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Abstract: Parametric identification requires a good know-how and an accurate analysis. The most popular methods 
consist in using simply the least squares techniques because of their simplicity. However, these techniques 
are not intrinsically robust. An alternative consists in helping them with an appropriate data treatment. 
Another choice consists in applying a robust identification method. This paper focuses on a comparison of 
two techniques: a “helped” least squares technique and a robust method called “the simple refined 
instrumental variable method”. These methods will be applied to a single degree of freedom haptic interface 
developed by the CEA Interactive Robotics Unit. 

1 INTRODUCTION 

In most of cases, parametric identification is a hard 
task and requires a good know-how. A popular 
method consists in using the least squares technique 
(LS) because of its simplicity. However, it has been 
proven that the LS are sensitive to outliers, leverage 
points and noise models (Hampel, 1971) and 
(Hueber, 1981). In other words, the LS are not 
intrinsically robust and we must “help” them in 
order to obtain reliable results. 

In the last decade, the IRCCyN robotic team has 
designed a identification method based on LS 
technique, inverse model, base parameters, exciting 
trajectories and appropriate data treatment (Gautier 
and Khalil, 1990), (Gautier and Khalil, 1991) and 
(Gautier, 1997). This technique has been 
successfully applied to identify inertial parameters 
of industrial robots (Gautier, Khalil and Restrepo, 
1995) and (Gautier, 1997). Recently, it was used for 
identifying electrical parameters of a synchronous 
machine (Khatounian et al, 2006), inertial 
parameters of a haptic device (Janot et al, 2006) and 
the parameters of a compactor (Lemaire et al, 2006). 
The obtained results were interesting and reliable. 

At the same time, robust methods have been 
successfully used (Mili, Phaniraj and Rousseeuw, 
1990), (Mili et al, 1996), (Young 2006) and (Gilson 
et al, 2006). An interesting robust method is the 
simple refined instrumental variable (SRIV) because 
of its simplicity (Young 1979). Indeed, no noise 
model identification is needed and this method is 
consistent even in the coloured noise situation 
(Gilson et al, 2006). This method is implemented in 
the MATLAB CONTSID toolbox developed by the 
CRAN team (Garnier, Gilson and Huselstein, 2003) 
and (Garnier, Gilson and Cervellin, 2006). To our 
knowledge, this method has not been used to 
identify inertial parameters of robots. 

Hence, it seems interesting to apply the SRIV 
method to a single degree of freedom haptic 
interface and to compare it with the LS method. 

The paper is organized as follows: second 
section presents the general inverse dynamic model 
of robots, the LS technique and the SRIV method; 
experimental results are presented in section 3; 
finally, section 4 introduces a discussion. 
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2 THEORY 

2.1 General Inverse Dynamic Model 

The inverse dynamic model (commonly called 
dynamic model) calculates the joint torques as a 
function of joint positions, velocities and 
accelerations. It is usually represented by the 
following equation: 

            )qsign(FqF)qH(q,qA(q)Γ cv +++=        (1) 

Where, Γ is the torques vector, q, q  and q  are 
respectively the joint positions, velocities and 
accelerations vector, A(q) is the inertia matrix, 
H(q, q ) is the vector regrouping Coriolis, centrifugal 
and gravity torques, Fv and FC are respectively the 
viscous and Coulomb friction matrices. 

The classical parameters used in this model are the 
components XXj, XYj, XZj, YYj, YZj, ZZj of the 
inertia tensor of link j denoted jJj, the mass of the 
link j called Mj, the first moments vector of link j 
around the origin of frame j denoted jMSj=[MXj MYj 
MZj]T, and the friction coefficients FVj, FCj. 

The kinetic and potential energies being linear 
with respect to the inertial parameters, so is the 
dynamic model (Gautier and Khalil, 1990). It can 
thus be written as: 

                           ( )χq,qq,DΓ =                                   (2) 

Where D(q, q , q ) is a linear regressor and χ is a 
vector composed of the inertial parameters. 
 
The set of base parameters represents the minimum 

number of parameters from which the dynamic 
model can be calculated. They can be deduced from 
the classical parameters by eliminating those which 
have no effect on the dynamic model and by 
regrouping some others. In fact, they represent the 
only identifiable parameters.  
Two main methods have been designed for 

calculating them: a direct and recursive method 
based on calculation of the energy (Gautier and 
Khalil, 1990) and a method based on QR numerical 
decomposition (Gautier, 1991). The numerical 
method is particularly useful for robots consisting of 
closed loops. 
By considering only the b base parameters, (2) can 

be rewritten as follows: 

             ( ) bχq,qq,WΓ =                                         (3) 

Where W(q, q , q ) is the linear regressor and χb is 
the vector composed of the base parameters. 

