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Abstract: Nowadays, the local visual perception research, applied to autonomous mobile robots, has succeeded in 
some important objectives, such as feasible obstacle detection and structure knowledge. This work relates 
the on-robot visual perception and odometer system information with the nonlinear mobile robot control 
system, consisting in a differential driven robot with a free rotating wheel. The description of the proposed 
algorithms can be considered as an interesting aspect of this report. It is developed an easily portable 
methodology to plan the goal achievement by using the visual data as an available source of positions. 
Moreover, the dynamic interactions of the robotic system arise from the knowledge of a set of experimental 
robot models that allow the development of model predictive control strategies based on the mobile robot 
platform PRIM available in the Laboratory of Robotics and Computer Vision. The meaningful contribution 
is the use of the local visual information as an occupancy grid where a local trajectory approaches the robot 
to the final desired configuration, while avoiding obstacle collisions. Hence, the research is focused on the 
experimental aspects. Finally, conclusions on the overall work are drawn. 

1 INTRODUCTION 

The research presented in this paper addresses to a 
kind of differential driven WMRs (wheeled mobile 
robots). Nowadays, the computer vision techniques 
applied to WMR have solved the problem of 
obstacle detection by using different methods as 
stereo vision systems, optical flow or DFF (depth 
from focus). Stereo vision systems seem to provide 
the easiest cues to infer scene depth (Horn, 1998). 
The optical flow techniques used in WMR result in 
several applications as i.e. structure knowledge, 
obstacle avoidance, or visual servoing (Campbell, et 
al., 2004). The DFF methods are also suitable for 
WMR. For example, three different focused images 
were used, with almost the same scene, acquired 
with three different cameras (Nourbakhsh, et al., 
1997). In this work, it is supposed that available 
obstacle positions are provided by using computer 
vision systems. In this context, the allowed 
navigation control signals should achieve the 
obstacle avoidance as well as the final desired 
coordinates. Scientific community has developed 
several studies in this field. Based on the dynamic 
window approach with available robot speeds, the 
reactive avoidance collisions, safety stop and goal 

can be achieved using the dynamic constraints of 
WMR (Fox, et al., 1997). Rimon and Koditschek 
(1992) presented the methodologies for the exact 
motion planning and control, based on the artificial 
potential fields where the complete information 
about the free space and goal are encoded. Some 
approaches on mobile robots propose the use of 
potential fields, which satisfy the stability in a 
Lyapunov sense, in a short prediction horizon 
(Ögren and Leonard, 2005). The main contribution 
of this paper is the use of the visual information as a 
dynamic window where the collision avoidance and 
safety stop can be planned. Thus, local visual data, 
instead of artificial potential fields, are used in order 
to achieve the Lyapunov stability. The use of MPC 
(model predictive control) with available on-robot 
information is possible. Moreover, the local visual 
information is used as an occupancy grid that allows 
planning feasible trajectories towards the desired 
objective. The knowledge of the objective allows the 
optimal solution of the local desired coordinates 
based on the acquired images. The sensor fusion is 
done using visual perception, as the meaningful 
source of information in order to accomplish with 
the robot tasks. Other data provided by the encoder-
based odometer system are also considered.  
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This paper is organized as follows: Section 1 
gives a brief presentation about the aim of the 
present work. In the Section 2, the platform is 
introduced as an electromechanical system. This 
section also describes the experiments to be realized 
in order to find the parametric model of the robot 
suitable for designing and implementing MPC 
methods. In the Section 3, the use of visual data is 
presented as a horizon where optimal trajectories can 
be planned. Section 4 presents the MPC strategies 
used for achieving the path following of the 
reference trajectories. In the Section 5, some 
conclusions are made with special attention paid into 
the future research works. 

2 ROBOT AND BASIC CONTROL 
METHODS 

This section gives some description on the main 
robot electromechanical and sensorial systems of the 
platform tested in this work. Hence, the WMR 
PRIM, available in our lab, has been used in order to 
test and orient the research. The experimental 
modelling methodologies as well as the model 
predictive control are also introduced. 

