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Abstract: Thermocouples are one of the most popular devices for temperature measurement in many mechatronic 
implementations.  However, large wire diameters are required to withstand harsh environments and 
consequently the sensor bandwidth is reduced.  This paper describes a novel algorithmic compensation 
technique based on blind deconvolution to address this loss of high frequency signal components using the 
outputs from two thermocouples.  In particular, a cross-relation blind deconvolution for parameter 
estimation is proposed.  A feature of this approach, unlike previous methods, is that no a priori assumption 
is made about the time constant ratio of the two thermocouples.  The advantages, including small estimation 
variance, are highlighted using results from simulation studies.   

1 INTRODUCTION 

There is a growing trend towards the integration of 
different types of sensors and actuators with 
information processing (Isermann, 2005). 
Commercial and industrial applications increasingly 
demand dynamic temperature measurement when 
advanced mechatronic components are incorporated. 
In the automotive industry for example, accurate and 
reliable measurement of exhaust gas temperature is 
required for the regeneration of diesel particulate 
filters (DPF), and for the evaluation of the 
combustion performance of internal combustion 
engines (Kee and Blair, 1994).  

Fast response temperature measurement can be 
performed using techniques such as Coherent Anti-
Stokes Spectroscopy, Laser-Induced Fluorescence 
and Infrared Pyrometry. However, these are 
expensive, difficult to calibrate and maintain and are 
therefore impractical for wide-scale deployment 
outside the laboratory (Hung et al., 2005a). 
Thermocouples are widely used for temperature 
measurement due to their high permissible working 
limit and good linear temperature dependence. In 
addition, their low cost, robustness, ease of 

installation and reliability means that there are many 
situations in which thermocouples are indeed the 
only suitable choice. Unfortunately, their design 
involves a compromise between robustness and 
speed of response which poses major problems when 
measuring temperature fluctuations with high 
frequency signal components.  

To remove the effect of the sensor on the 
measured quantity in such conditions, compensation 
of the thermocouple measurement is desirable. 
Usually, this compensation involves two stages: 
thermocouple characterisation followed by 
temperature reconstruction. Reconstruction is a 
process of restoring the unknown fluid temperature 
from thermocouple outputs using either software 
techniques or hardware. This paper will concentrate 
on the first stage, since effective and reliable 
characterisation is essential for achieving 
satisfactory temperature reconstruction.  

In an attempt to improve existing 
characterisation of thermocouples, this paper 
proposes a novel technique based on the cross-
relation method (Liu et al., 1993) from the field of 
blind deconvolution put forward by Sato (1975). 
Compared to other algorithms, simulations suggest 
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that the proposed method gives estimations with 
lower variance even in environments with moderate 
amount of noise.  

This paper is organised as follows: Section 2 
introduces the background of two-thermocouple 
characterisation. Section 3 proposes the cross-
relation method and shows how it can be applied to 
this problem. Simulation results are presented in 
Section 4 while conclusions follow in Section 5.  

2 DIFFERENCE EQUATION 
SENSOR 
CHARACTERISATION 

2.1 Thermocouple Modelling 

Assuming some criteria regarding to the 
construction of thermocouples are satisfied (Forney 
and Fralick, 1994; Tagawa and Ohta, 1997), a first-
order lag model with time constant τ  and unity gain 
can represent the frequency response of a fine-wire 
thermocouple (Petit, 1982). This simplified model 
can be written mathematically as  

 
)()()(fluid tTtTtT τ+= . (1) 

 
Here the original fluid temperature fluidT  can be 

reconstructed if τ , the thermocouple output )(tT  
and its derivative are available. In practice, this 
direct approach is infeasible as )(tT  contains noise 
and its derivative is difficult to estimate accurately. 
More importantly, it is generally not possible to 
obtain a reliable a priori estimate of τ , related to 
their thermocouple bandwidth Bω  

 

Bω
τ 1
= ,  (2) 

 
which, in turn, is a function of thermocouple wire 
diameter d  and fluid velocity v  

 

3d
v

B ∝ω .  (3) 

 
Hence, τ  varies as a function of operating 
conditions. Clearly, a single-thermocouple does not 
provide sufficient information for in situ estimation. 
Equation (3) highlights the fundamental trade-off 
that exists when using thermocouples. Large wire 

diameters are usually employed to withstand harsh 
environments such as engine combustion systems, 
but these results in thermocouples with low 
bandwidth, typically Bω  < 1 Hz. In these situations 
high frequency temperature transients are lost with 
the thermocouple output significantly attenuated and 
phase-shifted compared to .fluidT  Consequently, 
appropriate compensation of the thermocouple 
measurement is needed to restore the high frequency 
fluctuations.  

