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Abstract: The dater equalities constitutes an appropriate tool which allows a linear description of Timed Event Graphs in
the field of (max, +) algebra. This paper proposes an equivalent model in the usual algebra which can describe
Timed and P-time Event Graphs. Considering 1-periodic behavior, the application of a variant of Farkas’
lemma allows the determination of upper and lower bounds of the productionrate and necessary conditions of
consistency.

1 INTRODUCTION

Event Graphs are a subclass of Petri nets which can
be used to model discrete event dynamic systems
subject to saturation and synchronization phenom-
ena, typically, transportation networks, multiproces-
sor systems and manufacturing systems. P-time Event
Graphs are convenient tools to model systems whose
operation times are included between a minimum
and a maximum duration. Therefore, P-time Event
Graphs can function at a maximal or a minimal speed
and, average cycle time is one of the most important
criteria which characterizes the system. An impor-
tant result about Timed Event Graphs is that a Timed
Event Graph reaches a periodic regime after a tran-
sient period (G. Cohen and Viot, 1983) (Chrétienne,
1985) in the earliest functioning mode (i.e., transi-
tions fire as soon as they are enabled). In this case,
the trajectory is said K-periodic. More precisely, if
x(k) represents the date of firings of the transitionx
at the number of eventk, then there is a constantλ
(called the cycle time which is the inverse of the pe-
riodic throughput) and two integersk0 in N andc in
N
∗(called the cyclicity) such that

x(k + c) = x(k) + c × λ for k ≥ k0

and

λ = lim
k→∞

x(k)

k

(Gaubert, 1995).
However, the periodical behavior is reached only

after a transient that can be extremely long, moreover
presence of perturbations (faults, maintenance oper-
ations,...) can limit the possibility of reaching a pe-
riodical behavior. The representativeness of the pro-
duction rate can be reduced as the effectiveness of the
approaches as resources optimization or control using
transfert functions.

A possible approach is to generate periodic behav-
iors without transient period as 1-periodic behavior
which is defined by

x(k + 1) = x(k) + λ.

This technique assumes that each transition is struc-
turally controllable (F. Baccelli, 1992).

Considering an 1-periodic behavior, the objective
of the paper is the calculation of the average cycle
time of P-time Event Graphs. The proposed approach
introduces a new model based on ”daters” in the Sec-
tion 2. Defined by an inequality, the model com-
pletely describes in the usual algebra the trajectories
of different Event Graphs as Timed Event Graphs or
P-time Event Graphs.

Using a well-known Farkas’lemma of the linear
programming (Schijver, 1987), the Sections 3 and
4 presents results about cycle time. Two examples
are given in the Section 5 to illustrate the proposed
method.
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2 MODEL

Definition 1 A Petri net is a pair (G,M0), where
G = (R, V ) is a bipartite graph with a finite num-
ber of nodes (the setV ) which are partitioned into the
disjoint sets of placesP and transitionsT ; R consists
of pairs of the form (pi,qi) and (qi,pi) with pi ∈ P and
qi ∈ T . The initial markingM0 is a vector of dimen-
sion| P | whose elements denote the number of initial
tokens in the respective places.

Definition 2 For a Petri Net with| P | places and
| T | transitions, theincidence matrix W = [Wij ]
is an | P | × | T | matrix of integers and its typical
entry is given byWij = W+

ij −W−

ij whereW+
ij is the

weight of the arc from transitionj to its output place
i andW−

ij is the weight of the arc to transitionj from
its input placei.

In a Petri net, from a markingM , a firing sequence
implies a string of successive markings. The charac-
teristic vectors of a firing sequenceS is a vector for
which each component is an integer corresponding to
the number of firings of the corresponding transition.
Then a markingM reached fromM0 by firing of a
sequenceS can be deduced using the fundamental re-
lation:

M = M0 + W × s

whereM0 is the initial marking andW is the inci-
dence matrix.

Definition 3 A Petri net is called anEvent Graph if
each place has exactly one upstream and one down-
stream transition.