2.1 Electromechanical and Sensorial 
System of the Robot 

Figure 1 shows the robot PRIM used in the research 
work. The mechanical structure of the robot is made 
of aluminum, with two independent wheels of 16cm 
diameters actuated by two DC motors. The distance 
between two wheels is 56.4cm. A third spherical 
omni-directional wheel is used to guarantee the 
system stability. The maximum continuous torque of 
each motor is 131mNm. The proportion of gear 
reduction for each motor is 86:1 and thus the total 
force actuating on the robot is near 141N. Shaft 
encoders with 500 counts/rev are placed at the motor 
axes, which provide 43000 counts for each turn of 
the wheel. A set of PLD (programmable logic 
device) boards is connected to the digital outputs of 
the shaft encoders. The printed circuits boards 
(PCB) are used to measure the speed of each motor 
at every 25ms. 

An absolute counter provides the counts in 
order to measure the robot position by the odometer 
system. Another objective of these boards is to 
generate a signal of 23khz PWM for each motor.  

The communication between the central digital 
can computer and the boards is made through the 
thus it parallel port. The speed is commanded by a 
byte and generate from 0 to 127 advancing or rever- 

 
Figure 1: The robot PRIM used in this work. 

sing speed commands. The maximal speed is near 
0.5m/s. A set of microcontroller boards (MCS-51) is 
used to read the information available from different 
connected sensors. The rate of communication with 
these boards is 9600 b/s. Figure 2 shows the 
electronic and sensorial system blocks. The data 
gathering and the control by digital computer is set 
to 100ms.  

 

Figure 2: The sensorial and electronic system blocs. 

The system flexibility is increased with the 
possibility of connecting with other computer 
systems through a local LAN. In this research, it is 
connected to a machine vision system that controls a 
colour camera EVI-D70P-PAL through the VISCA 
RS232-C control protocol. For instance, the camera 
configuration used in this work is of a horizontal 
field of view of 48º, and a vertical field of 37º. The 
focus, pan and tilt remain fixed under present 
configuration. Hence, the camera pose is set to 
109cm from the floor with a tilt angle of 32º. The 
local desired coordinates, obtained by the visual 
perception information, are transmitted to the control 
unit connecting the USB port to the LAN.  

2.2 Experimental Model 

The parametric identification process is based on 
black box models (Lju, 1989), (Norton, 1986) and 
(Van Overschee, Moor, 1996). Thus, the transfer 
functions are related to a set of polynomials that 
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allow the use of analytic methods in order to deal 
with the problem of controller design. The 
nonholonomic system dealt with in this work is 
considered initially as a MIMO (multiple input 
multiple output) system, which is composed of a set 
of SISO subsystems with coupled dynamic influence 
between two DC motors. The approach of multiple 
transfer functions consists in making the 
experiments with different speeds. In order to find a 
reduced-order model, several studies and 
experiments have been done through the system 
identification and model simplification.  

2.2.1 System Identification 

The parameter estimation is done by using a PRBS 
(Pseudo Random Binary Signal) as excitation input 
signal. It guarantees the correct excitation of all 
dynamic sensible modes of the system along the 
spectral range and thus results in an accurate 
precision of parameter estimation. The experiments 
to be realized consist in exciting two DC motors in 
different (low, medium and high) ranges of speed.  

The ARX (auto-regressive with external input) 
structure has been used to identify the parameters of 
the robot system. The problem consists in finding a 
model that minimizes the error between the real and 
estimated data. By expressing the ARX equation as a 
lineal regression, the estimated output can be written 
as: 

θϕ=ŷ                                     (1) 

with  being the estimated output vector, θ the 
vector of estimated parameters and φ the vector of 
measured input and output variables. By using the 
coupled system structure, the transfer function of the 
robot can be expressed as follows:  

ŷ

 
 
 

where YR and YL represent the speeds of right and 
left wheels, and UR and UL the corresponding speed 
commands, respectively. In order to know the 
dynamics of robot system, the matrix of transfer 
function should be identified. Figure 3 shows the 
speed response of the left wheel corresponding to a 
left PBRS input signal.  

 
Figure 3: Left speed output for a left PRBS input signal. 

