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Abstract: In this paper, we develop a new algorithm for computing force-closure grasps of two-dimensional (2D) 
objects using multifingred hand. Assuming hard-finger point contact with Coulomb friction, we present a 
new condition for multi-finger to form force-closure grasps. Based on the central axis of contact wrenches, 
an easily computable algorithm for force-closure grasps has been implemented and its efficiency has been 
demonstrated by examples. 

1 INTRODUCTION 

Grasping remains one of the fundamental problems 
in robotics. Research has been directed towards the 
design and control of multifingred dexterous robot 
hand to increase robot dexterity and adaptability (Li 
J-W., Jin M-H. and  Liu H. 2003). 

A main property of a multi-finger stable grasp is 
force-closure. It’s the ability to balance any external 
object wrenches by applying appropriate finger 
wrenches at the contact points. In other words, a 
grasp on an object is force-closure if and only if 
arbitrary force and torque can be exerted on the 
object through the fingers (Yan-Bin  Jia 2004). It’s 
complicated to assure that the applied finger forces 
remain in the friction cone at all times so as to avoid 
fingers slippage on the object surface (Murray R., Li 
Z. and Sastry S. 1994). 

Human can use more than three/four fingers of 
his hand to manipulate objects. During such tasks, 
there exists a lot of contact points between the hand 
and grasped object. The question is: how can we 
evaluate or compute force-closure of such grasps? 

In this paper, we are focused on the problem of 
computing force-closure of multifingered grasps of 
2D objects. We develop a new approach for force-
closure test independently of fingers's number. This 

quality is obtained using the mechanical properties 
of the grasp wrench. 

2 RELATED WORK 

Force-closure test is an essential problem in 
grasping. However, The notion of force-closure does 
not directly yield a method for force-closure test 
(Sudsang A. and Phoka T. 2005). Some necessary 
and sufficient conditions for force-closure were 
formulated in order to derive force-closure tests. A 
commonly used necessary and suffecient force-
closure condition given by (Salisbury J.K. and Roth 
B. 1982) allowed a force-closure test to be 
performed by checking whether the origin is strictly 
inside the convex hull of the primitive contact 
wrenches. This test also provided an underlying idea 
to recent work in grasping (D. Ding, Y-H Liu, and S. 
Wang 2001). Nguyen (Nguyen, V.D. 1988) formally 
demonstrated for 2-fingered grasps that non-
marginal equilibrium grasps achieve force-closure. 
Recently,  (Li J-W., Jin M-H. and  Liu H. 2003) 
proposed a necessary and suffecient condition for 3-
fingered force-closure grasps based on (Ponce J. and 
Faverjon B. 1995) and developed an algorithm for 
three-finger force-closure test. Their method begins 
by the processing of friction cones using an 
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operation called disposition H, then, they attack the 
problem of determining the intersection of the three 
double-side friction cones. 

The rest of the paper is organized as follow, in 
section 3, we present the background of grasp 
wrenches central axes and the relationship between 
these axes and grasp force-closure. In section 4, we 
propose a new multi-finger force-closure condition. 
Hence, a novel algorithm is presented, which its 
implementation needs little geometric computations. 
In section 5, we present some multi-finger grasps 
examples. Finally, we conclude with future works. 

3 CENTRAL AXIS OF GRASP 
WRENCHES 

Based on Coulomb friction model, a contact force is 
constrained to lie in a friction cone centered about 
the internal surface normal at contact point. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Contact between the finger and an object 
showing friction cone. 

As shown in figure 1, a friction cone at is 
bounded by vectors and , and any force  is a 
nonnegative combination of these two vectors. In 2D 
case, contact forces are 
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With 0≥0≥ 21 ii a,a to avoid fingertips slippage. 

m is the number of contact points. 
If is the surface normal at the contact 

point and is the friction angle that depends on 
materials in contact (finger and object) then, 
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The external wrench applied by the robotic hand 

on the grasped object is given by 
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Poinsot’s theorem: “Every collection of wrenches 

applied to a rigid body is equivalent to a force 
applied along a fixed axis (central axis) and a 
torque around the same axis” (Murray R., Li Z., 
Sastry S. 1994). Using this theorem, points of the 
central axis  of contact wrench are given by CΔ
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The axis  is a directed line through a point. 
For , the central axis is a line in the 

CΔ
0F ≠c
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cF direction going through the point such as  

.  

 the point such as  
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For , the axis is a line in the τ direction 
going through the origin (Murray R., Li Z., Sastry S. 
1994).  

For , the axis is a line in the τ direction 
going through the origin (Murray R., Li Z., Sastry S. 
1994).  

