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Abstract: In this paper, a sliding mode controller based on passivity feedback equivalence is developed in order to
stabilize an uncertain nonlinear system. It is shown that if the nominal passive system obtained by feedback
equivalence is asymptotically stabilized by output feedback, then the uncertain system remains stable provided
the upper bounds of the uncertain terms are known. The results obtainedare applied to the model of a magnetic
levitation system to show the controller methodology design.

1 INTRODUCTION

In the last decade the concept of passivity has been
mainly used in the stability analysis of continous-time
state-space nonlinear systems (Cai and Han, 2005;
Mahmoud and Zribi, 2002) and to analyze the sta-
bility properties of nonlinear interconnected systems
and special cascaded structures (Byrnes et al., 1991;
Ortega, 1991). Besides, an important question arises
when the model of the system contains uncertain el-
ements such as constant or varying parameters that
are not known or imperfectly known. Under such
imperfect knowledge of the model, the feedback that
makes the uncertain system passive is no longer ro-
bust. Some works using nonlinear adaptive control
have been recently devoted to this issue (Su and Xie,
1998; Duarte-Mermoud et al., 2002). On the other
hand, the control of nonlinear systems with uncertain-
ties via the sliding mode technique has been widely
studied in the literature to attain robust control struc-
tures; see, for example the results presented in (Tunay
and Kaynak, 1995).

The goal of the present paper is to develop a con-
troller via passivity feedback equivalence and sliding
modes that permits to stabilize an uncertain nonlin-
ear system. Stabilization is obtained whenever the
passive system associated to the nominal system is
asymptotically stabilized by output feedback; a sim-
ilar approach was presented in (Loria et al., 2001)

where a different sliding surface is proposed. The
study is completed by means of an example of height
distance regulation in the model of a magnetic levita-
tion system.

2 PASSIVITY EQUIVALENCE
AND STABILIZATION USING
SLIDING MODES

One considersuncertain MIMO nonlinear systems
described by

ΣU :

{

ẋ = f (x)+∆ f (x)+(g(x)+∆g(x))u,
y = h(x)

(1)

wherex ∈ ℜn is the state vector,u ∈ ℜp is the in-
put vector,y ∈ ℜp is the output vector.f and thep
columns of the matrixg areC∞ vector fields, and the
p components of the vectorh areC∞ functions. ∆ f
and thep columns of the matrix∆g are smooth vector
fields defined onℜn which represent the model un-
certainties. In addition, we suppose, without loss of
generality and after a possible coordinates shift, that
f (0) = 0 andh(0) = 0. The MIMO nonlinear system
(1) without uncertainties, also referred as thenominal
system, is described by

Σ :

{

ẋ = f (x)+g(x)u,
y = h(x).

(2)

339



This is,Σ is given byΣU with ∆ f (x) = 0 and∆g(x) =
0 for all x.

Let us now assume that the nominal systemΣ
has relative degreesr1 = 1, . . . ,rp = 1, that the ma-
trix Lgh(0) is nonsingular and that it is weakly min-
imal phase; this is, system (2) is locally equiva-
lent to a passive system (Byrnes et al., 1991). Let
S(y,v) = col{S1(y,v), . . . ,Sp(y,v)} be an p dimen-
sional smooth function that we refer as theswitching
function wherev is a new input signal. In this work,
we setS(y,v) as

S(y,v) = y−
Z t

0
v(τ)dτ. (3)

In the sliding mode,S = Ṡ = 0, and the state trajectory
of the nominal system is constrained to evolve on the
sliding surface MS by the so-calledequivalent control
u = ueq. If an initial point does not belong toMS, the
attractivity condition (Ṡ)T S ≤−λ with λ > 0 must be
satisfied in a neighbourhood ofMS, so that this sur-
face becomes attractive (Utkin, 1992). The control
law which permits to reach the sliding surface can be
obtained from the expressioṅS = −F(S) whereF(S)
is, in general, a discontinuous vector function of its
arguments.

Writting the uncertain system (1) in the new co-
ordinates(y,z), with z being a set of complimentary
coordinates, and substituting the feedback

u = uslid = b(y,z)−1[−F(S)−a(y,z)+ v]. (4)

where b(y,z) is nonsingular for all (y,z) near
(0,0) and setting F(S) = Γsign(S) where
sign(S) := col{sign(S1), . . . ,sign(Sp)} and
Γ > 0, one has

Σ̃U :



















ẏ = v−Γsign(S)+∆a(y,z)
+∆b(y,z)b−1(y,z)(−a(y,z)−Γsign(S)+ v)

ż = f ∗(z)+ p(y,z)y+{∑m
i=1 qi(y,z)yi}v

+∆p(y,z)y+{∑m
i=1 ∆qi(y,z)yi}v

+{∑m
i=1 ∆ri(y,z)yi}Γsign(S)

(5)
wherep(y,z) and theqi(y,z)’s are suitable matrices

of appropriate dimensions and ˙z = f ∗(z) are the so
calledzero dynamics of the nominal system.∆p(y,z),
the ∆qi(y,z)’s, and the∆ri(y,z)’s are matrices which
represent the terms associated to the uncertainties in
thez variables.∆a(y,z) and∆b(y,z) represent the un-
certainties associated to they variable.