The treatment of experimental data is done 
before the parameter estimation. In concrete, it 
includes the data filtering, using the average value of 
five different experiments with the same input 
signal, the frequency filtering and the tendency 
suppression. The system is identified by using the 
identification toolbox “ident” of Matlab for second 
order models. The following continuous transfer 
function matrix for medium speed is obtained: 
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It is shown by simulation results that the obtained 
model fits well with the experimental data.  

2.2.2 Simplified Model of the System  

This section studies the coupling effects and the way 
for obtaining a reduced-order dynamic model. It is 
seen from (3) that the dynamics of two DC motors 
are different and the steady gains of coupling terms 
are relatively small (less than 20% of the gains of 
main diagonal terms). Thus, it is reasonable to 
neglect the coupling dynamics so as to obtain a 
simplified model.  

                   (2)R RR LR R

L RL LL L

Y G G U
Y G G U
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ Figure 4: Coupling effects at the left wheel. 

In order to verify it from real results, a set of 
experiments have been done by sending a zero speed 
command to one motor and other non-zero speed 
commands to the other motor. In Figure 4, it is 
shown a response obtained on the left wheel, when a 
medium speed command is sent to the right wheel. 
The experimental result confirms the above facts. 
The existence of different gains in steady state is 
also verified experimentally. Finally, the order 
reduction of system model is carried out trough the 
analysis of pole positions by using the method of 
root locus. Afterwards, the system models are 
validated through the experimental data by using the 
PBRS input signal. A two dimensional array with 
three different models for each wheel is obtained. 
Hence, each model has an interval of validity where 
the transfer function is considered as linear.   

PREDICTIVE CONTROL BY LOCAL VISUAL DATA - Mobile Robot Model Predictive Control Strategies Using Local
Visual Information and Odometer Data

261



 

2.3 Odometer System Expression 

Denote (x, y, θ) as the coordinates of position and 
orientation, respectively. The Figure 5 describes the 
positioning of robot as a function of the radius of left 
and right wheels (Re, Rd), and the angular 
incremental positioning (θe, θd), with E being the 
distance between two wheels and dS the incremental 
displacement of the robot. The position and angular 
incremental displacements are expressed as: 
 

 
The coordinates (x, y, θ) can be expressed as:  
 
 

        

 

 

 

 

 

Figure 5: Positioning of the robot as functions of the 
angular movement of each wheel.  

Thus, the incremental position of the robot can be 
obtained through the odometer system with the 
available encoder information obtained from (4) and 
(5). 

2.4 Model Predictive Control 

The model predictive control, MPC, has many 
interesting aspects for its application to mobile robot 
control. It is the most effective advanced control 
technique, as compared to the standard PID control, 
that has made a significant impact to the industrial 
process control (Maciejowski, 2002). Recently, real 
time mobile robot MPC implementations have been 
developed using global vision sensing (Gupta, 
Messom et al., 2005). In (Küne,  Lages et al., 2005), 
it was studied the MPC based optimal control useful 
for the case when nonlinear mobile robots are used 
under several constraints, as well as the real time 
implementation possibilities when short prediction 
horizons are used. In general, the global trajectory 
planning becomes unfeasible since the sensorial 
system of some robots is just local. By using a MPC, 
the idea of the receding horizon can deal with the 
local sensor information. In this way, it is proposed a 

local model predictive control, LMPC, in order to 
use the available visual data in the navigation 
strategies for the goal achievement. 

 The MPC is based on minimizing a cost 
function, related to the objectives, through the 
selection of the optimal inputs. In this case, the cost 
function can be expressed as follows: 

 
 
 

 
  

 
Denote Xd=(xd,yd,θd) as the desired coordinates. The 
first term of (6) is referred to the final desired 
coordinate achievement, the second term to the 
trajectory to be followed, and the last one to the 
input signals minimization. The parameters P, Q and 
R are weighting parameters. X(k+n|k) represents the 
terminal value of the predicted output after the 
horizon of prediction n and X(k+i|k) represents the 
predicted output values within the prediction 
horizon. The system constrains are also considered: 

 

 
The limitation of the input signal is taken into 
account in the first constraint. The second constraint 
is related to the obstacle points where the robot 
should avoid the collision. The last one is just a 
convergence criterion.  