2.2 Two-Thermocouple Sensor 
Characterisation 

In 1936 Pfriem suggested using two thermocouples 
with different time constants to obtain in situ sensor 
characterisation. Since then, various thermocouple 
compensation techniques incorporating this idea 
have been proposed in an attempt to achieve 
accurate and robust fluid temperature compensation 
(Forney and Fralick, 1994; Tagawa and Ohta, 1997; 
Kee et al., 1999; Hung et al., 2003, 2005a, 2005b). 
However, the performance of all these algorithms 
deteriorates rapidly with increasing noise power, and 
many are susceptible to singularities and sensitive to 
offsets (Kee et al., 2006). It would be very useful 
from the implementation point of view to know 
when the characterisations are not reliable.  

Some of these two-thermocouple methods rely 
on the restrictive assumption that the ratio of the 
thermocouple time constants α  1( <α  by 
definition) is known a priori. Hung et al. (2003, 
2005a, 2005b) develop difference equation methods 
that do not require any a priori assumption about the 
time constant ratio.  

The equivalent discrete time representation for 
the thermocouple model (2) is: 

 
)1()1()( fluid −+−= kbTkaTkT ,  (4) 

 
where a  and b  are difference equation ARX 
parameters and k  is the sample instant. The discrete 
time equivalent of α  is defined as 

 
1,12 <= ββ bb .  (5) 

 
Here subscripts 1 and 2 are used to distinguish 
between signals from different thermocouples. 
Assuming ZOHs and a sampling interval sτ , the 
parameters of the discrete and continuous time 
thermocouple models are related by  
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aba s −=−= 1,)exp( ττ .  (6) 
 

Since two sets of (4) are available from each 
thermocouple outputs )(1 kT  and ),(2 kT  a beta 
model (Hung, et al., 2005) can be formulated by 
eliminating fluidT  from (4) to become 

 
1

12212
−Δ+Δ=Δ kkk TbTT β ,  (7) 

 
where the pseudo-sensor output kT2Δ  and inputs 

kT1Δ  and 1
12
−Δ kT  are defined as 

 

).1()1(
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21
1
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k

k
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  (8) 

 
For an M-sample data set (7) can be expressed in 
ARX vector form 

 
XθY = ,  (9) 

 
with .][and],[, 2

1
1212

Tkkk bβ=ΔΔ=Δ= − θTTXTY  

Here k
1TΔ , k

2TΔ  and 1
12
−Δ kT  are vectors containing 

M-1 samples of the corresponding composite signals 
kT1Δ , kT2Δ  and 1

12
−Δ kT .  

Due to the form of the composite input and 
output signals, the noise terms in the X  and Y  data 
blocks are no longer independent. The result is that 
conventional least-squares and total least-squares 
both generate biased parameter estimates even when 
the measurement noise on the thermocouples is 
independent. It has been shown that generalised total 
least-squares (GTLS) on the other hand, can produce 
unbiased parameter estimate θ̂  that outperforms 
other difference equation based methods. One of the 
reasons can be traced back to the use of β , which 

enhanced the model stability during parameter 
estimation (McLoone et al., 2006).  

Unfortunately, the GTLS−β  approach 

occasionally returns unreasonable θ̂  estimates as 
will be illustrated in Section 4. This is caused by the 
sensitivity of GTLS to violations in the underlying 
theoretical assumptions with composite signals 
(Huffel and Vandewalle, 1991), plus ill-conditioning 
of the noise correlation matrix. The blind 
deconvolution approach is considered here to isolate 
these invalid θ̂ .  

3 BLIND SENSOR 
CHARACTERISATION 

One of the best known deterministic blind 
deconvolution approaches is the method of cross-
relation (CR) proposed by Liu et al. (1993). Such 
techniques exploit the information provided by 
output measurements from multiple systems of 
known structure but unknown parameters, for the 
same input signal.  