2.2 LS Method 

2.2.1 General Theory 

Generally, ordinary LS technique is used to estimate 
the base parameters solving an over-determined 
linear system obtained from a sampling of the 
dynamic model, along a given trajectory (q, q , q ), 
(Gautier, Khalil and Restrepo, 1995), (Gautier, 
1997). X being the b minimum parameters vector to 
be identified, Y the measurements vector, W the 
observation matrix and ρ the vector of errors, the 
system is described as follows: 

                 ( ) ( ) ρXq,qq,WΓY +=                       (4) 

The L.S. solution X̂  minimizes the 2-norm of the 
vector of errors ρ. W is a r×b full rank and well 
conditioned matrix, obtained by tracking exciting 
trajectories and by considering the base parameters, 
r being the number of samplings along a trajectory. 
Hence, there is only one solution X̂  (Gautier, 1997). 
Standard deviations 

iX̂σ  are estimated using 

classical and simple results from statistics. The 
matrix W is supposed deterministic, and ρ, a zero-
mean additive independent noise, with a standard 
deviation such as: 

                 ( ) rρ
T

ρ IρρC 2σE ==                             (5) 

where E is the expectation operator and Ir, the r×r 
identity matrix. An unbiased estimation of ρσ  is: 

                 ( )br

ˆ
σ

2

2

−

−
=

XWY
ρ                                   (6) 

The covariance matrix of the standard deviation is 
calculated as follows: 

                       ( ) 1T
ρXX WWC

−
= 2

ˆˆ σ                       (7) 

iiX̂X̂
2

iX̂ Cσ =  is the ith diagonal coefficient of XXC ˆˆ . 

The relative standard deviation 
riX̂%σ is given by: 

                       
j

X̂
X̂ X

σ
100%σ j

jr
=                             (8) 

However, in practice, W is not deterministic. This 
problem can be solved by filtering the measurement 
matrix Y and the columns of the observation matrix 
W. 
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2.2.2 Data Filtering 

Vectors Y and q are samples measured during an 
experimental test. We know that the LS method is 
sensitive to outliers and leverage points. A median 
filter is applied to Y and q in order to eliminate 
them. 
The derivatives q  and q  are obtained without 

phase shift using a centered finite difference of the 
vector q. Knowing that q is perturbed by high 
frequency noises, which will be amplified by the 
numeric derivation, a lowpass filter, with an order 
greater than 2 is used. The choice of the cut-off 
frequency ωf is very sensitive because the filtered 
data ( )fff q,q,q  must be equal to the vector 
( )q,qq,  in the range [0, ωf], in order to avoid 
distortion in the dynamic regressor. The filter must 
have a flat amplitude characteristic without phase 
shift in the range [0, ωf], with the rule of thumb 
ωf>10*ωdyn, where ωdyn represents the dynamic 
frequency of the system. Considering an off-line 
identification, it is easily achieved with a non-causal 
zero-phase digital filter by processing the input data 
through an IIR lowpass butterworth filter in both the 
forward and reverse direction. The measurement 
vector Y is also filtered, thus, a new filtered linear 
system is obtained: 

                             ffff ρXWY +=                       (9) 

Because there is no more signal in the range [ωf, 
ωs/2], where ωs is the sampling frequency, vector Yf 
and matrix Wf are resampled at a lower rate after 
lowpass filtering, keeping one sample over nd 
samples, in order to obtain the final system to be 
identified:   

                         fdfdfdfd ρXWY +=                     (10) 

with: 

                        fsd /2ω0.8ωn =                            (11) 

2.2.3 Exciting Trajectories 

Knowing the base parameters, exciting trajectories 
must be designed. In fact, they represent the 
trajectories which excite well the parameters. If the 
trajectories are enough exciting, then the 
conditioning number of W, (denoted cond(W)) is 
close to 1. However, in practice, this conditioning 
number can reach 200 because of the high number of 
base parameters. Design and calculations of these 
trajectories can be found in (Gautier and Khalil, 
1991). 

If the trajectories are not enough exciting, then the 
results have no sense because the system is ill 
conditioned and some undesirable regroupings 
occur. 

2.3 SRIV Method 

From a theoretical point of view, the LS assumptions 
are violated in practical applications. In the equation 
(4), the observation matrix W is built from the joint 
positions q which are often measured and from q , q  
which are often computed numerically from q. 
Therefore the observation matrix is noisy. Moreover 
identification process takes place when the robot is 
controlled by feedback.  It is well known that these 
violations of assumption imply that the LS solution 
is biased. Indeed, from (4), it comes: 

                 ρWWXWYW TTT +=                   (12) 

As ρ includes noises from the observation matrix 
( ) 0E T ≠ρW .  