3 THE HORIZON OF LOCAL 
VISUAL PERCEPTION 

The use of sensor information as a useful source to 
build 2D environment models consists of a free or 
occupied grid proposed by (Elfes, 1989). The 
knowledge of occupancy grids knowledge has been 
used for static indoor mapping with a 2D grid 
(Thrun, 2002). In other works of  multidimensional 
grids, multi target tracking algorithms are employed 
by using obstacle state space with Bayesian filtering 
techniques (Coué et al., 2006). In this work it is 
proposed the use of the local visual information 
available from the camera as a local map that has 
enough information in order to achieve a global 
objective. The occupancy grid can be obtained in 
real time by using computer vision methods. The use 
of the optical flow has been proposed as a feasible 
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obstacle avoidance method; as i.e., (Campbell et al., 
2004), in which it was used a Canny edge detector 
algorithm that consists in Gaussian filtering and 
edge detection by using Sobel filters. Thus, optical 
flow was computed over the edges providing 
obstacle structure knowledge. The present work 
assumes that the occupancy grid is obtained by the 
machine vision system. It is proposed an algorithm 
that computes the local optimal desired coordinate as 
well as the local trajectory to be reached. The 
research developed assumes indoor environments as 
well as flat floor constraints. However, it can be also 
applied in outdoor environments.    

This section presents firstly the local map 
relationships with the camera configuration and 
poses. Hence, the scene perception coordinates are 
computed. Then, the optimal control navigation 
strategy is presented, which uses the available visual 
data as a horizon of perception. From each frame, it 
is computed the optimal local coordinates that 
should be reached in order to achieve the desired 
objective. Finally, the algorithm dealing with the 
visual data process is explained. Some involved 
considerations are also made.  

3.1 Scene Perception 

The local visual data provided by the camera are 
used in order to plan a feasible trajectory and to 
avoid the obstacle collision. The scene available 
coordinates appear as an image, where each pixel 
coordinates correspond to a 3D scene coordinates. In 
the case attaining to this work, flat floor surface is 
assumed. Hence, scene coordinates can be computed 
using camera setup and pose knowledge, and 
assuming projective perspective. The Figure 6 shows 
the robot configuration studied in this work. The 
angles α, β and ϕ are related to the vertical and 
horizontal field of view, and the tilt camera pose, 
respectively. The vertical coordinate of the camera is 
represented by H.  

 
Figure 6:  Fixed camera configuration including vertical 
and horizontal field of view, and vertical tilt angle. 

Using trigonometric relationships, the scene 
coordinates can be computed: 

 
( ) (8)                         ααϕ Δ+−= 2tanHyj

 

( )R
R

K j ≤≤=Δ jK0            αα  

( ) ( ) (9)              β
ααϕ

Δ
Δ+−

±= tan
2cos,

Hx ji
 

( )2C
C

Ki ≤≤=Δ iK0            ββ  

The Ki and Kj are parameters used to cover the 
image pixel discrete space. Thus, R and C represent 
the image resolution through the total number of 
rows and columns. It should be noted that for each 
row position, which corresponds to scene 
coordinates yj, there exist C column coordinates xi,j. 
The above equations provide the available local map 
coordinates when no obstacle is detected. Thus, 
considering the experimental setup reported in 
Section 2, the local on-robot map depicted in Figure 
7 is obtained.  

 
Figure 7:  Local visual perception free of obstacles, under 
96x72 or 9x7 low resolution grids. 

3.2 Local Optimal Trajectory  

The available information provided by the camera is 
considered as a local horizon where the trajectory is 
planned. Hence, a local map with free obstacle 
coordinates is provided. In this sense, the available 
local coordinates are shown in Figure 7. It is noted 
that low resolution scene grids are used in order to 
speed up the computing process.  

