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Abstract: Urban search and rescue, reconnaissance, manufacturing, and team sports are all problem domains requiring 
multiple agents that are able to collaborate intelligently to achieve a team goal. In these domains task 
planning and assignment can be challenging to robots and humans alike. In this paper we introduce a 
market-based distributed task planning algorithm that has been adapted for heterogeneous, tightly 
coordinated robots in domains with time deadlines. We also report the results of our experiments comparing 
the robots' decisions with the decisions produced by ten teams of humans performing an identical search and 
rescue task. The outcome provides insight into the types of problems for which information technology can 
add value by providing decision support for human problem solvers. 

1 INTRODUCTION 

There are many modern problems that are not 
efficiently solved by a single human or robot.  In 
domains like search and rescue, reconnaissance, and 
RoboCup, any attempt to solve the problem with a 
single robot may be inefficient, failure prone, or 
completely impossible. In these circumstances a 
team of agents must collaborate intelligently and 
task planning becomes central to the team success.  

The extremes of multi-robot task planning and 
allocation algorithms are centralized and distributed 
approaches. In a centralized approach one agent 
plans the actions of the entire team and distributes 
the orders. In a distributed approach, each robot is 
responsible for creating its own plan using only local 
communication among robots. Centralized methods 
possess the key advantage of having all information 
needed to generate a globally optimal plan, while 
distributed approaches tend to be more scalable, 
robust to failure, and faster to respond to changes in 
the local environment. The ideal algorithm would 
combine features of both approaches to create a 
robust planning mechanism that is able to find a 
reasonable approximation of the optimal solution. 

Past research into decentralized market-based 
task allocation protocols (Walsh et al., 1998; Dias, 
2004; Lagoudakis et al., 2005) has been motivated 
by an attempt to design one such algorithm. In a 
market-based algorithm the robots bid against each 

other for tasks while acting rationally to maximize 
personal profit based on local calculations of cost 
and reward. This will move the entire team on 
average toward a globally efficient solution if the 
costs and revenues functions are properly 
constructed (Gerkey and Mataric, 2004). A market-
based approach allows robot teams to reason 
efficiently about task allocation and resource 
management while preserving the ability of 
members of the team to adapt rapidly and robustly in 
the face of a dynamic environment. This technique 
mimics the flexibility of a free market economy by 
allowing ad-hoc teams to cooperate or compete 
opportunistically. 

Prior research has demonstrated the effectiveness 
of variants of Dias’ market-based TraderBots in 
several domains. The approach has been applied to 
tightly coordinated tasks that require heterogeneous, 
dynamically formed teams (Jones et al., 2006a). In 
this work two types of treasure hunting robots 
collaborate to simultaneously map an environment 
and detect the treasure within it. The TraderBots 
approach has also been used for task assignment in 
domains with time deadlines (Jones et al., 2006b), 
for example in homogeneous teams of fire-fighting 
robots completing tasks in which the reward for 
extinguishing a fire decays as a function of the 
elapsed time. 

Yet another class of problems combines 
elements from the above domains. Collaborative 
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Time Sensitive Targeting (TST) is a domain 
requiring a diverse team of agents able to coordinate 
in discovering, assessing, prioritizing and solving 
new tasks within a very limited amount of time. This 
requires heterogeneous, dynamically formed teams 
that are both tightly coordinated and capable of 
reasoning about task deadlines. Search and rescue is 
one real-world example of a TST problem. For 
instance an avalanche rescue team’s goal might be to 
“find each buried survivor and dig him or her out of 
the snow within sixty minutes.” In this case 
searchers and diggers need to form dynamically 
changing and complementary teams to rescue as 
many survivors as possible within a limited time.  

Time Sensitive Targeting can be a difficult 
problem solving task for humans as well as robots. 
Frequently decisions must be made about how to re-
evaluate team strategy to make the best use of scarce 
resources. This makes TST an ideal testbed for a 
market-based task planning and allocation 
algorithm. 