The Refined Instrumental Variable approach deals 
with this problem of noisy observation matrix and 
can be statistically optimal (Young, 1979). It is the 
reason why we propose to enrich our identification 
methods by using concepts from this approach. In 
the following, we describe the application of this 
method in our field. 
  The Instrumental Variable Method proposes to 

remove the bias on the solution by building the 
instrument matrix V such as  ( ) 0E T =ρV  and VTW 
is invertible. 
 The previous equation becomes: 

                    ρVWXVYV TTT +=                  (13) 

The instrumental variable solution is given by 

                   ( ) YVWVX T1T
V

ˆ −
=                     (14) 

The main problem is to find the instrument matrix 
V. A classical solution is to build an observation 
matrix from simulated data instead of measured 
data. The following iterative algorithm describes this 
solution: 
Step 0: a first set of parameters is given by using 

classical LS. 
Step k: From a set of parameters 1V/k

ˆ
−X given at 

the previous step, the following ordinary differential 
equation, describing the robot dynamic, is simulated: 

               ( )f
1 Γ)qH(q,ΓAq ++= −                  (15) 
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Γ  is the motor vector which is generally given 
by a feedback built by comparison between the 
desired and the real movement. 

f,, ΓHA are respectively the inertia matrix, the 
Coriolis-centrifugal vector and the friction 
torques. They are computed with the parameters 
identified at the step k-1: 1V/k

ˆ
−X  

By simulation of this differential equation, 
kkk q,q,q are obtained. Then the Instrument Matrix 

at the step k is computed: )q,q,W(qV kkkk = . The 

equation (14) gives the set of parameters VkX̂ . 
This iterative process is conducted until the 

convergence of the parameters. Practically, 4 or 5 
steps are enough to decrease dramatically the 
correlation between the instrument matrix and the 
noise on the system. 

3 APPLICATION 

3.1 Presentation and Modelling of the 
Interface 

The interface to be identified is presented Figure 1. 
It consists of synchronous machine and a handle 
actuated thanks to a cable transmission. This type of 
transmission is a good comprise between friction, 
slippage and losses. The modelling and the 
identification are made under the rigid model 
assumption. Naturally, the authors have checked that 
this hypothesis is valid in the case of this study. 
The modelling and the identification of the 

synchronous machine are given in (Khatounian et al, 
2006). 
 

 
Figure 1: Presentation of the interface to be identified. 

 
The frames defined to model the interface are 

presented Figure 2. The inverse dynamic model is 
given by the following equation: 

fYX gsin(q)Mgcos(q)MqJΓ Γ++−=                (16) 

where q and q are respectively the joint position and 
acceleration, J is the global inertia of the system. 
The torque Γ is calculated through the current 

measurement. We have verified that we have 
Γ=NKcI, where N is the gear ratio, Kc the torque 
constant and I the measured current. More details 
about the implemented control law can be found in 
(Khatounian et al, 2006). 
The friction torque Γf was measured according to 

the method developed by (Spetch and Isermann, 
1988), which consists in measuring the torque at 
different constant speeds and eliminating all 
transient modes. Figure 3 shows that the friction 
model can be considered at non-zero velocity as the 
following, where )qsign(  is the sign function of the 
velocity q , and fc, fv denote the Coulomb and 
viscous friction coefficients. 

                  )qsign(fqfΓ cvf +=                          (17) 

The dynamic model can be thus written as a 
sampled linear form: 

                              Γ = W X                                 (18) 

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣
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−

−
=

)qsign(q)gsin(q)gcos(qq

)qsign(q)gsin(q)gcos(qq
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In this simple case, the parameters J, MX, MY, fv 
and fc constitute the set of base parameters (QR 
decomposition confirms that). 
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Figure 2: Notations and frames used for modelling the 
interface. 
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Figure 3: Friction torque measured. 

3.2 Identification of the Base 
Parameters 

3.2.1 LS Method 

Current I and joint position q were measured, with a 
sampling period of 240μs. Exciting trajectory 
consists of trapezoidal speed reference. This 
trajectory was chosen because it is equivalent to a 
rectangular trajectory for the joint acceleration. It 
allows the estimation of the inertia term due to the 
change of the acceleration sign, of the gravitational 
and viscous friction terms because the velocity is 
constant over a period and of the Coulomb term due 
to the change of sign of the velocity. Vectors q  and 
q  were derived from the position vector q, and all 
data were filtered as described in section 2.2.2. 
Because of the friction model, the velocities close to 
zero are eliminated. 
The cut-off frequency of the butterworth filter and 

of the decimate filter is close to 20Hz. This value 
can be calculated thanks to a spectral analysis of the 
data. In our case one has ωdyn close to 2Hz. Thus 
with the rule of thumb ωf>10*ωdyn, we retrieve the 
value given above. 
The identified values of the mechanical parameters 

are summed up in Table 1. 
The conditioning number of W is close to 30. 