The minimization of a cost function, which 
consists in the Euclidean distance between the 
desired coordinates and the available local scene 
coordinates, can be optimally solved by finding the 
local desired coordinates. Hence, the algorithm 
explores the image pixels, IMAGE(i,j), considering 
just the free obstacle positions. Once the local 
desired point is obtained, a trajectory between the 
robot coordinates, at the instant when the frame was 
acquired, and the optimal scene coordinates is 
planned. Thus, the current robot coordinates are 
related to this trajectory, as well as to control 
methods. 
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3.3 Algorithms and Constraints 

In this subsection, some constraints that arise from 
the experimental setup are considered. The narrow 
field of view and the fixed camera configuration 
make necessary that the robot stays oriented towards 
the desired coordinates. WMR movements are 
planned based on the local visual data, and always in 
advancing sense. Hence, the algorithms provide 
local desired coordinates to the control unit. If WMR 
orientation is not appropriate, the robot could turn 
around itself until a proper orientation is found. 
Another possibility is to change the orientation in 
advancing sense by the use of the trajectory/robot 
orientation difference as the cost function computed 
over the available visual data. This subsection 
proposes the local optimal suggested algorithms that 
have as special features an easy and fast 
computation. Some methods are presented in order 
to overcome the drawback of local minimal failures.  

3.3.1 The Proposed Algorithms 

The proposed algorithm, concerning to obtaining the 
local visual desired coordinates, consists of two 
simple steps: 

 To obtain the column corresponding to best 
optimal coordinates that will be the local desired 
Xi coordinate. 

 To obtain the closer obstacle row, which will be 
the local desired Yj coordinate.  

The proposed algorithm can be considered as a first 
order approach, using a gross motion planning over 
a low resolution grid. The obstacle coordinates are 
increased in size with the path width of the robot 
(Schilling, 1990). Consequently, the range of 
visually available orientations is reduced by the path 
width of WMR. Other important aspects as visual 
dead zone, dynamic reactive distance and safety stop 
distance should be considered. The dynamic reactive 
distance, which should be bigger than the visual 
dead zone and safety stop distance, is related to the 
robot dynamics and the processing time for each 
frame. Moreover, the trajectory situated in the visual 
map should be larger than a dynamic reactive 
distance. Thus, by using the models corresponding 
to the WMR PRIM, three different dynamic reactive 
distances are found. As i.e. considering a vision 
system that processes 4 frames each second, using a 
model of medium speed (0.3m/s) with safety stop 
distance of 0.25m and an environment where the 
velocity of mobile objects is less than 0.5m/s, a 
dynamic reactive distance of 0.45m is obtained.  
Hence, the allowed visual trajectory distance will set 
the speed that can be reached. The desired local 

coordinates are considered as final points, until not 
any new optimal local desired coordinates are 
provided. The image information is explored starting 
at the closer positions, from bottom to upside. It is 
suggested to speed up the computing process based 
on a previously calculated LUT, (look up table), 
with the scene floor coordinates corresponding to 
each pixel.  

3.3.2 Local Minimal Failures 

The local minimal failures will be produced when a 
convergence criterion, similar to that used in (7), is 
not satisfied. Thus, the local visual map cannot 
provide with closer optimal desired coordinates, 
because obstacles blocks the trajectory to the goal. 
In these situations, obstacle contour tracking is 
proposed. Hence, local objectives for contour 
tracking are used, instead of the goal coordinates, as 
the source for obtaining a path until the feasible goal 
trajectories are found. The Figure 8 shows an 
example with local minimal failures. It is seen that 
in A, the optimal trajectory is a straight line between 
A and E. However, an obstacle is met at B, and local 
minimal failure is produced at B. When this is 
produced, no trajectory can approach to the desired 
goal, (Xd, Yd). Then, obstacle con-tour tracking is 
proposed between B and C. Once C is attained, local 
minimization along coordinates Y is found and the 
trajectory between C and D is planned.  From D to E 
local minimums are reached until the final goal is 
achieved. It should be noted that once B is reached, 
the left or right obstacle contour are possible. 
However, the right direction will bring the robot to 
an increasing Yj distance.  

 
Figure 8: Example of local minimal failures produced at B 
with A being the starting point and E the desired goal. 

The robot follows the desired goals except when the 
situation of obstacle contour tracking is produced, 
and then local objectives are just the contour 
following points. The local minimal failures can be 
considered as a drawback that should be overcome 
with more efforts. In this sense, the vision 
navigation strategies (Desouza, Kak, 2002) should 
be considered. Hence, it is proposed the use of 
feasible maps or landmarks in order to provide local 
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objective coordinates that can be used for guiding 
the WMR to reach the final goal coordinates.   