This paper describes our attempt to design and 
evaluate the first market-based planning system 
capable of reasoning in situations requiring tightly 
coordinated, deadline aware agents. In Section 2 we 
describe the specifics of our simulated Time 
Sensitive Targeting domain. We introduce our 
planning algorithm in Section 3. In Section 4 we 
discuss our experiments involving teams of humans 
attempting to solve a TST problem. In Section 5 we 
contrast the human and robot results, and in Section 
6 we present our conclusions about the potential for 
the application of information technology to benefit 
teams of human decision makers. 

2 TST SCENARIO  

The central element of solving a Time Sensitive 
Targeting problem is the ability to assess and 
respond to emerging tasks within a limited window 
of time. The typical TST task requires a coordinated 
effort between a large number of specialized 
information gathering and action taking agents. 
Furthermore it is essential that the team is able to 
continually reprioritize its goals as new information 
arrives from the noisy and rapidly changing 
environment. 

We designed a simulated TST scenario to use in 
our task planning and problem solving experiments. 
Our scenario is a type of Search and Rescue problem 
in which agents attempt to locate, investigate, and 
rescue six simultaneously moving targets before 
each target’s time deadline expires. 

The premise of the scenario is that the Coast 
Guard is responsible for monitoring three areas of 

ocean for sick or injured animals. The Coast Guard 
is provided with a fleet of specialized vehicles such 
as helicopters, boats, and submarines. The goal is to 
use these vehicles to find, diagnose, and rescue a 
series of endangered animals. In our experiments the 
fleet of vehicles was controlled either by a small 
team of humans or by our market-based robot task 
planning algorithm. 

Over the course of the 90 minutes of an exercise, 
the Coast Guard receives messages containing 
reports of the general locations where distressed 
animals have been sighted. A message provides the 
type of animal, an approximate latitude-longitude, a 
time deadline for task completion (e.g. cure the sick 
manatee within 30 minutes or it will die), and the 
relative value of the task (represented by the 
maximum reward offered for task completion). 

The Coast Guard’s vehicle fleet includes a 
heterogeneous collection of robots. There are three 
main categories of vehicles. 

Radar Sensors are planes and boats equipped 
with radar or sonar sensing capabilities. They are 
generally very fast and have large sensing range, so 
they can get to a location quickly, pinpoint where an 
animal is located, and track an animal as it moves. 
They can share the information they gather with 
other teammates. Due to the limitations of radar, this 
type of sensor is not able to determine an animal’s 
species or diagnose an illness. 

Video Sensors include boats and helicopters 
with visual sensing capabilities. They are able to 
identify animal types and diagnose diseases. They 
can also report the information they have gathered to 
the rest of the team. However they tend to move 
slowly and have limited sensing range, so they are 
best used in tandem with other sensors. 

Rescue Workers are boats or submarines 
outfitted with equipment for capturing or curing an 
animal in distress. This is the only type of vehicle 
capable of saving an animal once it has been located. 
They are generally about as fast as radar sensors, but 
they have no sensors of their own. They must rely on 
reports from the sensor robots for navigation data. 
Also, they are only allowed to assist an animal after 
the proper diagnosis has been made by a video 
sensor. 

The Coast Guard has multiple robots in each 
group. Even within groups there are variations of 
individual characteristics such as speed or sensor 
range. There are 33 vehicles in total, divided 
between three separate areas of ocean. 

Because of the specialization of the robots, they 
are required to form ad hoc teams to fully complete 
any task. Each team must, at a minimum, consist of 
two robots: a video sensor to find the animal and 
make the diagnosis, and a rescue worker to assist the 
animal. A radar sensor is not required but its speed 
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and sensor range can greatly reduce the overall time 
needed for a team to assist an animal. 

3 MARKET-BASED ALGORITHM 

We chose to develop our market-based multi-robot 
task planning algorithm within a controlled 
simulation environment. The entire package was 
written in Java using the JADE agent framework 
(Bellifemine et al., 2001). Our agents used only local 
robot-to-robot communication to implement the task 
planning protocol. The planning algorithm shares 
many similarities with TraderBots and other existing 
market-based approaches. Our goal was to extend 
the existing approaches to be capable of performing 
planning in domains with both task deadlines and 
tightly coordinated ad hoc teams. 