0F =c o/c

In two-dimentional case with non null forces 
( Fc ), the torque around the central axis is zero. 
The force c is an invariant vector and always 
parallel to C . Figure 2 shows the central axis in 2D 
grasps when c . it is Characterized by the 
following equation 

In two-dimentional case with non null forces 
( Fc ), the torque around the central axis is zero. 
The force c is an invariant vector and always 
parallel to C . Figure 2 shows the central axis in 2D 
grasps when c . it is Characterized by the 
following equation 
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Figure 2: Central axis parameters. 

In figure 3-a, we present a first example of three-
finger 2D grasp. By varying forces randomly (in  
orientation and amplitude) inside friction cones (the 
friction angle), figure 3-b illustrates all possible 
central axes of grasp wrenches. 

if

There is no central axis passing through the gray 
region. In this region, positive torque can’t be 
exerted on the object through the finger contacts. 
This grasp can’t achieve force-closure. Exactly, the 
grasp can not achieve torque-closure because the 
object turn around the gray region in figure 3-a. 

 
 
 
 
 
 
 
 

Figure 3: a) no force-closure 2D grasp, b) all central axes 
of grasp wrenches ( ). °= 5α

°= 10α

)

A second example is shown in figure 4; we 
present a non-force-closure grasp using five contact 
points. This grasp is instable and the object turn 
around axis in the gray region (figure 4-a). Z

 
 
 
 
 
 
 

Figure 4: a) non-force-closure five-fingers grasp;  
b) central axes of grasp wrenches ( ). 

When a grasp is force closure, the central axes of 
grasp wrenches can wholly sweep the plan . In 
the third example, shown in figure 5, we use the 
same finger’s configuration as figure 3 but we 
change the friction angle . The grasp 
becomes force-closure. 
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Figure 5: a) three fingers force-closure 2D grasp,  
b) central axes of grasp wrenches ( ). °= 20α

According to these three examples, we can 
conclude that the distribution of central axes can 
confirm if a grasp is  force-closure or not (for any 
contact points number). 

4 FORCE-CLOSURE AND 
EQUILIBRIUM CONDITION 

In 2D grasps and based on Poinsot’s theorem, we 
can give the following definition. 

+Torque 

(a) (b) 

Definition 1: Any external wrench applied by the 
robotic hand on a 2D object is equivalent to a force 
along a central axis of this wrench. When the force 
is equal to zero, the external wrench is equivalent to 
a torque about the grasp plan normal. 

Definition 2: A grasp on an object is force-closure 
if and only if any arbitrary force and torque can be 
exerted on the object through the finger contacts 
(Yan-Bin  Jia 2004). There are other force-closure 
definitions, but this one is more useful for our 
deduction. 

Definition 3: A grasp is said to achieve 
equilibrium when it exists forces (not all of them 
being zero) in the friction cones at the fingertips 
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such that the sum of the corresonding wrenches is 
zero (Sudsang A., Phoka T. 2005).  

4.1 Equilibrium Condition 

During objects grasp operations there exist two 
kinds of external wrenches applied on the 
manipulated object, task wrench (applied by the 
environment) and contact wrench (applied by the 
robotic hand fingers). Based on definitions 1 and 
definitions 3, we derive a new proposed necessary 
and sufficient equilibrium condition. 

Proposition 1: A multifingers grasp is said to 
achieve equilibrium if and only if the central lines of  
contact wrench and task wrench have the same 
support and opposite direction. 

Proof: 

i) Sufficient Condition: 

the external contact wrench given by equation (5) 
and task wrench is given by 
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In both cases, Relations (14) and (16), the two 

wrenches (contact and task) should have the same 
central line with opposite directions. ■ 

ii) Necessary Condition:  
Now, if we consider two wrenches reduced at the 

same point O and they have the same central line 
with opposite directions. We have two cases: 

a) if 0F =t  then the central axis of the task wrench is 
defined by the unit vector where: tU

 

If the two wrenches have the same central line 
with opposite direction then the contact central axis 
is defined by the following unit vector: 

 

We conclude that: 
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Sgn is the sign function that computes the sign of 
the leading coefficient of expression. 

b) if , having the same central axis with 
opposite direction implies  

0F ≠t

 
( ) ( ) 0<⋅⋅ ctcc SgnSgn UFUF                 (18) 

Where c  and t define the unit vectors of the two 
central axes. We have: 

U U

 
                                    ; 
 
Using hypothesis that there is one central line and 

form relation (9), we have  
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Then, replacing ccc UFF =  ; ctt UFF −=  in 
Relation (19) we obtain 
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In 2D case, the equation (20) can be only 

satisfied when 0=λ . therefore, the two torques have 
opposite signes: 

( ) ( ) 0<⋅⋅ ZτZτ o/to/c SgnSgn                 (21) 

Relations (17, 18 and 21) imply that the contact 
wrench can generate grasp wrenches that opposite 
the external task wrench. Robotic hand can control 
its fingers force to produce the appropriate 
force/torque magnitude that achieving equilibrium.■ 