P-time Petri nets allow the modeling of discrete
event dynamic systems with sojourn time constraints
of the tokens inside the places. Consistently with the
dioid Rmax (see ((F. Baccelli, 1992))), we associate a
temporal interval defined inR+ × (R+ ∪ {+∞}) for
each place.

Definition 4 A P-time Event Graph is a pair <
R, IS > whereR is an Event Graph and the map-
ping IS: from P to R

+ × (R+ ∪ {+∞}) is defined
bypi → [ai, bi] with 0 ≤ ai ≤ bi.

The interval[ai, bi] is the static interval of dura-
tion time of a token in the placepi belonging to the
set of placesP . The token must stay in the placepi

during the minimum residence durationai. Before
this duration, the token is in a state of unavailability
to fire the transitiontj . The valuebi is a maximum
residence duration after which the token must leave
the placepi (and can contribute to the enabling of the
downstream transitions). If not, the system falls into a
token-dead state. So, the token is available to fire the
transitiontj in the time interval[ai, bi].

2.1 Preliminary Inequalities

For Event Graphs, let us express the firing interval for
each transition of the system guaranteing the absence
of token-dead states. The set•p is the set of input
transitions ofp andp• is the set of output transitions
of p. The set•ti (respectively,t•i ) is the set of the
input (respectively, output) places of the transitionti.
The set of upstream (respectively, downstream) tran-
sitions of ti is denoted←ti =• (•ti ) (respectively,
t→i = ( t•i )

•). The following assumption alleviates
the notations. We suppose that for each pair of transi-
tions(i, j), there is at the most a unique place denoted
pij between the upstream transitiontj ∈• p and the
downstream transitionti ∈ p•. Each placepij is as-
sociated with an interval[aij , bij ], whereaij is the
lower bound andbij the upper bound .

We consider the “dater” type well-known in the
(max, +) algebra: each variablexi(k) represents the
date of thekth firing of transitionxi. If we assume
a FIFO functioning of the places which guarantees
that the tokens do not overtake one another, a correct
numbering of the events can be carried out. In this pa-
per, we do not take the assumption of earliest (respec-
tively, latest) functioning which will be the subject of
other studies.

Therefore, the evolution can be described by the
following inequalities expressing relations between
the firing dates of transitions. An Event Graph can be
considered as a set of subgraphs made up of a place
pij linking the upstream transitionj and the down-
stream transitioni. We denotemij the corresponding
initial marking or initial number of tokens.

For the lower boundsaij of the upstream place of
transitioni, we can write:

∀xj ∈← xi, aij + xj(k − mij) ≤ xi(k),

or equivalently,
xj(k − mij) − xi(k) ≤ −aij .

The weight1 of xj(k − mij) (respectively,−1
of xi(k)) is the weight of the entering arc of the place
pij , fromtj to placepij (respectively, the outgoing arc
of the placepij , from placepij to transitionti) which
is equal toW+

lj (respectively,−W−

lj ) if pl = pij .

Respectively, for the upper boundsbij of the up-
stream place of transitioni, we have:

∀xj ∈← xi, xi(k) ≤ bij + xj(k − mij),

or equivalently,
xi(k) − xj(k − mij) ≤ bij .

The weight1 of xi(k) (respectively,−1 of xj(k−
mij)) is the weight of the entering arc of the placepij ,
from tj to placepij (respectively, the outgoing arc of
the placepij , from placepij to transitionti) which is
equal toW+

lj (respectively,−W−

li ) if pl = pij .
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2.2 Matrix Expression

Let m be the maximum number of initial tokens, the
set of the previous inequalities can be expressed as
follows:

H = [HmHm−1Hm−2........... H1H0]×











x(k − m)
x(k − m + 1)

....
x(k − 1)

x(k)











≤

(

−A

B

)

. (1)

The matrix H contains the weights of the arcs
entering and outgoing of the places defined above.
Each placepl linking the upstream transitionj and
the downstream transitioni corresponds to two rows
of H and particularly,−A andB are vector of tem-
porizations whereAl = aij andBl = bij .