Since it is assumed that the nominal system is
weakly minimal phase, its zero dynamics are Lya-
punov stable with a time-independent andC2 Lya-
punov functionW ∗(z), and one chooses the signalv
as (Byrnes et al., 1991)

v = [I +M(y,z)]−1[−(Lp(y,z)W
∗(z))T +w] (6)

where M(y,z) = [(Lq1W
∗)T · · ·(LqpW ∗)T ]T . This

choice makes the closed-loop nominal system

[ẏT żT ] = f (y,z) + g(y,z)w passive from the inputw
to the outputy. Assuming that this passive system
is also locallyzero state detectable1, its equilibrium
(y,z) = (0,0) can be can be made asymptotically sta-
ble by the simple output feedbackw = −φ(y) with
φ(0) = 0 andyT φ(y) > 0 for eachy 6= 0. Let us define
defineξ = (y,z) and substitute the assignment (6) to-
gether withw = −φ(y) into the uncertain system (5).
The resulting closed-loop system can then be written
as

ξ̇ = F̄(ξ)+ Ḡ(ξ) (7)

where

F̄(y,z) = f̄ (y,z)− ḡ(y,z)φ(y), Ḡ(ξ) = Ḡ1(ξ)+Ḡ2(ξ)

and

Ḡ1(y,z) =

[

Ḡ11(y,z)
0

]

, Ḡ2(y,z) =

[

0
Ḡ22(y,z)

]

(8)
with

Ḡ11(y,z) = −Γsign(S)+∆a(y,z)
+∆b(y,z)b−1(y,z)(−a(y,z)−Γsign(S)
+[I +M(y,z)]−1[−(Lp(y,z)W

∗(z))T −φ(y)]),

Ḡ22(y,z) = ∆p(y,z)y+{∑m
i=1 ∆ri(y,z)yi}Γsign(S)

+{∑m
i=1 ∆qi(y,z)yi}[I

+M(y,z)]−1[−(Lp(y,z)W
∗(z))T −φ(y)].

We now assume that the uncertain terms satisfy the
uniform bounds

‖ Ḡ1(ξ) ‖≤ δ1, ‖ Ḡ2(ξ) ‖≤ δ2 (9)

for all ξ∈D whereD = {ξ∈ℜn :|| ξ ||< r} with r > 0
or, equivalently,

‖ Ḡ(ξ) ‖≤ δ1 +δ2 = δ (10)

for all D. Notice thatξ = 0 is a locally asymptoti-
cally equilibrium point of the systeṁξ = F̄(ξ) and
one can then assure, by using the Lyapunov approach,
that for all bounded initial conditionsξ(0), the solu-
tion ξ(t) of the uncertain system (7) is locally ulti-
mately bounded fort ≥ 0. Moreover, one can show
that the sliding surfaceMS becomes attractive for any
initial point ξ(0) ∈ D if

Γ ≥ [1− ‖ ∆bb−1sign(S) ‖]−1[‖ ∆a ‖
+ ‖ ∆bb−1([I +M]−1[−(LpW ∗)T −φ]−a) ‖ +λ]

(11)
whenever‖ ∆bb−1sign(S) ‖6= 1, with λ being a

nonzero positive constant (see, in particular, (Khalil,
1996), Lemma 5.3, Chapter 5, p. 216).

1A system (2) is locally zero-state detectable if there
exists a neighbourhoodU of 0 such that, for allx ∈ U ,
y(t) = h(x(t)) ≡ 0 implies thatx(t) → 0 ast → ∞. It is said
to be locally zero-state observable if there exists a neigh-
bourhoodU of 0 such that, for allx ∈U , y(t) = h(x(t)) ≡ 0
implies thatx(t) = 0.
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3 APPLICATION TO THE
MODEL OF A MAGNETIC
LEVITATION SYSTEM

In this work we consider the single-axis levitation
system described in (Cho et al., 1993) (see Fig. 1).
A force balance analysis leads to a state space rep-
resentation of the system with statex = (x1,x2) =
(d −d0, ḋ − ḋ0) and control inputu = Vc −Vc0 where
d is the the distance of the ball from the reference line
andVc is the control voltage applied to the amplifier;
d0 andḋ0 are equilibrium points for a given nominal
control voltageVc0. The state space representation is
given by

ẋ = f (x)+g(x)u, y = h(x) = x2 (12)

with

f (x) =

[

x2

b̂(x1)Vc0/m−g

]

, g(x) =

[

0
b̂(x1)/m

]

(13)
where m is the mass of the ball,g is the gravity
andb̂(x1) = 1/[a1(x1−d0)

2 +a2(x1−d0)+a3], with
a1, a2 anda3 being real constant parameters. Since
Lgh(x) = b̂(x1)/m 6= 0, the system has a relative de-
gree r = 1 . Thus, in the coordinatesξ = (y,z) =
(x2,x1), the levitation system (12),(13) takes the form

ẏ = [b̂(z)Vc0/m−g]+ [b̂(z)/m]u,
ż = y.