4.2 Force-Closure Condition 

In particular, force-closure implies equilibrium, but 
there are wrench systems that achieve equilibrium 
but not force closure (Li Jia-Wei. and Cia He-Gao, 
2003). 
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 Using force-closure condition in definition 2, we 
can derive this definition 

 Using force-closure condition in definition 2, we 
can derive this definition 

Definition 4: A grasp is force closed, if and only if 
it is in equilibrium for any arbitrary wrench (Bicchi 
A., Kumar V. 2000, Nguyen, V.D. 1988). Thus, 
force closure implies, fingers contact wrenches can 
balance any external task wrenches. 

Definition 4: A grasp is force closed, if and only if 
it is in equilibrium for any arbitrary wrench (Bicchi 
A., Kumar V. 2000, Nguyen, V.D. 1988). Thus, 
force closure implies, fingers contact wrenches can 
balance any external task wrenches. 

According to proposition 1 and definition 4, we 
propose a new force-closure necessary and sufficient 
condition. 

According to proposition 1 and definition 4, we 
propose a new force-closure necessary and sufficient 
condition. 

Proposition 2: A multifingred grasp of 2D objects 
is said to achieve force-closure if and only if the 
central axis of the fingers contact wrenches can 
sweep the grasp plan at any direction.  

Proposition 2: A multifingred grasp of 2D objects 
is said to achieve force-closure if and only if the 
central axis of the fingers contact wrenches can 
sweep the grasp plan at any direction.  

4.3 Force-Closure Test Algorithm 4.3 Force-Closure Test Algorithm 

According to the proposition 2, we present a new 
algorithm for computing 2D multi-fingers grasps of 
arbitrary object. 

According to the proposition 2, we present a new 
algorithm for computing 2D multi-fingers grasps of 
arbitrary object. 

Based on the central axis equation defined in 
relation (10), this central line can sweep the plan in 
all directions if 

Based on the central axis equation defined in 
relation (10), this central line can sweep the plan in 
all directions if 
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In other word, for any axis on the  plan or 
along the vertical , this axis must be one of the 
grasp wrench central axes. 
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The third sub-condition is function of the reduced 
point of the torque, to cover the entire grasp plan; we 
test this condition at all the vertices of the 
intersection of the m double-side friction cones 
(named ). In general case of m contact points, the 
number of intersection points is given by 
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Hence, a multifingred 2D grasp is said to achieve 
force-closure if each of these inequalities are true. 
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From mechanical viewpoint, inequality (23-1) 
implies that fingers can generate forces 
along andX X− , (23-2) means that fingers can exert 
force on the object along and . If the last 
inequality (23-3) is true 

Y Y−
( )

kBN...kfor 1=  then the 
finger can exert torque on object about the vertical 
axis in both directions. Z

5 EXAMPLES  

We present bellow some grasp examples using three, 
four and five fingers. In both cases (force-closure 
and no force-closure), we show the distribution of 
grasp wrench central axes. 
a) Three-finger grasps 

 

 

 

Figure 6: a) a three-finger force-closure 2D grasp, b) 
central axes of grasp wrenches ( ). °=15α

 
 

 
 
 
 
 

Figure 7: a) a three-finger force-closure 2D grasp, b) 
central axes of grasp wrenches ( ). °= 20α
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(a) (b) 

 

 

 

 

Figure 8: a) no force-closure 2D grasp, b) central axes of 
grasp wrenches ( α ). Grasp wrenches can’t generate 
a negative torque in grey zone.  

(a) (b) 

(a) (b) 

(a) (b)

°=10

)

 

 
 
 
 
 

Figure 9: a) no force-closure 2D grasp, b) central axes of 
grasp wrenches ( α ).Grasp wrenches can’t exert a 
force along ( axis and can’t generate torques in two-
direction in unreachable zones in (b). 

°=10
Y−

b) Four-finger grasps 

 

 
 
 
 

Figure 10: a) four-finger force-closure 2D grasp, b) central 
axes of grasp wrenches ( ). °=10α

c) Five-finger grasps 

 
 
 
 
 
 
 
 

Figure 11: a) five-finger force-closure 2D grasp, b) central 
axes of grasp wrenches ( ). °= 25α

6 CONCLUSION AND FUTURE 
WORK 

We have presented a new equilibrium and force-
closure conditions for multifingred 2D grasps. A 
novel algorithm for computing 2D multi-finger 
force-closure grasps of arbitrary objects was 
developed, which is very simple and needs little 
geometric computations. Therefore, it can be 
implemented in real-time multifingred grasp 
programming. Our future work will be concentrated 
on the extending of this algorithm to the 3D grasps 
and the quality measurement of grasps. 
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