechanism

In what concerns SPARSE, this mechanism was im-
plemented using both meta–rules and the inference
engine. When amessagearrives, some rules are se-
lected and scheduled in order to be later triggered and
tested.

In what concerns verification work, this mecha-
nism not only avoids some run–time errors (for in-
stance circular chains) but also introduces another
complexity axis to the verification. Thus, this mecha-
nism constrains the existence of inference chains and
also the order that they would be generated. For
instance, during system execution, the inference en-
gine could be able to assure that shortcuts (specialists
rules) would be preferred over generic rules.
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4.2 Temporal Reasoning

This issue received large attention from scientific
community in last two decades (surveys covering this
issue can be found in (Gerevini, 1997; Fisher et al.,
2005)). Despite the fact thattime is ubiquitous in the
society and the natural ability that human beings show
dealing with it, a widespread representation and usage
in the artificial intelligence domain remains scarce
due to many philosophical and technical obstacles.
SPARSE is analarm processing applicationand its
major challenge is to reasoning about events. Thus, it
is necessary to deal with time intervals (e.g., tempo-
ral windows of validity), points (e.g., instantaneous
events occurrence), alarms order, duration and the
presence or/and absence of data (e.g., messages lost
in the collection/transmission system).

4.3 Variables Evaluation

In order to obtain comprehensive and correct results
during the verification process, the evaluation of the
variables present in the rules is crucial, especially
in what concerns temporal variables,i.e., the ones
that represent temporal concepts. Notice that dur-
ing anomaly detection (this type of verification is also
called static verification) it is not possible to predict
the exact value that a variable will have. Some tech-
niques, concerning the variables domain and range,
were considered in order to avoid the exponencial
growth of the number of expansions during its com-
putation.

4.4 Knowledge Versus Procedure

Languages like Prolog provide powerful features for
knowledge representation (in the declarative way) but
they are also suited to describe procedures, so, some-
times knowledge engineers encode rule using ”pro-
cedural” predicates. For instances, the following sen-
tence in Prolog:min(X,Y,Min) calls a procedure that
comparesX andY and instantiatesMin with smaller
value. So, is not an (pure) knowledge item, in terms
of verification it should be evaluated in order to obtain
theMin value. It means the verification method needs
to consider not only the programming language syn-
tax but also the meaning (semantic) in order to eval-
uate the functions. This step is particularly important
for any variables that are updated during the inference
process.

5 VERITAS

VERITAS’s main goal is to detect and report anoma-
lies, allowing the users decide whether reported
anomalies reflect knowledge problems or not. Basi-
cally, anomaly detection consists in the computation
of all possible inference chains that could be produced
during KBS performance. Later, the inference chains
are tracked in order to find out if some constraint were
violated.

After a filtering process, which includestemporal
reasoning analysisand variable evaluationthe sys-
tem decides when to report an anomaly and eventually
suggest some repair procedure. VERITAS is knowl-
edge domain and rule grammar independent, due to
these properties (at least theoretically), VERITAS
could be used to verify any rule–based systems. Let’s
consider the following set of rules:

r1 : st1∧ev1→ st2∧st3

r2 : st3∧ev3→ st6∧ev5

r3 : ev3→ ev4

r4 : ev1∧ev2→ ev4∧st4

r5 : ev5∧st5∧ev4→ st7∧st8

VERITAS can show the rule dependencies
through a directed hypergraph type representation
(see Fig.3). This technique allows rule representa-
tion in a manner that clearly identifies complex de-
pendencies across compound clauses in the rule base
and there is a unique directed hypergraph representa-
tion for each set of rules.
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Figure 3: Hypergraph.

After the expansions calculation three different tu-
ples are created, regarding ground facts, conclusions

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

182



and circular chains, with the following structure, re-
spectively, f (Fact), e(SL,SR) andc(SL,SR), where,
Fact stands for a ground fact,SL stands for a set of
conclusions andSR stands for a set of supporting
rules.

So considering the example previously provided,
the following two data sets would be obtained, since
there are two possible expansions that allow to infer
the labelsst7 andst8:

f(ev3) f(st5) f(ev3) f(ev1) f(st1)
e([ev4],[[r3]])
e([st2,st3],[[r1]])
e([st6,ev5],[[r1,r2]])
e([st7,st8],[[r3,r5],[r1,r2,r5]])

f(ev2) f(ev1) f(st5) f(ev3) f(ev1) f(st1)
e([ev4,st4],[[r4]])
e([st2,st3],[[r1]])
e([st6,ev5],[[r1,r2]])
e([st7,st8],[[r4,r5],[r1,r2,r5]])

After the expansion computation, VERITAS de-
tects a large set of anomalies. These anomalies can
be grouped in three groups, circularity, ambivalence
and redundancy, the anomalies classification used is
based on Preece classification (Preece and Shinghal,
1994) with some modifications. Next sections de-
scribe some of the special cases.