The agents in our simulation trade labor for a 
fictional currency. An agent earns revenue for the 
successful completion of one of the tasks the team 
has been asked to perform, but only if the task is 
completed before the time deadline arrives. The 
agent incurs costs in the process of doing work to 
achieve a goal; these costs are proportional to the 
amount of time spent working towards the task. An 
agent also condsiders the opportunity cost 
(Schneider et al., 2005) of agreeing to perform a 
task. The self interested agents will only bid on a 
task if the potential revenue outweighs the sum of 
the impending costs. Agents buy and sell tasks from 
each other, forming efficient, specialized teams in 
the process. The cost and revenue functions we have 
chosen are conducive to fostering teams that solve 
problems as quickly as possible without over-
committing the existing resources. 

This section of the paper contains a high-level 
description of our implementation. (Gaimari et al., 
2007) provides more detail about the algorithm.  

3.1 Agents 

The TraderAgent is the building block of the robot 
economy. Each TraderAgent controls one robot in 
the simulation environment. A TraderAgent’s 
primary job, as the name implies, is to trade tasks.  

Any agent that owns a task may put it up for 
auction, announcing the maximum reward it is 
prepared to pay. Other TraderAgents that wish to bid 
for the job may do so, and after one round of bidding 
the seller announces the winner. In standard re-
auctioning this passes ownership of the task to the 
buying agent; this agent must have a robot with the 
same capabilities as the seller. The selling agent’s 
only responsibility thereafter is to pay the promised 
bid to the buyer upon completion of the task.   

In our system there is an additional type of re-
auctioning that occurs. Since the robots must work 
together in teams to complete the tasks, some re-
auctions are for the purpose of teambuilding among 
agents with different capabilities. In this case both 
agents retain ownership of the task. For each task a 
TraderAgent owns, there is a corresponding list of 
the teammates it is working with. If an agent owns 
multiple tasks it can belong to multiple teams. 

New tasks are given to a special agent that 
executes the initial auction. This agent does not 
control a robot in the simulation. 

3.2 Bidding on Auctions 

When a TraderAgent receives an auction 
announcement, it performs the following steps: 

 It calculates the estimated cost for performing 
the task. In our scenario the cost is given by 
the amount of time required to accomplish a 
task. Since the description of a task provides 
noisy and imprecise information about the 
location of an animal, costs cannot be 
determined exactly in advance. The agent 
prepares a cost estimate based on its technical 
abilities and current location. 

 It calculates the opportunity cost associated 
with accepting responsibility for the task. This 
represents the likelihood that the agent will be 
able to win hypothetical future tasks. Robots 
with especially unique abilities will have 
higher opportunity costs than more common 
types of robots. Opportunity cost is also 
affected by the robot’s location on the map, as 
some areas are more desirable for finding 
work than others. 

 It calculates the desired profit margin. This is 
a function of the opportunity cost and the 
difference between the offered reward and the 
estimated cost. Robots with low opportunity 
costs will lower their desired profit margin in 
an attempt to increase the chance of winning 
the current auction. 

 It calculates the final bid amount and places a 
bid if the cost plus the desired profit margin is 
less than the reward offered by the seller.  

3.3 Collecting Payment 

Once a task is completed, each TraderAgent reports 
that fact to the agent it bought the task from, asking 
to be paid. Domains with tightly coordinated, 
heterogeneous teams and time deadlines require 
special handling of payment allocation. In this case 
the teams are made up of robots that do their jobs at 
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greatly different speeds. Slower robots can lead to 
much higher costs and lower rewards than a faster 
robot may have originally estimated. If the cost 
estimations are too inaccurate, the ability of agents 
to prioritize different tasks is damaged. 

In our system an agent penalizes its teammates 
when the team underperforms expectations. Each 
agent requests the amount of payment agreed upon 
during the bidding process. As the payments are 
distributed, each agent compares its actual cost to 
the estimated cost it had initially planned upon. The 
difference between these is deducted from the 
amount paid to the next agent. This agent then adds 
the difference in its own actual cost and original 
estimate, plus the amount it was penalized by its 
seller. The penalty moves down the chain in this 
fashion until it finally ends where it belongs, on the 
slowest member of the team. These payments reflect 
the amount of money the original agents would have 
bid had they had known the true cost of working 
with slower robots. This penalty system provides 
feedback that allows the robots to learn 
improvements to their cost estimation and bidding 
practices.  

