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Abstract: This paper proposes a modified Sanger’s generalized Hebbian algorithm (GHA) neural network (NN) 
method to estimate and track the pseudo noise (PN) sequence in lower signal to noise ratios (SNR) direct 
sequence spread spectrum (DS-SS) signals. The proposed method is based on eigen-analysis of DS-SS 
signals. The received signal is firstly sampled and divided into non-overlapping signal vectors according to 
a temporal window, which duration is a periods of PN sequence. Then an autocorrelation matrix is 
computed and accumulated by these signal vectors one by one. The PN sequence can be estimated and 
tracked by the principal eigenvector of autocorrelation matrix in the end. But the eigen-analysis method 
becomes inefficiency when the estimated PN sequence becomes longer or the estimated PN sequence 
becomes time varying. In order to overcome these shortcomings, we use a modified Sanger’s GHA NN to 
realize the PN sequence estimation and tracking from lower SNR input DS-SS signals adaptively and 
effectively. 

1 INTRODUCTION 

Since the direct sequence spread spectrum (DS-SS, 
DS) signals have the distinguished capability of anti-
jamming and lower probability interception, the DS 
signals have used broadly in communication, radar, 
telemetry and telecommand etc for a long time. 
Usually, the spread spectrum receiver has to perform 
synchronization before it can start the despreading 
operation. For the case of DS, this entails 
establishing complete knowledge of the pseudo 
noise (PN) sequence and the timing. 
Synchronization is performed in two stages. The 
first stage of coarse synchronization is known as PN 
acquisition and the final stage of maintaining the 
fine synchronization is called PN tracking. While 
PN tracking forms an important part of DS 
synchronization, PN acquisition is a more 
challenging problem. 

Conventional acquisition techniques (Simnon et 
al., 1994) rely on the knowledge of the internal 
algebraic structure of the PN spreading sequence to 
establish synchronization. While they demonstrate 
good acquisition performance in low noise 
environments, they tend to break down in 
environments with high levels of noise and 
interference because of a high false alarm rate. 
Furthermore, reliable algebraic techniques for 
synchronization have yet to be developed for 
nonlinear codes, or codes with unknown code 
structure, chip constellations, and residual delay. 
Additionally, the PN sequences of DS signal have 
the distinguished function of keeping secrecy. If you 
have no knowledge of the PN sequence, you could 
not demodulate the transmitted message symbols 
generally. 

A method of autocorrelation and cyclic 
autocorrelation was proposed to de-spread the DS 
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signal (French et al., 1986), which can extract a 
differentially-encoded estimate of the underlying 
message sequence from a modulation-on-symbol DS 
signal (where the spreading PN sequence repeats 
once per message symbol) on the basis of the 
periodic structure of these signals. This method 
attempts to overcome some of these disadvantages 
by making no assumptions about the internal 
algebraic structure of the PN spreading sequence. 
They can operate in the presence of arbitrary delay 
and for arbitrary codes or chip constellations. 
Because some spectral correlation computations are 
required, it is difficult to carry out in real-time. 
Furthermore, it does only de-spread the DS signal 
without the PN sequence, but it doesn’t utilize or 
analyze any signal structure information. So far, 
most of DS packet radio and military systems often 
require frequent, fast and robust synchronization. 
Blind estimation and tracking of the PN spreading 
sequence without the a priori knowledge of its 
structure and timing is useful in achieving these 
objectives. 

The signal subspace analysis and relational 
techniques, introduced in (Zhang et al., 2005) (Simic 
et al., 2005) (Zhan et al., 2005), is precisely such a 
technique. It is based on the signal subspace analysis 
of DS signal, and estimates the PN spreading 
sequence blindly by exploiting cyclostationarity 
property and eigenstructure of the DS signal. The 
technique provides perfect estimates of the PN 
spreading sequence under the assumptions of infinite 
time-averaging in the presence of arbitrary levels of 
temporally-white background noise. But the 
methods proposed in (Zhang et al., 2005) (Simic et 
al., 2005) (Zhan et al., 2005) belong to a batch 
method, when the number of samples in a period of 
observation window becomes too large or the 
estimated PN sequence becomes time-varying, the 
computation of matrix decomposition may not be 
feasible in practice. 

This paper proposes an unsupervised adaptive 
approach of Sanger’s generalized Hebbian algorithm 
(GHA) neural networks (NN) to PN sequence blind 
estimation and adaptive tracking. It needs the first 
and second principal component vectors associated 
with the largest and second largest eigenvalue 
respectively; and it can deal with too long sampling 
signal vectors and time-varying cases. 