Hence, the system is well conditioned and the 
designed trajectories are enough exciting. 
Direct comparisons have been performed. These 

tests consist in comparing the measured and the 
estimated torques just after the identification 
procedure. An example is illustrated Figure 4. 
Notice that the estimated torque follows the 
measured torque closely. 
Finally, we simulate the system by means of a 

SIMULINK model. We use the same speed 

references and the differential equation given by 
(15) is solved with the Euler’s method (ODE 1). The 
step time integrator is of 240μs. Figure 5 shows the 
measured and the simulated states. They are close to 
each others. 

Table 1: Estimated mechanical parameter values. 

Mechanical 
parameters 

Estimated 
values 

Relative 
deviation % 

J (kg.m²) 1,45.10-3 0,5 
MX (kg.m) 2,2.10-3 5,0 
MY (kg.m) 0,9.10-3 8,7 

fv (Nm.s.rad-1) 2,4.10-3 2,6 
fc (Nm) 5,9.10-2 0.8 

 Cond(W) = 30  
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Figure 4: Comparison between the measured and 
estimated torque calculated through the LS technique. 
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Figure 5: Comparison between the measured states (blue) 
and the simulated states (green). 
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It comes that the LS technique identification gives 
interesting and reliable results even if the 
assumptions on the noise model are violated. 

3.2.2 SRIV Method 

As explained section 2.3, the instrument matrix is 
built with the simulated states (see previous section 
for the simulation parameters) and the algorithm is 
initialized with the values given in Table 1. The 
parameters are estimated thanks to (14). These 
values do not vary consequently (only 2 steps are 
enough to decrease the correlation between the 
instrument matrix and the noise on the system). The 
results are summed up in Table 2. 
We have also performed direct comparison (Figure 

6). Once again, the estimated torque follows the 
measured torque closely. As an expected result, the 
SRIV method gives reliable and interesting results 
and can be used to identify inertial parameters of 
robots. The results given Table 2 are close to those 
exposed Table 1. That means that, in this case, the 
LS method detailed section 2.2 is as efficient as the 
SRIV technique detailed section 2.3. 

Table 2: Estimated mechanical parameter values 
calculated through the SRIV method after 5 steps. 

Mechanical 
parameters 

Estimated values Relative 
deviation % 

J (kg.m²) 1,45.10-3 0,4 
MX (kg.m) 2,2.10-3 5,0 
MY (kg.m) 0,9.10-3 8,2 

fv (Nm.s.rad-1) 1,9.10-3 3,5 
fc (Nm) 6,3.10-2 0.8 

 Cond(W) = 30  
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Figure 6: Comparison between the measured and 
estimated torque calculated through the SRIV. 

4 DISCUSSION 

In the case of this study, the experimental results 
tend to prove that the identification technique 
developed by the IRCCyN robotic team is as 
efficient and consistent as the SRIV method. This 
mainly due to the data treatment described section 
2.2.2. Indeed, it helps the LS estimator: outliers and 
leverage points are eliminated while the derivatives 
of q are calculated without magnitude and phase 
shift. In addition, the data filtering is well designed. 
It is interesting to mix both methods. Indeed, with a 

simple analysis, we can detect which parameters are 
sensitive to noise measurement, noise modelling, 
high frequency disturbances… 
To do so, we introduce an estimation relative error 

given by (19): 

                    
LSj

SRIVj

X̂

X̂
1100%e −=                       (19) 

Where SRIVjX̂ is the jth parameter estimated by 

means of the SRIV method and LSjX̂ is the jth 
parameter estimated thanks to the LS technique. The 
results are summed up in Table 3. 
In our case, only the parameters of friction torque 

are quite sensitive. This is mainly due to the fact that 
they “see” all undesirable effects such as torque 
ripple, cable wear and imperfect contacts which are 
not modelled. Hence, that proves the interest of this 
approach and the use of the SRIV method. 

Table 3: Estimation relative error. 

Parameter %e 
J (kg.m²) 0,1 % 

Mx (kg.m) 0,2 % 
My (kg.m) 1,3 % 

fv (Nm.s.rad-1) 20 % 
fc (Nm) 7,3 % 

 
During the experiments, it is appeared that the 

SRIV could be helpful when we are not familiar 
with the data filtering. We know that the LS 
estimators are sensitive to noises filtering and if the 
filtering is not well designed, the results could be 
controversial. These results will be published in a 
later publication. 
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5 CONCLUSION 

In this paper, two identification methods have been 
tested and compared: the first based on the ordinary 
LS technique associated with an appropriate data 
treatment and the second based on the SRIV method. 
Both methods give interesting and reliable results. 
Hence, we can choose these techniques for a 
parametric identification. 
In addition, the authors have introduced a simple 

calculation which enables us to know the parameters 
which are sensitive to noises and undesirable effects. 
Future works concern the use of both techniques to 

identify a 6 degrees of freedom robot. 
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