(14)

Figure 1: Schematic diagram of the magnetic levitation sys-
tem.

The system’s zero dynamics are then described
by the first order differential equation ˙z = f ∗(z) =
0 for which the quadratic positive definite function
W ∗(z) = (1/2)z2 satisfiesL f ∗W ∗(z) = 0, and the sys-
tem is weakly minimum phase. One then has that the
feedback

u =
m

b̂(z)
[−

b̂(z)
m

Vc0 +g− z+w] (15)

makes the system (14) feedback equivalent to aC2

passive system fromw to y with a C2 storage func-
tion V = W ∗(z)+ (1/2)y2. Even more, the resultant

closed-loop system is a loosless one because of the
fact thatV̇ = yw. One can also verify that this closed-
loop system is zero-state observable, thus the addi-
tional feedback

w = −ky, (16)

with k > 0, can make the origin(y,z) = (0,0) of the
system

ξ̇ =

[

ẏ
ż

]

= F̄(ξ) =

[

−k −1
1 0

]

ξ = Āξ. (17)

asymptotically stable.
In (Cho et al., 1993) it is noticed that the solenoid

characteristics change with temperature, and a change
of ±20% can appear in̂b(x1) when the levitation sys-
tem has been operated for a short period of time.
Thus, the actual force-distance relationship, denoted
by b(d), may be expressed as

b(d) = b̂(d)+∆b̂(d) (18)

where∆b̂(d) is an unknown modeling error which can
be as high as 20% ofb̂(d). The uncertain model asso-
ciated to the nominal model (14) can then be written,
also in the coordinatesξ = (y,z), as

ẏ = [b̂(z)Vc0/m−g]+ [∆b̂(z)Vc0/m]

+([b̂(z)/m]+ [∆b̂(z)/m])u,
ż = y.

(19)

This is, the uncertainties are given by∆a(y,z) =

∆b̂(z)Vc0/m and∆b(y,z) = ∆b̂(z)/m.
The switching functionS(y,v) is given by (3) with

v = −z+w. Such a choice leads to the control law

u = uslid =
m

b̂(z)
[−Γsign(S)−

b̂(z)
m

Vc0 +g− z+w],

(20)
with Γ > 0, which allows to reach the sliding surface
in a finite time. By selecting the additional output
feedback (16), we obtain the closed-loop system

ξ̇ = Āξ+ Ḡ(ξ) (21)

where

Ḡ(ξ) = Ḡ1(ξ) =











[−Γsign(S)+ ∆b̂(z)Vc0
m

+∆b̂(z)
b̂(z)

[ b̂(z)Vc0
m +g−Γsign(S)

−z− ky]]
0











(22)
From the size of the modelling error∆b̂(z) one can
verify, after some computations, that the uncertainty
termḠ1(ξ) satisfies the uniform bound|| Ḡ1(ξ) ||≤ δ
for a constantδ. It then follows that the solutionξ(t)
of the uncertain system (21) is ultimately bounded for
t ≥ 0.
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The magnetic levitation system described by
equations (12),(13) was simulated together with the
passivity based sliding mode controller (3),(20). The
nominal value of the ball’s massm and the con-
stant coefficients used in the force-distance relation-
ship b̂(z) were selected as in (Cho et al., 1993), this
is m = 2.206gr, a1 = 0.0231/mg, a2 =−2.4455/mg,
a3 = 64.58/mg. In fact, as it is noted in (Cho et al.,
1993), the validity of thêb(x1) is constrained to the
range of 35mm and 48mm. By choosing the nominal
value of the control applied to the amplifier circuit to
beVc0 = 4.87volts, we obtained the equilibrium point
(d0, ḋ0) = (38.2 mm,0 mm/sec). The initial condi-
tions of the magnetic levitation system were fixed to
x1(0) = 44.2 mm and x2(0) = 0 mm/sec, while the
controller parameters were selected asΓ = 10 and
k = 2. In order to diminish the effect of chattering
due to the discontinuity of the sign function, a satura-
tion function given by

sat(S) =







1, i f S > ε
S/ε, i f −ε ≤ S ≤ ε
−1, i f S < −ε

with ε > 0, was used instead of thesign function.
In order to evaluate the performance of the control
scheme, a variation of 20% in the value of the func-
tion b̂(z) was introduced att = 7 sec in all the simula-
tions. The time closed-loop plot corresponding to the
distanced is shown in Figures 2 forε = 0.001. From
this plot, we can notice that the distance of the ball to
the reference line is always regulated to the equilib-
rium pointd0 = 38.2 mm with no overshoot.

Figure 2: Closed-loop response of the distance,d; ε =
0.001.

4 CONCLUSIONS

In this paper, a passivity-based sliding mode con-
troller design that allows to stabilize an uncertain non-
linear system has been presented. The proposed con-
troller has also been applied to the model of a mag-
netic levitation system in order to regulate the height
of a levitated ball around at one of its equilibria.
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