This new approach to characterisation of 
thermocouples is completely different from those in 
Section 2. As commutation is a fundamental 
assumption for the method of cross-relation, the 
thermocouple models are both assumed to be linear. 
This is reasonably realistic as long as the 
thermocouples concerned are used within well-
defined temperature ranges. Nonetheless, 
linearisation can easily be carried out using either 
the data capture hardware or software, even if the 
thermocouple response is nonlinear. Further, the 
approach requires constant model parameters, 
therefore the fluid flow velocity v  is assumed to be 
constant, such that the two thermocouple time 
constants 1τ  and 2τ  are time-invariant.  

Figure 1: Two-thermocouple cross-relation characterisation.
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3.1 Two-Thermocouple Sensor 
Characterisation 

By exploiting the commutative relationship between 
linear systems, a novel two-themocouple 
characterisation scheme is proposed as follows. 
Since the fluid temperature fluidT  is unknown, the 
two thermocouple output signals 1T  and 2T  are 
passed through two different synthetic 
thermocouples as shown in Fig. 1. These are also 
modelled by (1) and can be expressed in first-order 
transfer function as: 

 

2
2

1
1 ˆ1

1)(ˆ,
ˆ1

1)(ˆ
ττ s

sH
s

sH
+

=
+

= ,  (10) 

 
where Ĥ  is the estimate of the thermocouple 
transfer function .H  The unknown thermocouple 
time constant parameters can then be estimated as 

1̂τ  and 2τ̂  using the cross-relation method, 
illustrated in Fig. 1. Here the cross-relation error 
signal, )()( 2112 tTtTe −=  is used to define a mean-
square-error cost function 

 

.ˆ,ˆ,})]()({[

}{)ˆ,ˆ(

21
2

2112

2
212

ττ

ττ

∀−=

=

tTtTE

eEJ
 (11) 

 
Equation (11) is then minimised with respect to 

1̂τ  and 2τ̂  to yield the estimates of the unknown 
thermocouple time constants. Clearly, the cross-
relation cost function )ˆ,ˆ( 212 ττJ  is zero when 

11̂ ττ =  and .ˆ 22 ττ =  In practice it will not be 
possible to obtain an exact match between 12T  and 

21T  due to measurement noise and other factors such 
as thermocouple modelling inaccuracy and 
violations of the assumption that the two 
thermocouples are experiencing identical 
environmental conditions.  

Xiu et al. (1995) suggest that one of the 
necessary conditions for multiple finite-impulse-
response channels to be identifiable is that their 
transfer function polynomial do not share common 
roots.  Applying this condition to the two-
thermocouple characterisation problem corresponds 
to requiring that the time constants, and hence the 
diameters (3), of the thermocouples are different,  
that is 

 
2121 dd ≠⇒≠ττ .  (12) 

Not surprsingly, this requirement is consistent with 
all other two-thermocouple characterisation 
techniques mentioned in Section 2. Thus, cross-
relation deconvolution converts the problem of 
sensor characterisation into an optimisation one.  

3.2 Cost Function 

A 3-D surface plot and a contour map of a typical 
)ˆ,ˆ( 212 ττJ  cost function are shown in Figs. 2 and 3. 

Unfortunately, )ˆ,ˆ( 212 ττJ  is not quadratic and 
cannot therefore be minimised using linear least-
squares. Fig. 3 shows that the cross-relation cost 
function is highly non-quadratic away from the 
minimum corresponding to the value of the true time 
constants.  

 
Figure 2: Three-dimensional plot of log(J2).  
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Figure 3: Contour plot of J2 (cross: local minimum).  

More importantly, the cost function has a second 
minimum when both time constant values approach 
infinity. Under these conditions, both low-pass 
filters (10) take infinite amounts of time to respond. 
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In other words, they are effectively open-circuited 
and their differences will always be zero. The 
existence of this minimum applies regardless of the 
noise conditions or any violations of the modelling 
assumptions. The minimum at infinity is thus in fact 
the global minimum, while the true time constant 
value is located at a local minimum. In the absence 
of noise, 02 =J  at both the global and local minima.  

In addition, the narrow basin of attraction of the 
desired local minimum coupled with the global 
minimum at infinity has serious implications for 
optimisation complexity since search bounds have to 
be carefully selected to avoid divergence of gradient 
search algorithms to the global minimum. 
Consequently, in this study a robust, but inefficient, 
grid based search has been adopted to avoid these 
issues. To reduce the associated computational load 
different step sizes are used for each time constant. 
Noting from Fig. 3 that, at least locally,  

 

2

2

1

2

ττ ∂
∂

>
∂
∂ JJ ,  (13) 

 
it can be concluded that the cost function is more 
sensitive to changes in the smaller thermocouple 
time constant; hence greater accuracy is required in 
estimating this value.  