2 SIGNAL MODEL  

The base band DS signal ( )x t  corrupted by the white 
Gaussian noise ( )n t  with the zero mean and 2

nσ  
variance can be expressed as (French et al., 1986) 
(Zhang et al., 2005) (Simic et al., 2005) (Zhan et al., 
2005) 

( ) ( ) ( )xx t s t T n t= − +  (1) 

Where ( ) ( ) ( )s t d t p t=  is the DS signal ，

( ) ( )j cj
p t p q t jT∞

=−∞
= −∑ ， { }1jp ∈ ±  is the periodic 

PN sequence ，  
0( ) ( )kk

d t m q t kT∞

=−∞
= −∑ ， 

{ }1km ∈ ±  is the symbol bits, uniformly distributed 

with [ ] ( )k lE m m k lδ= − ， ( )δ ⋅  is the Dirac function, 

( )q t  denotes a pulse chip. Where 
0 cT NT= ， N  is 

the length of PN sequence， 0T  is the period of PN 

sequence，
cT  is the chip duration, 

xT  is the random 
time delay and uniformly distributed on the 

0[0, ]T . 
According to the above, the PN sequence and 
synchronization are required to de-spread the 
received DS signals. But in some cases, we only 
have the received DS signals. We must estimate the 
signal parameters firstly (We assume that 0T  and cT  
had known in this paper), and then estimate the PN 
sequence and synchronization. 

3 SUBSPACE ANALYSIS BASED 
ON K-L TRANSFORMATION  

The received DS signal is sampled and divided into 
non-overlapping temporal windows, the duration of 
which is 0T . Then one of the received signal vector 
is 

( ) ( ) ( )k k k= +X s n ， ,3,2,1=k  (2) 

Where ( )ks  is the k -th vector of useful signal, ( )kn  
is the additive white Gaussian noise vector. The 
dimension of vector ( )kX  is 

0 / cN T T= . If the 

random time-delay is xT ， 00 TTx <≤ , ( )ks  may 
contain two consecutive symbol bits, each 
modulated by a period of PN sequence, i.e.  

1 1 2( ) k kk m m += +s p p  (3) 
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Where km  and 1+km  are the two consecutive symbol 
bits, 

1p  ( 2p ) is the right (left) part of the PN 
sequence waveform. 

According to K-L transformation, we normalize 
ip  by /i i i=u p p , 1,2i =  

( )T
i j i jδ= −u u ， , 1, 2i j =  (4) 

Where 
1u  and 

2u  are ortho-normal vectors, ( )δ ⋅  is a 
Dirac function. From 

1u  and 
2u , we have 

1 1 1 2 2( ) ( )k kk m m k+= + +X p u p u n  (5) 
The autocorrelation matrix of ( )kX : 

XR  may be 
estimated as 

( )
1

1ˆ ( ) ( )
M

T
X

i
M i i

M =

= ∑R X X  (6) 

Assume ( )ks , ( )kn  are mutually independent, 
substitute Eq.(5) into Eq.(6) yields 

2 0
1 1 2 2

ˆ ( ) T T
X X s s s n n n

T Tx x
n SNR SNR

c c

T T T
T T

σ γ γ

= ∞ = +

⎧ ⎫⎛ ⎞ ⎛ ⎞−⎪ ⎪= ⋅ ⋅ + ⋅ ⋅ +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

R R U Λ U U Λ U

u u u u I

 
(7) 

Where I  is an identity matrix of dimension N N× , 
the expectation of 

km  is zero. The variance of 
km  is 

2
mσ , the symbol is uncorrelated from each other. The 

energy of PN sequence is 2
p cE T≈ p ，the variance 

of ( )ks  is 
0

22 TE pms σσ = ，  2 2
SNR s nγ σ σ= . The row 

vectors of 
sU  and nU are corresponding to the 

eigenvectors of eigenvalue 
( ) 2

1 01R SNR x c nT T Tλ γ σ= + ⋅ −⎡ ⎤⎣ ⎦ , 

( ) 2
2 1R SNR x c nT Tλ γ σ= + ⋅  and 2

nσ , and exist 
2

21 nRR σλλ >≥ . It is clear that the eigenvalues of XR  
are dependent on xT . It is shown in (Anderson, 
1963) that the estimated principal eigenvectors have 
the following behavior:  

( )log log / , 1,2, ,i i O M M i K− =   =u u . 

 Therefore, M → ∞ , there always exists i i=  u u , 
1, 2, ,i K = .  
When 0≠xT , the biggest eigenvalue is 1Rλ , the 

sign of its corresponding eigenvector 
1 1sign( )=p u . 