Now, we consider the matrix representation in
different cases: the initial marking of all places is
equal to zero; the initial marking of all places is equal
to one; the general case. The two last cases will be
considered in the following sections.

a) The initial marking of all places is null
The evolution can be described by the following

inequalities expressing relations between the firing
dates of transitions:

{

xj(k) − xi(k) ≤ −aij

−xj(k) + xi(k) ≤ bij
.

As x(k) corresponds to firing sequenceS, we can
deduce from the above description on the weight of
the arcs that there is a direct correspondance with the
incidence matrixW . Therefore, one can write the sys-
tem as follows:

H0 × x(k) ≤

(

−A

B

)

(2)

whereH0 =

(

W

−W

)

andW = W+ − W−.

b) The initial marking of all places is equal to
one

In this case, each place initially contains only one
token. One can write:

{

xj(k − 1) − xi(k) ≤ −aij

−xj(k − 1) + xi(k) ≤ bij
.

As x(k − 1) andx(k) respectively corresponds to
firing sequenceS, we can deduce from the above de-
scription on the weight of the arcs that respectively,
there is a direct correspondance with the incidence

matricesW+ and−W−. Therefore, one can write
the system as follows:

(

H1 H0

)

×

(

x(k − 1)

x(k)

)

≤

(

−A

B

)

with H1 =

(

W+

−W+

)

andH0 =

(

−W−

W−

)

.

c) General case
Now let us give the explicit form of the system (1)

or in other words, the objective is to build an equiv-
alent model such that each place of the new Event
Graph contains only zero or one token. This new form
will simplify the calculations of the cycle time.

As a place contains a maximum number ofm to-
kens, the general idea is to split each place containing
m tokens intom places, where each place contains
only one token.

Let us introduce the variablesα(m−j−1) for j = 0
to m − 1 in the inequations, we have:



















x(k − m)
x(k − m + 1)

....
x(k − 3)
x(k − 2)
x(k − 1)

x(k)



















=





















α(m−1)(k − 1)
α(m−2)(k − 1)

....

α(2)(k − 1)
α(1)(k − 1)
α(0)(k − 1)

x(k)





















with8>>>>>>><>>>>>>>: α
(m−1)(k) = x(k − m + 1) = α

(m−2)(k − 1)

α
(m−2)(k) = x(k − m + 2) = α

(m−3)(k − 1)
...

α
(2)(k) = x(k − 2) = α

(1)(k − 1)

α
(1)(k) = x(k − 1) = α

(0)(k − 1)

α
(0)(k) = x(k)

.

Or equivalently,8><>: α(m−j−1)(k) = x(k −m + j + 1) = α(m−j−2)(k − 1)

for j = 0 to m− 2

α(0)(k) = x(k)

.

The new state vector is:

X = (α(m−1), α(m−2), α(m−3), ..., α(2), α(1), α(0))t

and ( 1) becomes

H ′ ×

(

X(k − 1)

X(k)

)

≤

(

−A

B

)

whereH ′ containsH with the addition of null
columns.

The system must be completed with2(m − 1)× |
T | relations in the worst case: forj = 0 to m − 2,

{

α(m−j−2)(k − 1) − α(m−j−1)(k) ≤ 0
−α(m−j−2)(k − 1) + α(m−j−1)(k) ≤ 0

.

Therefore, one can write the system as follows:
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(

G1 G0

)

×

(

X(k − 1)

X(k)

)

≤

(

0

0

)

with G1 =

(

G11

−G11

)

andG0 =

(

−G21

G21

)

.

The matrixG11 of dimension ((m − 1)× | T | ×
m) asG21, is an subdiagonal of identity matrices im-
mediately above the main diagonal, while the matrix
G21 is a diagonal of identity matrices.

Finally, we can write the algebraic form:

(

G

H ′

)

×

(

X(k − 1)

X(k)

)

≤







0
0

−A
B






.

3 CYCLE TIME

The aim of this part is the determination of the exis-
tence of 1-periodic trajectory in P-time Event Graphs.
Let us consider an Event Graph such thatmij = 0 or
1.