4 SIMULATION RESULTS 

A MATLAB® simulation of a two-thermocouple 
probe system (Fig. 4) was used to evaluate the 
performance of the proposed cross-relation (CR) 
blind sensor characterisation. Thermocouples 1 and 
2 were modelled as first-order low-pass filters 
according to (1) with time constants 8.231 =τ  and 

8.1162 =τ ms respectively. The simulated fluid 
temperature was varied sinusoidally according to 

 
5.50)20sin(5.16)(fluid += ttT π ,  (14) 

 
and the resulting temperature measurements sampled 
every 2 ms. Each simulation ran for 5 s.  

The level of zero-mean white Gaussian 
measurement noise added to the thermocouple 
signals is described by the noise level eL , defined as 

 

,2,1,%100
)var(

)var(

fluid
=⋅= i

T
n

L i
e  (15) 

Figure 4: Simulated two-thermocouple measurement 
system.  

where 1n  and 2n  are the noises added to the 
thermocouples. For a given eL , the algorithm 
performance was assessed in terms of percentage 
estimation errors:  

%100
ˆ
⋅

−
=

τ
ττe .  (16) 

 
To reduce the time required for completing the 
simulation, the following search ranges and intervals 
(13) were chosen for the cross-relation (CR) 
algorithm: 

 

 ms. 2.5every at  ms;130ˆ100
 ms, 0.5every at  ms;30ˆ10

2

1

<<
<<

τ
τ

 (17) 

 
Of particular importance was the removal of the 

first 1000 data samples before computing 
)ˆ,ˆ( 212 ττJ , using the remaining 1500 sets of CR 

outputs 12T  and 21T . This was required to eliminate 
the effect of transients on parameter estimation 
accuracy during each iteration of CR simulation 
(Fig. 1). The number of samples removed was 
estimated to exceed the 98% settling time for the 
system (i.e. five times the largest time constant 2τ ) 
which equated to about 0.6 s or 300 samples.  

The resulting means and standard deviations of 
the parameter estimation error (16), for both 

GTLS−β  (Section 2.2) and CR (Section 3.1) 
algorithms are shown in Fig. 5. Note results for 2τ̂  
are similar to those illustrated for 1̂τ  and are thus  
omitted.  
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Figure 5: (a) Means and (b) standard deviations of e  of 
1̂τ  averaged over 100 Monte-Carlo runs. 

These results suggset that CR produces biased 
parameter estimates since their expected mean errors 
are greater than that of GTLS−β . However, the 
estimation standard deviations of CR are less than 
that of GTLS−β .  

With regard to the search intervals taken for CR, 
two issues need to be considered when looking at the 
graphs. Firstly, a major contribution to the CR bias 
comes from the low resolution of the search grid 
used. Since, when 8.231 =τ ms, an interval of 0.5 
ms represents an ‘artificial’ estimation bias of up to 
2.1%. This can be reduced if a finer search grid is 
employed, at the expense of increasing the already 
heavy computation load. Similarly, the CR standard 
deviation errors may be 2.1% larger than the 
reported values because of the finite resolution 
employed, although this is unlikely due to the 
intrinsic noise-filtering capability of CR.  

The noise-resilient property of CR compared to 
GTLS is further highlighted in Fig. 6, where 500 
Monte-Carlo simulations were performed. It can be 

seen that one unreasonable 1̂τ  value was returned by 
GTLS−β  while the CR approach is well-behaved, 

although its estimate is asymptotically biased. 
Hence, CR can be used to verify whether a GTLS 
estimate is genuine or corrupted by signal outliers, 
improving the overall reliability of sensor 
characterisation.  

5 CONCLUSIONS 

A novel cross-relation (CR) sensor characterisation 
method has been presented. It does not require a 
priori knowledge of the thermocouple time constant 
ratio α , as required in many other characterisation 
algorithms. CR is more noise-tolerant in the sense of 
reduced parameter estimation variance when 
compared to the alternatives such as GTLS−β . The 
robustness arises because the CR process involves 
passing each thermocouple output through a first-
order block, which removes, at least partially, 

Figure 6: 500 Monte-Carlo runs of 1̂τ  of GTLS−β and 
CR, where (b) is a magnified version of (a).  
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measurement noise during identification. As a result, 
CR can be employed to verify estimation validity, 
thereby increasing the overall reliability of other 
characterisation methods.  

