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Abstract: In this paper, a new method for obtaining a time-frequency representation of instantaneous frequency is 
introduced. A Kalman filter serves for dissociation of signal into modes with well defined instantaneous 
frequency. A second order resonator model is used as a model of signal components – ‘monocomponent 
functions’. Simultaneously, the Kalman filter estimates the time-varying signal components in a complex 
form. The initial parameters for Kalman filter are obtained from the estimation of the spectral density 
through the Burg’s algorithm by fitting an auto-regressive prediction model to the signal. To illustrate the 
performance of the proposed method, experimental results show the contribution of this method to improve 
the time-frequency resolution. 

1 INTRODUCTION 

Data analysis is a necessary part in pure research and 
in practical applications. The problem of estimating 
of a signal is of great interest in many areas of 
engineering, such as energy processing, speech 
recognition, vibration analysis and time series 
modeling. To analyze a non-stationary data, 
previous methods repeatedly apply block data 
processing such as the short-time Fourier transform, 
with the assumption, that the frequency 
characteristics are time-invariant (or that the process 
is stationary) for the duration of the time block. The 
resolution of such methods is limited by the 
Heisenberg-Gabor uncertainty principle. 

In this work a different approach is proposed, in 
which a Kalman filter is used to decompose the 
time-varying signal into analytic components. As is 
well known, the Kalman-filter can estimate the state 
vectors of time-varying systems with knowledge of 
the stochastic characteristics of the measurement 
noise. The estimated components are then used for 
computation of instantaneous amplitude and 
frequency. 

The rest of the paper is organized as follows. In 
Section 2, a summary of the common non-stationary 
data processing methods is presented. In Section 3, 
we mention the instantaneous frequency 
phenomenon. In Section 4, the use of Kalman filter 
to obtain complex signal component estimation is 

described. In Section 5, the results from experiments 
and from real application are discussed. Conclusions 
are drawn in Section 6. 

2 NON-STATIONARY DATA 
PROCESSING METHODS 

The spectrogram is the most basic method, which is 
a limited time window-width Fourier spectral 
analysis. Since it relies on the traditional Fourier 
transform, one has to assume the data to be 
piecewise stationary. There are also practical 
difficulties in applying the method: in order to 
localize an event in time, the window width must be 
narrow, but, on the other hand, the frequency 
resolution requires longer time series (uncertainty 
principle).  

The wavelet approach is essentially a Fourier 
spectral analysis with an adjustable window. For 
specific applications, the basic wavelet function can 
be modified according to special needs, but the form 
has to be given before the analysis. In most common 
applications, the Morlet wavelet is defined as 
Gaussian enveloped sine and cosine wave groups 
with 5.5 waves. It is very useful in analysing data 
with gradual frequency changes. Difficulty of the 
wavelet analysis is among others its non-adaptive 
nature. Once the basic wavelet is selected then is 
used to analyse all the data. 
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The Wigner-Ville distribution is sometimes also 
referred to as the Heisenberg wavelet. By definition 
it is the Fourier transform of the central covariance 
function. 

Above mentioned methods were used in Section 
5 to compare their results with the output of the 
method based on Kalman estimation. 

3 INSTANTANEOUS 
FREQUENCY AND THE 
COMPLEX SIGNAL 

Instantaneous frequency, )(tω , is often defined as 
derivation of phase 
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One of the ways how the unknown phase can be 

obtained is to introduce a complex signal )(tz  
which corresponds to the real signal. As mentioned 
in (Hahn, 1996) or in (Huang, 1998), the Hilbert 
transform can be the elegant solution of this 
problem.  

The Hilbert transform, )(tv , of a real signal 
)(tu of the continuous variable t  is 
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where P  indicates the Cauchy Principle Value 
integral. The complex signal )(tz  
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whose imaginary part is the Hilbert transform )(tv  
of the real part )(tu is then called the analytical 
signal and its spectrum is composed only of the 
positive frequencies of the real signal )(tu . 

From the complex signal, an instantaneous 
frequency and amplitude can be obtained for every 
value of t . Following (Hahn, 1996) the 
instantaneous amplitude is defined as 
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and the instantaneous phase can be defined as 
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The instantaneous frequency then simplifies to 
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Even with the Hilbert transform, there is still 
considerable controversy in defining the 
instantaneous frequency as in (Boashash, 1992a). 
Applying the Hilbert transform directly to a 
multicomponent signal provides values of )(ta  and 

)(tω  which are unusable for describing the signal. 
The idea of instantaneous frequency and amplitude 
does not make sense when a signal consists of 
multiple components at different frequencies. This 
leads Cohen in (Cohen, 1995)to introduce term 
’monocomponent function’ where at any given time, 
there is only one frequency value. Huang (Huang, 
1998) introduced a so called Empirical Mode 
Decomposition method to decompose the signal into 
monocomponent functions (Intrinsic Mode 
Functions). 

4 USE OF KALMAN FILTER TO 
OBTAIN THE SIGNAL 
COMPONENTS 

In this paper, an adaptive Kalman filter based 
approach is used to decompose the analyzed signal 
into monocomponent functions. As mentioned 
above, it is required that the estimated components 
are complex functions because of efficient 
computation of the instantaneous frequency. The 
analyzed signal is modeled as a sum of resonators in 
this study. 