5.1 Circularity

A knowledge base contains circularity if and only if it
contains a set of rules, which allows an infinite loop
during rule triggering. During the circularity detec-
tion, VERITAS considers the matching values in rule
analysis, meaning that a new set of anomalies will
arise. Let us consider the rulesrc1 andrc2:

rc1 : t(a)∧ r(X)→ s(a)

rc2 : s(a)→ r(a)

Sincea is a valid value for the argumentX, some
inference engines could start an infinite loop, so such
circular inference chain should be reported. Another
situation concerns temporal analysis through the use
of heuristics. The rulesrc3 andrc4 describes the turn-
ing on and off of a deviceD.

rc3 : st1(D,on, t1)∧ev1(D, turnoff)→ st2(D,off, t2)

rc4 : st2(D,off, t1)∧ev2(D, turnon)→ st1(D,on, t2)

If nothing else is stated, these two rules could
“configure” a circular chain. So, before reporting an
anomaly, VERITAS checks if none of the following
situations happens, first, if the instantt2 is later than
t1. Second, if in each rule LHS’s appears an event
(here represented by theev label).

5.2 Redundancy

A knowledge base is redundant if and only if the set
of final hypotheses is the same in the rule/literal pres-
ence or absence. A specific situation not considered in
Preece anomaly classification concerns to redundancy
between groups of rules. Consider the following ex-
ample:

rr1 : a∧b∧c→ z

rr2 :¬a∧c→ z

rr3 :¬b∧c→ z

since the rulesrr1, rr2 andrr3 are equivalent to the
following logical expression:

rrx : (a∧b∧c)∨ (¬a∧c)∨ (¬b∧c)→ z

Applying logical simplifications to the previous
rule, it is possible to obtain the following one:

rrx : c→ z

These situations are detected with an algorithm for
logical expressions simplification. Basically, this al-
gorithm works as follows:

1. for each existing conclusion, compute the set of
LHSs of all rules that allows to infer it;

2. try simplify disjunction of the set obtained in the
previous step;

3. compare the original expression with the simpli-
fied one, if the former is simpler (less variables or
less terms) then report a redundancy anomaly;

This algorithm allows multi–valued logic, for in-
stances, consider the following example, regarding
that there are just three valid values for theb parame-
ter’s, respectively:open, closed andchanging.

rr5 : a∧b(open)→ z

rr6 : a∧b(closed)→ z

rr7 : a∧b(changing)→ z

the rulesrr5, rr6 andrr7 are equivalent to the follow-
ing rule:

rry : a∧ (b(changing)∨b(closed)∨b(open))→ z

Applying logical simplifications to the previous
rule, it is possible to obtain the following one:

rry : a→ z

Notice that, in fact, redundancy between groups of
rules is a generalization of the unused literal situation
already studied by Preece.
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5.3 Ambivalence

A knowledge base is ambivalent if and only if, for
a permissible set of conditions, it is possible to in-
fer an impermissible set of hypotheses. For ambiva-
lence detection, VERITAS considers some types of
constraints (also referred asimpermissible sets), rep-
resenting sets of contradictory conclusions. The con-
straints can be one following types:
Semantic Constraints– formed by literals that can-
not be present at the same time in the KB. For in-
stance, the installationi cant be controlled remotely
and locally at same time.

∀i, t1, t2 :⊥← Remote(d,On,t1)∧

Local(d,Off,t2)∧ intersepts(t1, t2)

Single Value Constraints– formed by only one lit-
eral (Device) but considering different values of its pa-
rameters. For instance, the deviced cant be on and off
at same time.

∀d, t1, t2 :⊥← Device(d,On,t1)∧

Device(d,Off,t2)∧ intersepts(t1, t2)

The relationinterseptschecks wether two inter-
vals have some instant in common. Later, VERI-
TAS computes the various expansions for each item
present in a constraint and later determines if there
exist a minimal set of facts that allow to infer con-
tradictory conclusions/hypothesis and in such case an
anomaly is reported.

6 CONCLUSIONS

This paper described VERITAS, a verification tool
that successful combines formal methods, as struc-
tural analysis, and heuristics, in order to detect knowl-
edge anomalies and provide useful reports. During its
evaluation, the SPARSE was used as study case.
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