H ×

 
x(k)

x(k + 1)

!
≤

 
−A

B

!
withH =

�
H11 H10

H21 H20

�
(3)

The 1-periodic behavior can be defined by
x(k + 1) = λ × u + x(k) with u = (1, 1, ..., 1)t and
the average cycle timeλ.

The following result will be useful.

Corollary 1 Farkas’ lemma (variant) Corollary 7.1.e
in (Schijver, 1987) (Hennet, 1989).

Let A be a matrix and let b a vector. Then the
systemA×x ≤ b of linear inequalities has a solution
x, if and only ify × b ≥ 0 for each row vectory ≥ 0
with y × A = 0

Theorem 1 The system (3) can follow a 1-periodic
behavior for a given cycle timeλ, if and only if, for
each row vectory ≥ 0 with

y ×

(

H11 + H10

H21 + H20

)

= 0, (4)

we have:

y ×

(

−A

B

)

y ×

(

H10

H20

)

× u

≥ λ (5)

if y ×

(

H10

H20

)

× u > 0,

y ×

(

−A

B

)

y ×

(

H10

H20

)

× u

≤ λ (6)

if y ×

(

H10

H20

)

× u < 0,

y ×

(

−A

B

)

≥ 0 (7)

if y ×

(

H10

H20

)

× u = 0.

Proof: We have

(

H11 H10

H21 H20

)

×

(

x(k)

λ × u + x(k)

)

≤

(

−A

B

)

i.e.,
{

H11 × x(k) + H10 × (λ × u + x(k)) ≤ −A
H21 × x(k) + H20 × (λ × u + x(k)) ≤ B

i.e.,
{

(H11 + H10) × x(k) ≤ −A − H10 × (λ × u)
(H21 + H20) × x(k) ≤ B − H20 × (λ × u)

or equivalently,�
H11 + H10

H21 + H20

�
×x(k) ≤

 
−A

B

!
−

�
H10

H20

�
×λ×u.

(8)

From Farkas’ lemma, we can deduce that the sys-
tem (8) of linear inequalities has a solutionx, if and

only if y×(

(

−A

B

)

−

(

H10

H20

)

×λ×u) ≥ 0 for each

row vectory ≥ 0 with y ×

(

H11 + H10

H21 + H20

)

= 0.

So,y ×

(

−A

B

)

− y ×

(

H10

H20

)

× (λ × u) ≥ 0

y ×

(

−A

B

)

≥ y ×

(

H10

H20

)

× (λ × u) = λ ×

y ×

(

H10

H20

)

× u.

In this relation, the product byu gives the addition

of all columns of

(

H10

H20

)

. From the sign ofy ×
(

H10

H20

)

× u, the two cases (6)(5) and the relevant

necessary and sufficient conditions of existence ofx
(7) for the system (8) can be deduced.�

Let us note that the existence of a solution depends
onλ in the two first relations contrary to the last one.
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4 LINKS WITH OTHER RESULTS

We assume thatmij = 1, which simplifies the pre-
sentation of the connections with notions of inci-
dence matrix and P-semi flows. So,H11 = W+,
H10 = −W−, H21 = −H11 andH20 = −H10. The
previous theorem is now applied.

To summarize, for each row vectory ≥ 0 with

y ×

(

W
−W

)

= 0 (9)

- if y ×

(

−W−

W−

)

× u > 0 then

y ×

(

−A

B

)

y ×

(

−W−

W−

)

× u

≥ λ, (10)

- if y ×

(

−W−

W−

)

× u < 0 then

y ×

(

−A

B

)

y ×

(

−W−

W−

)

× u

≤ λ, (11)

- if y ×

(

−W−

W−

)

× u = 0 then

y ×

(

−A

B

)

≥ 0. (12)

Moreover, we consider particular vectorsy: The
row-vectory can highlights the lower bounds of the
temporizationsA which correspond to a Timed Event
Graph; The row-vectory can also highlight the upper
bounds of the temporizationsB. However, they give a
rough estimate ofλ which must be improved by con-
sidering the space of the orthogonal vectorsy. Now,
we successively consider the upper bounds B and the
lower bounds A.