4.1 Complex Signal Component Model 

The second-order model ( 2=n ) of auto-regressive 
(AR), linear time-invariant (LTI) system is 
considered as a resonator. Its external description in 
continuous domain is defined by the following 
differential equation 

 
)sin()( taty ⋅⋅= ω  (7) 

 
)cos()( taty ⋅⋅⋅= ωω  (8) 
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where a  is the amplitude and ω  is the natural 
frequency of the resonator. Let the measured system 
is described by its state equations: 
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)()( txCty ⋅=  (11) 
 

where )(tx denotes the vector of system internal 
states ( )(tu  and )(tv ) at time t, )(ty  is the output 
signal, A  is the state matrix and C is the output 
matrix. Hence it follows that the internal model 
representation of the resonator with suitable selected 
state variables ( )sin()( ttu ⋅= ω  and )cos()( ttv ⋅= ω ) 
is then 
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The state equation (12) shows the state matrix of the 
continuous model as a 2D rotation matrix whose 
eigenvalues are pure imaginary numbers. The 
trajectory in state space of such a system is a circle. 
There is need to discretize the continuous state space 
model for a digital computation needs. This can be 
done by solving the state differential equation (14) 
and substitution of the time t  with sampling step 
h (see Fairman, 1998) 
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The discretized state model ( ht =Δ ) with state noise 

)(kξ  and output noise )(kη  is then 
 

)(
)(
)(

)cos()sin(
)sin()cos(

)1(
)1(

k
kv
ku

hh
hh

kv
ku

ξ

ωω
ωω

⋅Γ+⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅
⋅−⋅

=⎥
⎦

⎤
⎢
⎣

⎡
+
+

 (15) 

 

[ ] )(
)(
)(

01)( k
kv
ku

ky η⋅Δ+⎥
⎦

⎤
⎢
⎣

⎡
⋅=  (16) 

 
The variables )(kξ  and )(kη  are white noise 
vectors with identity covariance matrices. The 
specific features of the noises are characterized by 
the covariance matrices Γ  and Δ . 
This resonator model forms together with Kalman 
filtering approach an estimator of complex signal. 
The estimation of the first model state is a real part 
(sine function) and the estimation of the second 

model state is an imaginary part (cosine function) of 
the complex signal. 

4.2 Discrete Kalman Filter 

A discrete-time Kalman filter realizes a statistical 
estimation of the internal states of noisy linear 
system and it is able to reject uncorrelated 
measurement noise – a property shared by all 
Kalman filters. Let’s assume a system with more 
components. Then the state matrix consists of 
following blocks: 
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and the state noise matrix blocks may be defined as 
a derivative of the state matrix blocks: 
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The derivation of state matrix blocks as an 
estimation of the state noise matrix was selected 
experimentally, because the derivation produces 
blocks also in the state noise matrix and the 
components relate to each other in the same manner 
as in the state matrix.  
The state-variable representation of the whole 
system, which is characterized by the sum of 
resonators, is given by the following matrices: 
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Commonly, the Kalman estimation includes two 
steps – prediction and correction phase. Let’s 
assume that the state estimate μ0 is known with an 
error variance P0. An a priori value of the state at 
instant k+1 can be obtained as 

 
kk A μμ ⋅=+1  (20) 

 
The measured value )(ky  is then used to update the 
state at instant k. The additive correction of the a 
priori estimated state at k+1 is according to 
(Vaseghi, 1987) proportional to the difference 
between the a priori output at instant k defined as 
⋅C μk and the measured )(ky : 
 

))((1 kkkkk CyKA μμμ ⋅−⋅+⋅=+  (21) 
 

where 
k

K  is the Kalman gain which guarantees the 
minimal variance of the error xk –μk. 

Also, at each step the variance )1( +kP  of the 
error of μk+1 is calculated (see (Vaseghi, 1987)): 
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It is used for calculation of Kalman gain in the next 
step of the recursive calculation (correction phase): 
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4.3 Estimation of Initial Parameters 

The initial parameters for Kalman filter are obtained 
from the estimation of the spectral density by fitting 
an AR prediction model to the signal. The used 
estimation algorithm is known as Burg’s method 
(Marple, 1987), which fits an AR linear prediction 
filter model of a specified order to the input signal 
by minimizing the arithmetic mean of the forward 
and backward prediction errors. The spectral density 
is then computed from the frequency response of the 
prediction filter. The AR filter parameters are 
constrained to satisfy the Levinson-Durbin 
recursion.  

The initial Kalman filter parameters (frequencies 
of the resonators) are then obtained as local maxima 
of estimated spectral density which are greater than 
a predefined level. These values indicate significant 
frequencies in spectral density and determine the 
order of the model (see Section 3.2). 

