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Abstract: This paper presents a Newmark method based sub-cycling algorithm, which is suitable for solving the 
condensed flexible multi-body dynamic (FMD) problems. Common-step update formulations and sub-step 
update formulations for quickly changing variables and slowly changing variables of the FMD are 
established. Stability of the procedure is checked by checking energy balance status. Examples indicate that 
the sub-cycling is able to enhance the computational efficiency without dropping results accuracy greatly. 

1 INTRODUCTION 

Flexible multi-body system (FMS) can be applied in 
various domains such as space flight, automobiles 
and robots. In these domains, accurate and efficient 
computation of the flexible bodies undergoing large 
overall motion is important for design and control of 
the system (Huang and Shao, 1996).  

Conventional integration methods, such as the 
Newmark algorithm, the Runge-Kutta algorithm and 
the Gear algorithm and etc (Dan Negrut, et al,  2005), 
were widely applied to solve FMD equations.  

Sub-cycling was proposed by Belytschko T. et al 
(Belytschko T.,1978). Mark et al (Mark, 1989) 
applied the method to simulate an impact problem 
and computational cost of the sub-cycling was only 
15% of that without sub-cycling. Gao H et al. (Gao, 
2005) used sub-cycling to simulate auto-body 
crashworthiness and declared that the cost is only 
39.3% of no sub-cycling. Tamer et al (Tamer, 2003) 
pointed out that the FMD sub-cycling methods have 
not yet been presented in literatures. 

2 SUB-CYCLING FOR FMD 

A sub-cycling is constituted by two types of cycles, 
main-cycle and sub-cycle. The key for sub-cycling is 
to appropriately treat with interactions of nodes on 
the interface (Daniel, 1997). 

2.1 Condensed Model of FMD 

A flexible body is displayed in figure 1. Definition 
of variables can be referenced in the literature (Lu, 
1996).  

 
Figure 1: A spatial arbitrary flexible body. 

The FMD equation can be established by means 
of the Lagrange formation.  
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Thereinto, M is a general mass matrix, K is a 
general stiffness matrix, C(q,t) is the constrains, QF 
and QV are general external load and general 
centrifugal load. Λ  is the Lagrange multiplier. By 
means of two times of differentials of the constrain 
equation, an augmented FMD equation can be 
obtained as below.  
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Due to the constraints, variables in (2-3) are 
independent. By decomposition, a condensed FMD 
equation can be established as following (Haug, 
1989). 
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Thereinto:  
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Equation（2-4） is a pure differential formation. 
It is suitable for sub-cycling (Lu, 1996). 

2.2 Newmark Integration for FMD 

The Newmark integration is as following. There, qt 
denotes value of the general variable at time t. Δ t is 

the step size. β andγ are adjustable parameters.  
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Define symbols below.  
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The dynamic equation at time t+ Δ t can be 
established below. 
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   Finally, we can get the results. 
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Equation (2-8) need be solved iteratively. The 
iteration process is as following. 
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Thereinto, the top left corner marks represent the 
number of the iteration step. Start-up initialisation of 
iteration can be set-up below. 
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2.3 Newmark Sub-cycling for FMD 

For simplification, all variables are separated into 
two categories. The smaller step size is set to be Δ t. 

The larger step size is set to be nΔ t. n is a positive 
integer. Thus, q  is expressed as a decomposed 
format. And the condensed FMD formula can be 
decomposed as a block matrix format as following.  
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The subscript symbol, L and S, represent the 
larger step size and the smaller step size. M and Q 
are the general mass matrix and the general external 
force. According to balance status of the FMS at t+
Δ t and t+nΔ t, two groups of equations can be 
obtained as following. 
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Thereinto, Lnq  and Snq  are accelerations at 

tnt Δ+ . 1Lq  and 1Sq  are accelerations at tt Δ+ . 
The general mass matrix and the general external 
force are defined similarly. Define symbols below. 
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In order to compute interaction between the 
coupling variables at the common update, qSn and 
qL1 need be estimated simultaneously. Similar to the 
method (Daniel, 1997), qL1 can be linearly 
interpolated and qSn can be linearly extrapolated by 
means of the trapezoid rule. The formats of the 
interpolations are expressed below. 
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Hence action of the slowly changing variables to 
the rapidly changing variables is calculated below. 
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The action of the rapidly changing variables to 
the slowly changing variables is calculated below. 
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Imposing equations (2-17) and (2-18) into 
equations (2-13) and (2-14), and co-multiplying a 
number, n, to the left hand and the right hand of 
equation (2-13), the common update formula of the 
slowly changing variables and the rapidly changing 
variables can be obtained below. 
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In order to get the sub-step update formula, the 
following equation need be calculated at t+（i+1）
Δ t，i=1,2…(n-2). 
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Also, according to equation (2-7), the following 
equation can be obtained. 
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In equation (2-21), the slowly changing variables, 
which are used to compute the interaction of the 
coupling variables, can be linearly interpolated in 
terms of the trapezoid rule.  
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In terms of equations (2-22) and (2-23), the 
action of the slowly changing variables to the 
rapidly changing variables can be approximately 
assessed. 
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Imposing equation (2-24) into equation (2-21), 
the sub-step update format can be got as following. 
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The energy balance status can be calculated by 
means of the equation below (Mark and Belytschko, 
1989). 
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Thereinto, Wn
ext is the work of the external forces 