The second biggest eigenvalue is 2Rλ  and the sign of 
its corresponding eigenvector 

2 2sign( )=p u . We can 
recover a period PN sequence from 

2 1 2 1sign( ) sign( )= + = +p p p u u . When 0=xT , 1Rλ  
and 

1 1sign( )=p u  which denote a period of PN 
sequence. 

Because the accumulation of 
XR  estimation by 

Eq.（6） is a de-noise process, we can estimate the 
PN sequence by decomposition of ˆ

XR  even when 

SNRγ  is lower. However, the memory size and 
computational speed will become problems when N  
becomes bigger. Additionally, it is difficult to use 
this batch method to realize the PN tracking of DS 
signals. Since we would like to track slowly varying 
parameters, we must form a moving average 
estimate of the correlation matrix based on the J  
most recent observations 

( )
1

1ˆ , ( ) ( )
i

T
X

j i J

i J j j
J = − +

= ∑R X X  (8) 

It is well known (Anderson, 1963) that the 
maximum likelihood estimate of the eigenvalues and 
associated eigenvectors of 

XR  is just the eigenvalue 
decomposition of ( )ˆ ,X i JR . But there are a lot of 

difficulties in this tracking process by eigenvalue 
decomposition for it’s a batch method. In the 
following context, we will propose to use the PCA 
NN to solve these problems. 

4 IMPLEMENTATION OF A 
MODIFIED SANGER’S GHA 
NEURAL NETWORKS 

According to the result of subspace analysis of DS 
signals based on K-L transformation, we’ll have to 
extract the first and second principal eigenvectors 
before realizing the whole PN sequence estimation. 
A two-layer PCA NN is used to estimate the PN 
sequence in DS signal blindly as in Fig.1. The 
number of input neurons is given by 

0 cN T T= . 
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Figure 1: Neural Networks. 

Assume 0xT ≠ , one of the received signal vectors 
is  
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[ ]
[ ]0 1 1

( ) ( ) ( ), ( ), , ( 1)

( ), ( ), , ( )

T

C C

T
N

t k x t x t T x t N T

x t x t x t−

⎡ ⎤= = − − −⎣ ⎦

        =

X X  (9) 

Where { }( ) ( ), 0,1, , 1i Cx t x t iT i N= − = −  are sampled by 
one point per chip. The synaptic weight vector is 

0 1 ( 1)( ) ( ), ( ), , ( )
T

j j j N jt w t w t w t−⎡ ⎤= ⎣ ⎦w  (10) 

Where the sign of { ( )ijw t ， 0,1, , 1i N= − , 1, 2j = } 

denotes the 1st and 2nd i-th bit of estimated PN 
sequence. The output layer of NN has only two 
neurons, its output is 

1

0

( ) ( ) ( ), 1, 2
N

j ij i
i

y t w t x t j
−

=

=    =∑  (11) 

The synaptic weight ( )ijw t  is adapted in 

accordance with a general form of Hebbian learning, 
as shown by 

1
( 1) ( ) ( ) ( ) ( ) ( )

j

j j j j k k
k

t t y t t y t tβ
=

⎡ ⎤
+ = + −⎢ ⎥

⎣ ⎦
∑w w X w

 
(12) 

Where 
jβ  are the positive step-size parameters. In 

order to achieve good robust convergence 
performance, we modified 

jβ  in learning rule 

Eq.(12) of Sanger’s GHA as follows 
1/ ( 1),j jd tβ = +    

2( 1) ( ) ( ), 1, 2j j j jd t B d t y t j+ = +   =  (13) 

Where , 1, 2jB j  = , are two positive constants 

(usually less than 1). Where the Sanger’s 
generalized Hebbian algorithm (GHA) of Eq.(12) for 
layer of j  neurons includes the algorithm of original 
Hebbian for a single neuron as a special case ,that is, 

1j = .  
For a heuristic understanding of how the 

Sanger’s GHA actually operates, we use matrix 
notation to rewrite the version of the algorithm 
defined in Eq.(12) as follows 

( 1) ( ) ( ) ( ) ( ) ( )j j j j j jt t y t t y t tβ ′⎡ ⎤+ = + −⎣ ⎦w w X w

 
(14) 

Where 
1

1
( ) ( ) ( ) ( )j

k kk
t t y t t−

=
′ = − ∑X X w  (15) 

The vector ( )t′X  represents a modified form of 
the input vector. Provided that the first neuron has 
already converged to the first principal component, 
the second neuron sees an input vector ( )t′X  from 
which the first eigenvector of the correlation matrix 

XR  has been removed. The second neuron therefore 
extracts the first principal component of ( )t′X , 

which is equivalent to the second principal 
component of the original input vector ( )tX . 