The computational complexity of CR, due to the 
inefficient grid based search used in this study, 
means that it is most appropriate for offline sensor 
characterisation. Further investigations include ways 
to speed up the computation and reduce the 
estimation bias.  

ACKNOWLEDGEMENTS 

The authors wish to acknowledge the financial 
support of the Virtual Engineering Centre, Queen’s 
University Belfast, http://www.vec.qub.ac.uk.  

REFERENCES 

Forney, L. J., Fralick G. C., 1994. Two wire 
thermocouple: Frequency response in constant flow. 
Rev. Sci. Instrum., 65, pp 3252-3257.   

Hung, P., McLoone, S., Irwin G., Kee, R., 2003. A Total 
Least Squares Approach to Sensor Characterisations. 
Proc. 13th IFAC Symposium on Sys. Id., Rotterdam, 
The Netherlands, pp 337-342.   

Hung, P. C., McLoone, S., Irwin G., Kee, R., 2005a. A 
difference equation approach to two-thermocouple 
sensor characterisation in constant velocity flow 
environments. Rev. Sci. Instrum., 76, Paper No. 
024902.   

Hung, P. C., McLoone, S., Irwin G., Kee, R., 2005b. 
Unbiased thermocouple sensor characterisation in 
variable flow environments. Proc. 16th IFAC World 
Congress, Prague, Czech Republic.  

Isermann, R., 2005. Mechatronic Systems – Innovative 
Products with Embedded Control. Proc. 16th IFAC 
World Congress, Prague, Czech Republic.  

Kee, R. J., Blair, G. P., 1994. Acceleration test method for 
a high performance two-stroke racing engine. Proc. 
SAE Motorsports Conference, Detroit, MI, Paper No. 
942478.   

Kee, R. J, O'Reilly, P. G., Fleck, R., McEntee, P. T., 1999. 
Measurement of Exhaust Gas Temperature in a High 
Performance Two-Stroke Engine. SAE Trans. J. 
Engines, 107, Paper No. 983072.   

Kee, J. K., Hung, P., Fleck, B., Irwin, G., Kenny, R., 
Gaynor, J., McLoone, S., 2006. Fast response exhaust 
gas temperature measurement in IC Engines. SAE 
2006 World Congress, Detroit, MI, Paper No. 2006-
01-1319.  

Liu, H., Xu, G., Tong, L., 1993. A deterministic approach 
to blind identification of multichannel FIR systems. 

Proc. 27th Asilomar Conference on Signals, Systems 
and Computers, Asilomar, CA, pp. 581-584.  

McLoone, S., Hung, P., Irwin, G., Kee, R., 2006. 
Exploiting A Priori Time Constant Ratio Information 
in Difference Equation Two-Thermocouple Sensor 
Characterisation. IEEE Sensors J., 6, pp. 1627-1637.   

Pfriem, H., 1936. Zue messung verandelisher 
temperaturen von ogasen und flussigkeiten. Forsch. 
Geb. Ingenieurwes, 7, pp. 85-92. 

Petit, C., Gajan, P., Lecordier, J. C., Paranthoen, P., 1982. 
Frequency response of fine wire thermocouple. J. 
Physics Part E, 15, pp. 760-764. 

Sato, Y., 1975. A method of self-recovering equalization 
for multilevel amplitude modulation systems. IEEE 
Trans. in Communications, 23, pp. 679-682. 

Tagawa, M., Ohta, Y., 1997. Two-Thermocouple Probe 
for Fluctuating Temperature Measurement in 
Combustion – Rational Estimation of Mean and 
Fluctuating Time Constants. Combustion and Flame, 
109, pp 549-560. 

Xu, G., Liu, H., Tong, L., Kailath, T., 1995. A least-
squares approach to blind channel identification. IEEE 
Trans. on Signal Processing, 43, pp. 2982-2993. 

Van Huffel S., Vandewalle, J., 1991. The Total Least 
Squares Problem: Computational Aspects and 
Analysis, SIAM, Philadelphia, 1st edition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

16