at nΔ t. Wn
int is the internal energy at nΔ t. Wn

kin is 

the kinetic energy of the system at nΔ t.δ  is the 
available error coefficient. 

3 NUMERICAL EXAMPLES 

In this section, two numerical examples will be 
performed to validate availability and efficiency of 
the present sub-cycling algorithm.  

3.1 A Bar-slider System 

A bar-slider system is shown in figure 2. Mass of the 
rod is 2.0 kilograms and mass of the slider is 5.0 
kilograms. The driving torque is 100 Nm/s. Stiffness 
of the spring is 1000 N/m. length of the rigid rod is 2 
meters.  

Results of rotational angle of the rod, the 
vibration amplification of the sliding block and the 
energy balance status computed by means of the 
sub-cycling and without sub-cycling are shown in 
figure 3 to figure 6. The scale values in brackets of 
the figure captions, such as (5:1), represent a sub-
cycling with 5 sub-steps in one major step. 
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Figure 2: Rotational rod-spring-slider system. 

Comparing the results in figure 3 to figure 6, we can 
see that no matter which scale of the sub-cycling is 
adopted, the results are very similar. The error of 
sub-cycling with scale 10:1 is a little larger than that 
of sub-cycling with scale 5:1. Yet all these two 
errors are very small if compare with the original 
results. The time cost of sub-cycling with scale 5:1 
is 118 seconds and the time cost of the original 
algorithm without sub-cycling is 218 seconds. The 
proportion of time cost of these two algorithms is 
54%. The time cost of sub cycling with scale 10:1 is 
44 seconds and the proportion of time cost is only 
20.2%. The results of balance checking illustrate that 
the sub-cycling is stable during the integral process. 
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Figure 3: Rotational angle of the bar (5:1). 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Time(s)

R
ot

at
io

na
l a

ng
le

(ra
di

an
) no subcycling

subcycling

 

Figure 4: Rotational angle of the bar (10:1). 
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Figure 5: Vibration amplification of the slider (5:1). 
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Figure 6: Vibration amplification of the slider (10:1). 

3.2 Airscrew of a Jet Engine 

FEM model of the airscrew of a jet engine are 
displayed in figure 7. Parameters of the model are as 
following (Units: kg/N/mm/s). The material of 
airscrew is aluminium alloy. EX=7e6, PR=3, 
DEN=2.78e-6. Diameter of the airscrew is D=900 
mm, rotate speed is 8000 rpm. 

We simulate the large range overall motion of   
the airscrew by means of the Newmark sub-cycling 
and the original Newmark respectively. The 
dynamic stress at the blade root is described in 
figure 8. The time cost of the Newmark sub-cycling 
is 1660 seconds and that of the Newmark is 2810 
seconds. The computational efficiency is enhanced 
about 70%. The compared results show the good 
precision and stability of the Newmark sub-cycling. 

 
Figure 7: The FEM model and the local mesh. 
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Figure 8: Dynamic stress of the blade root during rotation. 
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Figure 9: Rotational angle of the blade root. 

4 CONCLUSIONS 

This paper firstly presents a Newmark-based FMD 
sub-cycling algorithm. By modifying the Newmark 
integral formula to be fitted for sub-cycling of the 
FMD problems, not only the integral efficiency can 
be greatly improved, but also be more easy for 
convergence of the integral process.  

Because of that different integral step sizes are 
adopted during the sub-cycling, the integral process 
can be more efficient and easier for convergence. At 
the same time, Unconditional stability of the original 
Newmark are still kept in the Newmark sub-cycling.  

The number of the sub-step in one major cycle 
can be a little infection of the integral precision of a 
sub-cycling process. However, it is unobvious as the 
number is within a range. Generally speaking, the 
enhancement of the integral efficiency is more 
significant when the number is under a limitation.  

By checking the energy balance status of the 
integral process real time and adjusting the step size 
when necessary, the sub-cycling procedure can keep 
a well convergence property and obtain the 
reasonable numerical computation results. 
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