The neuron-by-neuron description above is 
intended merely to simplify the explanation. In 
practice, all the neurons in this modified generalized 
Hebbian algorithm tend to converge together. There 
is a convergence theorem in (Sanger, 1989) (Haykin, 
1999) which can guarantee the convergence of the 
modified Sanger’s GHA NN. It guarantees the GHA 
NN to find the first j  eigenvectors of the correlation 
matrix 

XR . Equally important is the fact that we do 
not need to compute 

XR . Rather, the first j  
eigenvectors of 

XR  are computed by the algorithm 
directly from the input signal. The resulting 
computational savings can be enormous especially if 
the dimensionality N  of the input space is very 
large, and the required number of the eigenvectors 
associated with the j  largest eigenvalues of the 

XR  
is a small fraction of N . This provides best 
advantage to track the time-varying PN spreading 
sequence of DS signals adaptively. 

5 SIMULATIONS 

The experiments mainly focus on the NN 
implementation. We get principal eigenvectors and 
performance curves. 
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Figure 2: The estimated 1st principal eigenvector. 
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Figure 3: The estimated 2nd principal eigenvector. 

Fig.2 and Fig.3 denote the first and second principal 
eigenvector with N=100bit at Tx=0.4T0. From them, 
we may estimate the parameter Tx and reconstruct 
the original PN sequence. 
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Figure 4: Tthe performance curves of PN tracking. 
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Figure 5: The performance curves of PN tracking. 
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Figure 6: The curve of 1( )tβ . 
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Figure 7: the curve of 1( )tβ . 

Fig.4-5 show the tracking performance of the NN 
under SNR=-12.04dB when the length of PN 
sequence is N=100bit and N=1000bit respectively. 
Fig.6-7 show the curves of step-size 1( )tβ  when the 
case of N=100bit, SNR=-12.04dB and N=1000bit, 
SNR=-12.04dB, respectively. Under the same 
parameters except the length and content of PN 
sequence, we study the convergence behavior of the 
NN in signal scenarios with sudden PN sequence 
changes. We see in Fig.4-7 that when the PN 
sequence is longer, the convergence and tracking 
performance is better. 
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Figure 8: The performance curves of PN estimation. 
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Fig.8 denotes the performance curves of PN 
sequence estimation. It shows the time taken for the 
NN to perfectly estimate the PN sequence for 
lengths of N=100bit and N=1000bit at Tx/T0=0.4. 
Under the same condition, when the longer the PN 
sequence is, the better the performance is. 

6 CONCLUSIONS 

A modified Sanger’s GHA NN technique for blind 
estimation and adaptive tracking of PN sequence of 
DS signals is developed and demonstrated. The 
technique, referred to here as the modified Sanger’s 
GHA NN algorithm, exploits the subspace analysis 
based on K-L transformation of the DS signal to 
blindly estimate and adaptively track the spreading 
code and can further despread the underlying 
message sequence, without knowledge of the content 
of the PN code or message sequences. The technique 
is applicable to arbitrary spreading codes and 
message sequences, and can operate in environments 
containing arbitrary levels of additive white 
Gaussian noise in theory. 

The technique is demonstrated for the length of 
PN code N=100bit and 1000bit DS-SS signal 
received in -20 dB to 0 dB of additive white 
Gaussian noise. It is shown that the technique can 
blindly estimate and adaptively track the PN 
sequence in the presence of strong additive white 
Gaussian noise. In (Simic et al., 2005) Simic used 
the method of eigen-analysis to achieve –5dB of the 
SNR threshold, moreover, in (Zhan et al., 2005) 
Zhan use the method of matrix to achieve –12dB 
SNR threshold, but we can realize threshold of 

dBSNR 0.20−=  easily here, hence the performance 
of the methods in this paper is more better. The 
convergence time of the algorithm for PN sequence 
perfect estimation is also shown to be competitive 
with conventional despreading techniques (which 
require knowledge of the spreading code) such as 
delay-lock loops.  

These results show that modified Sanger’s 
GHA NN technique can provide a promising 
alternative to existing despreading algorithms. The 
algorithm can be applicable to signals with short 
code lengths, such as commercial communication 
signals. The algorithm can be also applicable to 
signals with longer code lengths, such as military 
communication signals. It can be further used in 
management and scout of DS communications. 
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