Upper bounds B
Let us consider a row-vector y such that them

first entries are null. It can be defined by the vector
y = (y1, y2) with y1 = 0. From (9), we deduce that
y2×W = 0. So,y2×W−×u ≥ 0, then y2×B

y2×W−×u
≥

λ.
Lower bounds A
Let us consider a row-vector y such that them

last entries are null. It can be defined by the vector
y = (y1, y2) with y2 = 0. From (9), we deduce that
y1 × W = 0. As W− ≥ 0, y1 × (−W−) × u ≤ 0,
then

y1 × (−A)

y1 × (−W−) × u
=

y1 × A

y1 × W− × u
≤ λ. (13)

Calculation of the state
Considering any non-negative row vectory, the

set of the relations defined by (11) (respectively, (10))
gives the lower bound (respectively, upper bound) of
λ1. Given an arbitrary cycle timeλ1 satisfying (11)
and (10), the objective is the calculation of the date of
firing of the transitions for a givenk.

As H11 = W+, H10 = −W−, H21 = −H11 and
H20 = −H10, from (8),x(k) must satisfy

(

W
−W

)

× x(k) ≤

(

−A

B

)

−

(

−W−

W−

)

×

λ1 × u.

This inequality follows the general formA × x ≤
B which can be solved by the Fourier-Motzkin algo-
rithm.

4.1 Link with Karp’s Theorem

The following well-known result is based on circuits
(Gaubert, 1995).

Theorem 2 (Karp’s theorem)
In a strongly connected system, the minimal cycle

time can be defined by the maximum of the ratio of
the sum of the delays to the sum of tokens, for each
elementary circuitCk, i.e.,

minimal cycle time = max
k

(
sum of delays inCk

sum of tokens inCk

).

Let us now consider (13). Its numeratory1 × A is
a sum of durations asy1 > 0 which is the total delay
in Ck.

Consider the denominator of (13):y1×W−×u.

As each row ofW− contains a unique entrie
different from zero which can be associated with
the unique token of the relevant place, the right-
multiplication byu generates a column-vectorv =
(1, 1, ..., 1)t whose dimension ism and which is the
initial markingM0. So, the denominatory1×W−×u
is equal toy1 × M0 which is the number of tokens
in Ck at M0. Therefore, there is a correspondance
between (13) and the expression of the theorem of
Karp.

Strictly speaking, the Karp’s theorem can be apply
even if the behavior of the graph is not 1-periodic as
we suppose here.

4.2 Link with (Murata, 1989)

Another result can be found in ((Murata, 1989)). If
we model a Timed Petri Net which is consistent (i.e.,
∃ x > 0, W.x = 0) by assigning delaydi to each
placepi, then it can be shown that the minimal cycle
time is given by:
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max
k

(yk.D.W+.x

yk.M0
)

whereyk is the P-semi flowk andD is the diago-
nal matrix ofdi,i = 1, 2, ..,m.

So,W+.x = v andyk.D.W+.x = yk.A which is
the numerator of (13).

5 EXAMPLES

5.1 First Example

Let us consider a simple example based on two ele-
mentary strongly connected subgraphs.

Figure 1: A simple P-time Event Graph.

(

W+ −W−

−W+ W−

)

.

(

x(k − 1)

x(k)

)

≤

(

−A

B

)

with x(k) =
(

x1(k) x2(k) x3(k)
)t

, W+ =




1 0
1 0
0 1



 , −W− =





−1 0
0 −1
0 −1



 , −A =





−1
−2
−3



 andB =





6
5
4



 . We have

W =





0 0
1 −1
0 0



 .

A possible integer matrixY ≥ 0 such that

Y.

(

W
−W

)

= 0 is as follows. Y =











7 0 0 0 0 0
0 0 7 0 0 0
0 0 0 7 0 0
0 0 0 0 0 7
0 7 0 0 7 0











(

−W−

W−

)

× u =

(

−1 −1 −1 1 1 1
)t

Y.

(

−W−

W−

)

× u =

(

−7 −7 +7 +7 0
)t

Y ×

(

−A

B

)

=

(

−7 −21 +42 +28 +21
)t

.

