
EFFICIENT IMPLEMENTATION OF FAULT-TOLERANT DATA
STRUCTURES IN PC-BASED CONTROL SOFTWARE

Michael Short
Embedded Systems Laboratory, University of Leicester,University Road, Leicester,UK

mjs61@le.ac.uk

Keywords: Open architecture controllers, software fault tolerance, critical systems.

Abstract: Recent years have seen an increased interest in the use of open-architecture, PC-based controllers for
robotic and mechatronic systems. Although such systems give increased flexibility and performance at low
unit cost, the use of commercial processors and memory devices can be problematic from a safety
perspective as they lack many of the built-in integrity testing features that are typical of more specialised
equipment. Previous research has shown that the rate of undetected corruptions in industrial PC memory
devices is large enough to be of concern in systems where the correct functioning of equipment is vital. In
this paper the mechanisms that may lead to such corruptions and the level of risk is examined. A simple,
portable and highly effective software library is also presented in this paper that can reduce the impact of
such memory errors. The effectiveness of the library is verified in a small example.

1 INTRODUCTION

Recent years have seen much interest in the use of
open-architecture controllers for robotic and
mechatronic systems. Such systems typically consist
of a combination of commercial off the shelf
(COTS) PC equipment alongside motion control,
network interface, and sensor/actuator equipment –
e.g. (Hong et al. 2001; Short 2003; Lee & Mavroidis
2000; Schofield & Wright, 1998). Such architectures
have been used to successfully implement novel
control algorithms in a number of research
installations (e.g. fuzzy force control (Burn et al.
2003) and H∞ vibration control (Lee & Mavroidis
2000)); they are also being used in increasing
numbers in industrial applications (e.g. KUKA®,
STAUBLI®, RWT® systems). The flexibility of
such platforms primarily arises by giving engineers
the ability to develop and/or modify the control and
interfacing hardware and software, which is
typically developed in C++.

However, despite increased flexibility and
performance (along with marked unit cost
reductions), such COTS equipment lacks many of
the built-in integrity testing elements which are often
employed in more proprietary, specialised control
equipment. Many robotic and mechatronic systems,
by virtue of their design, are somewhat critical in
nature.

A study of available data by Dhillon and
Fashandi (1997) concluded that robot-related
accidents are primarily caused by unexpected or
unplanned motions of the manipulator; a
contributory cause of which was malfunctions of the
robot control system. Unexpected motions of a
manipulator or tooling may result in damage (or
complete destruction) of the system itself and any
(potentially expensive) equipment in the systems’
workspace. Additionally, when considering
applications such as surgical robotics, any
unexpected or unplanned motion could also result in
serious injury or death.

When such COTS equipment is used in
situations where their correct functioning is vital,
special care must be therefore taken to ensure that
the system is both reliable and safe (Storey 1996;
Levenson 1995). When considering the equipment
employed in a typical robot control system, attention
must be paid to potential permanent, transient or
intermittent failures of the hardware and software.
The need for fault-tolerant techniques is dependant
on the potential risk, which is primarily dependant
on the application and environment the system is
employed in.

Much research has concentrated on providing
hardware fault tolerance for such systems (e.g. see
Storey 1996). Recent years have also seen the
development of several software-based approaches
to implementing transient fault detection on COTS

214

processors. They are based around instruction
counting, instruction/task duplication and control
flow checking (e.g. Rajabzadeh & Miremadi 2006;
Rebaudengo et al. 2002; Oh et al. 2000).

Although such techniques are effective at
detecting many control flow errors, systems which
incorporate them may still be vulnerable to transient
errors in data memory (which may not result in
control-flow errors). This paper is particularly
concerned with the mitigation of transient errors in
COTS memory devices used in open-architecture
controllers. In section 2 of the paper, we will
consider the mechanisms that may lead to memory
corruption, the resulting effects, and the level of risk.

In section 3, a simple yet highly effective
software library that reduces the impact of memory
corruptions and overcomes these implementation
difficulties is presented and described in detail. In
section 4 we apply this library to a simple test
program; a 6 x 6 matrix multiplication program.
Fault injection results are described for both the un-
hardened and hardened programs. Section 5
concludes the paper.

2 MEMORY ERRORS

2.1 Mechanisms

Corruption of data in memory devices can come
from a variety of sources. Single event effects -
(SEE’s) - caused by particle strikes, may manifest
themselves in a variety of ways. They may cause
transient disturbances known as single event upsets
(SEU’s), manifested as random bit-flips in memory.
They may also cause permanent stuck-at faults over
an array of memory, caused by damage to the
read/write circuitry or chip latchup.

In addition, memory devices may also fail due to
normal electrical and thermal breakdown effects.
Such electrical or thermal failures and disturbances
in memory devices may be highly unpredictable,
manifesting themselves as complete device failures
or stuck-at faults over part (or all) of the memory
array.

Memory devices are also susceptible to
electromagnetic interference (EMI) from a variety of
sources. For example in an industrial robot workcell,
numerous devices such as electromechanical relays,
motor drives and welding equipment are all sources
of noise that are capable of corrupting many
electronic circuits (Ong & Pont 2002). Other
mechanisms that may lead to memory upsets include

power supply fluctuations and radio frequency
interference (RFI).