4 LMPC ALGORITHMS 

This section gives the LMPC algorithms by using 
the basic ideas presented in the Section 2. The 
LMPC algorithm is run in the following steps: 
 To read the actual position 
 To minimize the cost function and to obtain a 

series of optimal input signals 
 To choose the first obtained input signal as the 

command signal. 
 To go back to the step 1 in the next sampling 

period 
The minimization of the cost function is a 

nonlinear problem in which the following equation 
should be verified: 

( ) ( ) ( ) ( )10                         yfxfyxf βαβα +≤+                     
It is a convex optimization problem caused by the 
trigonometric functions used in (5), (Boyd, 
Vandenberghe, 2004). The use of interior point 
methods can solve the above problem (Nesterov, 
Nemirovskii, 1994). Among many algorithms that 
can solve the optimization, the descent methods are 
used, such as the gradient descent method among 
others, (Dennis, et al. 1996), (Ortega, et al. 2000). 
The gradient descent algorithm has been 
implemented in this work. In order to obtain the 
optimal solution, some constraints over the inputs 
are taken into account: 

 The signal increment is kept fixed within the 
prediction horizon. 

 The input signals remain constant during the 
remaining interval of time.  

The input constraints present advantages such like 
the reduction in the computation time and the 
smooth behavior of the robot during the prediction 
horizon. Thus, the set of available input is reduced to 
one value. In order to reduce the optimal signal 
value search, the possible input sets are considered 
as a bidimensional array, as shown in Figure 9. 

 

Figure 9: Optimal interval search. 

Then, the array is decomposed into four zones, and 
the search is just located to analyze the center points 

of each zone. It is considered the region that offers 
better optimization, where the algorithm is repeated 
for each sub-zone, until no sub-interval can be 
found. Once the algorithm is proposed, several 
simulations have been carried out in order to verify 
the effectiveness, and then to make the 
improvements. Thus, when only the desired 
coordinates are considered, the robot could not 
arrive in the final point. Figure 10 shows that the 
inputs can minimize the cost function by shifting the 
robot position to the left.  

Figure 10: The left deviation is due to the greater left gain 
of the robot. 

The reason can be found in (3), where the left motor 
has more gain than the right. This problem can be 
easily solved by considering a straight-line trajectory 
from the actual point of the robot to the final desired 
point. Thus, the trajectory should be included into 
the LMPC cost function. The Figure 11 shows a 
simulated result of LMPC for WMR obtained by 
using firstly the orientation error as cost function 
and then the local trajectory distance and the final 
desired point for the optimization. The prediction 
horizons between 0.5s and 1s were proposed and the 
computation time for each LMPC step was set to 
less than 100ms, running in an embedded PC of 
700MHz. In the present research, the available 
horizon is provided by using the information of local 
visual data. Thus, the desired local points as well as 
the optimal local trajectory are computed using 
machine vision information.  

Figure 11: LMPC simulated results with a 45º trajectory. 

5 CONCLUSIONS 

This paper has integrated the control science and the 
robot vision knowledge into a computer science 
environment. Hence, global path planning by using 
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local information is reported. One of the important 
aspects of the paper has been the simplicity, as well 
as the easy and direct applicability of the 
approaches. The proposed methodology has been 
attained by using the on-robot local visual 
information, acquired by a camera, and the 
techniques of LMPC. The use of sensor fusion, 
specially the odometer system information, is of a 
great importance. The odometer system uses are not 
just constrained to the control of the velocity of each 
wheel. Thus, the absolute robot coordinates have 
been used for planning a trajectory to the desired 
global or local objectives. The local trajectory 
planning has been done using the relative robot 
coordinates, corresponding to the instant when the 
frame was acquired. The available local visual data 
provides a local map, where the feasible local 
minimal goal is selected, considering obstacle 
avoidance politics. 
Nowadays, the research is focused to implement the 
presented methods through developing flexible 
software tools that should allow to test the vision 
methods and to create locally readable virtual 
obstacle maps. The use of virtual visual information 
can be useful for testing the robot under synthetic 
environments and simulating different camera 
configurations. The MPC studies analyzing the 
models derived from experiments as well as the 
relative performance with respect to other control 
laws should also be developed.  
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