4 HUMAN EXPERIMENTS 

We tested the performance of teams of people on an 
isomorphic version of the Coast Guard search and 
rescue problem. The performance results of these 
teams of humans are directly comparable to the 
performance results of our market-based robot 
teams. 

In these experiments, each team consisted of 
three college educated adults. The teams were mixed 
sex and made up of computer literate participants 
between the ages of 28 and 65. The members of the 
teams were provided with computer tools allowing 
them to view maps of the environment and control 
the movements and actions of the simulated robot 
vehicles. The participants were working in the same 
room and were permitted to speak with each other 
but were not allowed to look at the others’ computer 
displays. Each member of the team was randomly 
assigned a unique and complementary role. 

The Intel Officer acted as the team leader and 
was responsible for coordinating the team response 
to targets assigned to the group. This officer 
received the messages containing the rumored 
locations of new targets. The messages also 
specified a time deadline by which the task had to be 
completed. The intel officer was then expected to 
share this new information with the team and 
monitor the group’s progress toward the goal. 

The Sensor Analyst commanded the fleet of 20 
heterogeneous sensor devices, including video 
equipped helicopters and radar planes. The sensor 
analyst was responsible for choosing which sensors 
to use, for ordering changes in sensor paths, and for 
monitoring the state of each sensor to check for 
newly detected items.  

The Rescue Worker commanded a fleet of 13 
heterogeneous rescue vehicles. This analyst was 
responsible for choosing which rescue vehicles to 
deploy, for ordering changes to each vehicle’s path, 
and for giving the official order to rescue an animal. 

As in the robot experiments, the teams were 
expected to locate and positively identify each target 
using their sensors before rescuing the animal. The 
experiment was an exercise in communication and 
team problem solving. Successful prosecution of a 
target was dependent on the participants’ ability to 
1) share relevant information without distracting 
each other from the task at hand, 2) interpret the 
state of the environment in a timely fashion, and 3) 
choose appropriate actions to execute. The 
simulation was developed as a simplification of real 
world exercises performed by similar teams of TST 
analysts (Goodman et al., 2005).  

5 EXPERIMENTAL RESULTS 

We evaluated the performance of the human and 
robot teams on our search and rescue TST scenario. 
Ten teams of three people attempted the problem. 
Each experiment lasted for 90 minutes. During this 
time, six targets were assigned to each team. The 
first three targets were assigned at 15 minute 
intervals, and the last three targets were assigned at 
5 minute intervals. Each target had a time deadline 
between the 80th and 90th minutes of the experiment.  

Table 1 shows the number of tasks completed by 
each human team. The best teams completed four of 
the six tasks before the time deadline. The worst 
teams were unable to successfully complete any of 
the tasks. The average number of tasks completed by 
the ten teams was 1.9, and the median was 2. In all, 
the teams of humans completed 32% of the tasks. 

Table 1: The number of tasks, out of 6, completed by each 
group before the time deadline. 

Team # 1 2 3 4 5 6 7 8 9 10 
# Tasks 

Finished 
on Time 

2 3 4 1 3 0 0 0 4 2 

Table 2 shows the number of teams that were 
able to successfully complete each task before the 
time deadline. Note that two of the tasks (#4, #6) 
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were not completed by any of the teams. Another 
task (#2) was completed by all teams except for 
those groups that did not complete any tasks. These 
figures indicate that in general the tasks were not 
trivial to solve by teams of humans attempting the 
assignment, and that there was a good mix of 
difficulty levels in the problems presented to the 
teams. 

Table 2: The number of teams, out of 10, that completed 
each task before the deadline. 

Task # 1 2 3 4 5 6 
# of 

Successful 
Teams 

4 7 3 0 5 0 

Table 3: The tasks completed by the autonomous robots 
before the deadline. 