5 RESULTS 

Within this work three test signals are analyzed. The 
first test signal s1 (t) contains three harmonic 
components. kHz1  sampling rate was used and the 
signal was 1 second long ( 1000=N points). Signal 
was formed by sinus functions with oscillation 
frequencies f1=10Hz, f2=30Hz and f3=50Hz. The 
amplitude was for all three components set to 10, but 
the second component was zero for the first 0.5 
seconds. The output noise with mean 0=m  and 
variance 1=σ  was added to the simulation signal. 

The initial parameters for Kalman filter were 
obtained through Burg’s AR linear prediction filter 
of order 10 and the level for local maxima was 
determined as 1max > . Under these conditions the 
initial frequencies (n=3) for Kalman estimator were 
obtained from Burg’s spectral density. The initial 
conditions of Kalman estimator were set up in the 
following way: μ0=[1…1], P0=106.I, 1=δ , where 
dim(μ0)= n×1  and dim(P0)= nn 22 × . 

To take a look at the convergence of the 
estimate, the comparison of the Hilbert approach and 
Kalman filter is considered. In figure 1 the complex 
signal of second component of the simulated signal 
is displayed. The results were obtained through 
Hilbert transform and through Kalman estimation. 
The disadvantage of the Hilbert transform is that it 
requires the pre-processing of the signal through 
some signal decomposition method. To decompose 
the signal into its components, the above introduced 
algorithm uses the model of sum of resonators and 
simultaneously the Kalman estimator is used to 
estimate the time progression of these components.  

 
Figure 1: Second component of test signal s1 (t) - complex 
signal obtained through Hilbert transform (solid line) and 
through Kalman estimation (dotted line). 

In figure 2, there is shown the instantaneous 
frequency of all components of test signal s1 (t). 
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The additive noise in simulation signal is the cause 
of the instantaneous frequency oscillating. 

The algorithm based on Kalman estimation is 
also illustrated on another two non-stationary test 
signals s2 (t) and s3 (t). The initial conditions of 
Kalman estimator were set up as mentioned above 
and initial frequencies of the model were obtained 
through Burg’s AR linear prediction filter of order 
25 as maxima in estimated power spectrum (n=10). 

The test signal s2 (t) consists of two components 
in time-frequency domain - stationary harmonic 
signal with constant frequency and concave 
parabolic chirp signal. Both components exist in 
time between t = 100 and t = 900. The results of the 
Kalman estimation is compared with the methods 
mentioned in Section 2 and the results are shown in 
Figure 4. The output of Kalman estimation in time-
frequency domain has relatively better time-
frequency resolution in both components than the 
other methods. 

The test signal s3 (t) consists of four harmonic 
components and the accuracy of the method to 
identify the frequency and also the time of the origin 
and end of the components is tested. The signal 
begins again in time t = 100 and ends in t = 900. The 
frequency changes in t = 300 and t = 600. There are 
two components simultaneously in time between 
t = 300 and t = 600. The ability of methods to 
distinguish between these two frequencies is visible 
in Figure 5. The smoothed pseudo Wigner-Ville 
distribution and Kalman filter have better time-
frequency resolution compared to short-time Fourier 
transform and to Morlet wavelet.  

 
Figure 2: Estimation of instantaneous frequency of test 
signal components. 

The last example is the transform of the acoustic 
signal from the real equipment where the 
instantaneous event took place. The signal was 

measured with 80 kHz sampling rate. For 
comparison, in figure 3, the time-frequency-
amplitude responses of the short-time Fourier 
transform (STFT) and of the Kalman estimator 
approach are compared. The black column at first 4 
milliseconds in the left spectrogram is the adaptation 
phase of Kalman filter. This example was obtained 
with following initial conditions: Burg’s filter of 
order 400 was used to identify the power spectral 
density and all local maxima (n=148), which satisfy 
the inequality >max 10-7 were appointed as 
monitored frequencies. All resonance frequencies (5, 
6, 14 and 27kHz) in the STFT spectrogram are also 
presented in the left one (Kalman). An event which 
occurs at time 0.022 seconds is displayed also in 
both spectrograms (see the frequency band 2 - 
15 kHz). It is visible that the Kalman version of 
spectrogram offers a better resolution in time and 
frequency than the spectrogram obtained through 
STFT. 

6 CONCLUSIONS 

The new method for obtaining the time-frequency 
representation of instantaneous frequency has been 
introduced in this work. The procedure is based on 
the Kalman estimation and shares its advantages 
regarding the suppression of measurement noise. In 
this method the Kalman filter serves for dissociation 
of signal into modes with well defined instantaneous 
frequency. Simultaneously the time progression of 
signal components is estimated. This procedure 
utilizes the adaptive feature of the Kalman filter. 
In cases where the short–time Fourier transform 
cannot offer sufficient resolution in frequency-time 
domain, there can be taken advantage of this method 
despite of higher computational severity. In 
vibrodiagnostic methods, where frequency-time 
information is used for localizing of non-stationary 
events, the sharpness of the introduced method can 
be helpful for the improvement of the event 
localization. 
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Figure 3: Spectrogram using Kalman estimation (left) and using short-time Fourier transform (right).
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Figure 4: Time-frequency analysis results of the test signal s2 (t). 
 

 
Figure 5: Time-frequency analysis results of the test signal s3(t). 
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