The two first terms lead to lower bounds (−7
−7 = 1,

−21
−7 = 3), the two successive terms gives the upper

bounds (+42
+7 = 6, +28

+7 = 4) and the last one is a
condition of consistency (+21 ≥ 0).

Therefore, the 1-periodic trajectory exists with
max(1, 3) = 3 ≤ λ ≤ min(6, 4) = 4.

For λ = 3, a possible trajectory is
(

1
0

)

→
(

4
3

)

→
(

7
6

)

→ ...

For λ = 3.5, a possible trajectory is
(

1.5
0

)

→
(

5
3.5

)

→
(

8.5
7

)

→ ...

For λ = 4, a possible trajectory is
(

2
0

)

→
(

6
4

)

→
(

10
8

)

→ ...

5.2 Second Example

Now, we consider a P-time Event Graph without di-
rected circuit.

[6, 8]
[4,14][3,5]

[2 ,11][0,10]

[7, 9]

X
1

X
2

3
X

X
4

X
5

X
6

[1, 2]

Figure 2: A P-time Event Graph.

(

W+ −W−

−W+ W−

)

.

(

x(k − 1)

x(k)

)

≤

(

−A

B

)

with x(k)
�

x1(k) x2(k) x3(k) x4(k) x5(k) x6(k)
�t ,

W
+ =

0BBBBBBB� 1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

1CCCCCCCA , W
− =0BBBBBBB� 0 1 0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0

1CCCCCCCA ,−A =

0BBBBBBB� −1
−3
−4
0
−6
−2
−7

1CCCCCCCA andB =

0BBBBBBB� 2
5
14
10
8
11
9

1CCCCCCCA
W =



















1 −1 0 0 0 0
1 0 −1 0 0 0
0 −1 1 0 0 0
0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 0 1 −1 0
0 0 0 0 −1 1
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A possible integer matrixY ≥ 0 such

thatY.

�
W

−W

�
= 0 is as follows. Y =0BBBBBBBBBBBBBBBB�

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 1 0 1 0

1CCCCCCCCCCCCCCCCA
(

−W−

W−

)

× u =
(

−1 −1 −1 −1 −1 −1 −1 1 1

1 1 1 1 1
)t

Y.

(

−W−

W−

)

× u =

(

0 0 0 0 0 0 0 +1 −1 0 0
)t

Y ×

(

−A

B

)

=
(

+1 +2 +10 +10 +2 +9 +2 +18

−5 +15 +10
)t

The 9nd term leads to the lower bound (−5
−1 = 5),

the 8nd term gives the upper bound (+18
+1 = 18) and

the last one are conditions of consistency which are
satisfied.

Therefore, the 1-periodic trajectory exists with5≤
λ ≤ 18

For λ = 5, a possible trajec-
tory is

(

3 0 1 5 4 1
)t

→
(

8 5 6 10 9 6
)t

→
(

13 10 11 15 14 11
)t

→ ...

6 CONCLUSION

Using a new incidence matrix, the model we propose
allows the counting of the events in Timed and P-time
Event Graphs. The connections with usual incidence
matrix has been realized. Considering 1-periodic be-
havior, the application of a variant of Farkas’ lemma
leads to the introduction of a generalization of the
P-semi flow vectors for Timed and P-time Event
Graphs, and allows the determination of upper and
lower bounds of the possible cycle time. Each limit
is respectively a complex function of lower and up-
per bounds of the temporizations. Moreover, even if
cycle timeλ belongs to this interval, the system must
also satisfy conditions of consistency such that the fi-
nite initial dates of firing exist. With the restriction

that a 1-periodic behavior has been considered, the
proposed lower bound of the cycle time includes the
Karp’s relation.
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Technique et Science Informatique, pages 127-142.

F. Baccelli, G. Cohen, G. O. J.-P. Q. (1992).Synchroniza-
tion and Linearity: An Algebra for Discrete Event Sys-
tems. Wiley.

G. Cohen, D. Dubois, J.-P. Q. and Viot, M. (1983). Anal-
yse du comportement périodique de systèmes de pro-
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