Task # 1 2 3 4 5 6 
Solved 
before 

Deadline? 
Y Y Y Y Y N 

 
The results of the robot team are displayed in 

Table 3. The team of robots completed five of the 
six tasks, a success rate better than best of the human 
teams. This demonstrates the ability of the robots to 
apply effective team building and task assignment 
strategies. We also use length of time before solution 
to compare robot team performance to human team 
performance, shown in Figure 1.  

 
Figure 1: A comparison of the time to solution for the 
robot team, average human team, and best human team. 
Lower is better. 

The robot teams compare very favorably to the 
human teams. The simulated agents were much 
faster than the best human teams in three of the four 
tasks that were solved by both humans and robots. 
The agents also were able to complete the Dolphin 
task, which none of the ten human teams had 
successfully accomplished within the time deadline. 

The simulated agents did fail to complete one task, 
but none of the human teams were able to 
successfully complete that task either. 

6 APPLICATIONS AND 
CONCLUSION 

The ad hoc teams of distributed market-based task 
planners demonstrated better performance on a 
simplified Time Sensitive Targeting task than the 
teams of humans attempting the same task. This 
result demonstrates that it is feasible to use our 
planning algorithms on tightly coordinated and time 
constrained tasks. The result is especially interesting 
in light of the fact that real-life problem solvers, 
such as military TST analysts, are humans 
collaborating in ad-hoc teams to attempt to combine 
forces into one integrated, efficient system.  

What are the reasons for these differences in 
performance, and how can we use advances in 
information technology to improve human 
efficiency? Humans have an advantage over 
computers in that a lifetime of interactions with 
other humans allow them to plan and coordinate 
actions without the need for a formal communication 
and negotiation structure. Humans are also naturally 
able to integrate new information into the planning 
process in an online manner. Therefore the results 
described above are at least moderately surprising. 

However, one key limiting factor on human 
performance is that humans have limited attention 
resources. It isn’t possible for a single person to 
attend to the output of all twenty sensors 
simultaneously. As the number of concurrent tasks 
increase, human teams can suffer from increased 
cognitive load, which can dramatically affect a 
team’s ability to respond to new information in a 
timely manner. One example of this can be seen in 
our human TST experiments, in which the average 
time delay between receiving and reading a new e-
mail message increased steadily as more concurrent 
tasks were added. 

In essence, the teams of humans are exhibiting 
the same drawbacks of a centralized multi-robot 
planning algorithm. Information from sensors must 
propagate to the top of the chain of command before 
a plan can be implemented that reflects changes in 
the state of the task. For some domains this is an 
adequate solution; unfortunately humans do not 
“scale” well to larger scenarios in which attention 
resources must be divided between larger numbers 
of targets. The results of our experiments 
demonstrate that TST teams can struggle when 
forced to make decisions about which targets are 
most worth pursuing given limited attention and 
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resources. Real world teams are routinely forced into 
this situation. At SIMEX, a realistic TST simulation 
that uses real analysts from various government 
forces, 145 vehicles are manned by 30 operators 
pursuing any number of targets (Loren, 2004).  

The market-based robot planning system, in 
these situations, is able to benefit from its distributed 
nature. As each autonomous agent receives updates 
on the state of the environment, this information is 
immediately propagated to the affected agents.  This 
means that new tasks or newly sensed targets are 
promptly incorporated into the team plan. In the 
robot teams, the performance bottleneck is the 
quality of the decision making process rather than 
the availability of relevant data. 

It is unreasonable to suggest that intelligent 
agents can replace the human decision makers in 
high risk Time Sensitive Targeting environments. 
The results from our simplified and noise-free 
environment can’t necessarily be extrapolated to 
apply in far more complex real-world situations. The 
research does however indicate that there is value in 
applying intelligent control systems and other 
information technology to complement human 
decision makers by mitigating human weaknesses. 

Our future work in this domain is focused on 
incorporating the task planning agents into an 
intelligent cognitive aide. The aide will draw 
attention to relevant events and changes in the 
environmental state. We could also use this 
cognitive aide to improve training methods by 
teaching decision makers to focus their attention on 
the most critical plan-changing events. 

We have shown it is possible to use intelligent 
control systems to improve upon the results 
exhibited by teams of human decision makers. Our 
hope for the future is that it is possible to combine 
human and robotic planning methods to yield even 
better results. 
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