2.2 Level Of Risk

Failure rates for SEU’s in ground-based installations
are in the region of 10-10 - 10-12 failures per bit per
hour (Normand 1996). Failure rates for individual
devices due to electrical effects may be calculated
using a methodology such as (MIL 1991); they are
typically in the region of 10-6 failures per device per
hour. Predicting the effects of EMI, RFI and power
supply disturbances are extremely difficult and
highly dependant on the operating environment and
the hardware mitigation techniques that are
employed (e.g. signal shielding).

From a practical perspective, experimental
studies have demonstrated that on COTS memory
devices with built-in integrity checks (such as parity
and error correction codes) the problem of
undetected memory corruption is large enough to be
of concern for some critical systems. Additionally,
much PC hardware does not even support such
integrity checks (Messer et al. 2001).

For example, a 4MB DRAM memory chip is
likely to encounter 6000 undetected memory failures
in 109 hours of operation (Messer et al. 2001). If a
control system PC employs several such devices,
with a total of 512 MB memory, this translates to an
undetected memory corruption approximately every
55 days of operation.

2.3 Activation Effects

Obviously, not all memory errors will become
activated. However, robotic control systems
typically involve extremely data-intensive
processing with hard real-time constraints.
Techniques such as co-ordinate transforms,
kinematics, resolved-motion rate control, path
planning and force control all typically require
hundreds (perhaps even thousands) of matrix
manipulations and feedback control calculations
every second (e.g. Fu et al. 1997). Considering that a
simple 6 x 6 matrix multiplication and storing of the
result typically involves 864 memory read/write
operations, it can be argued that the probability of
activating an error in such control software is
relatively high when compared to (for example) a
word processing application.

If a memory error does become activated, this
can lead to a variety of unpredictable faults (Ong &
Pont 2002). For example, they may cause an
incorrect value to be output to a port or peripheral;

EFFICIENT IMPLEMENTATION OF FAULT-TOLERANT DATA STRUCTURES IN PC-BASED CONTROL
SOFTWARE

215

or they may cause a further area of memory to be
corrupted by indexing an array out of its normal
bounds. In an open-architecture controller, all of
these faults can potentially escalate to full system
failures, and cause unpredictable motions of the
manipulator or tooling.

2.4 Mitigation Techniques

In order to address this vulnerability, some
researchers have investigated the use of Single-
Program Multiple Data (SPMD) techniques for data
redundancy in both single and multi processor
systems (e.g. Redaudengo et al. 2002; Gong et al.
1997). However, such approaches can be
problematic from the point of view of the control
system developer. Primarily because when the
techniques are actually applied, the complexity of
the resulting source code can increase dramatically,
and the basic meaning of the code can become
obscured. This may have an impact on code
development, testing and subsequent code
maintenance. To illustrate this point, consider the
segment of C code shown in Figure 1.

01: #define N (10)
02: int i;
03: int a[N],b[N];
04: for(i=0;i<N;i++)
05: {
06: b[i]=a[i];
07: }

Figure 1: Un hardened code.

For most programmers, this is “self
documenting” code, and the meaning is clear (the
programmer wishes to copy the contents of any
array of ten integers to another array of the same
size). Now, consider the same code, hardened using
the technique suggested by Redaudengo et al.
(2002). This is shown in Figure 2 (note the required
checksum initialization code and the XOR macro
CHK have been omitted for space reasons). The total
code segment, including this initialization (which
must be called before each operation), and the CHK
macro, is in excess of 36 lines in length; the meaning
of the code is also somewhat obscured. In addition,
the variable i in Figure 2 remains un-hardened. If the
variable i were to be hardened, the meaning of the
code would become further obscured, with the
check-and-correct code for i embedded within the
for loop construct; as more nested variables are
hardened, the problem can soon become difficult to
manage. This can be particularly troublesome when

writing matrix manipulation code which can often
require many levels of nesting.

01: #define N (10)
02: int i;
03: int a0[N],b0[N];
04 int b1[N],b1[N];
05 int c0,c1;
06: for (i=0;i<N;i++)
07: {
08: c0=c0^b0;
09: c1=c1^b1;
10: b0[i]=a0[i];
11: b1[i]=a1[i];
12: c0=c0^b0;
13: c1=c1^b1;
14: if(a0[i]!=a1[i])
15: {
16: if(CHK(a0,b0)==C0)
17: {
18: a1[i]=a0[i];
19: c1=c0;
20: }
21: else
22: {
23: a0[i]=a1[i];
24: c0=c1;
25: }
26: }
27: }

Figure 2: Hardened code.

Although this problem may be overcome by the
use of automatic code generators, this adds an extra
level of complexity and abstraction to the software
development process, and adds a real possibility of
introducing systematic errors into the design
process.

In the following section, a software-based
methodology will be proposed to simplify the
implementation of data redundancy. This technique
is an implementation of an SPMD-like architecture
to provide fault tolerance to transient errors in data
memory. This approach directly addresses the
problems of code complexity and compatibility with
other software-based approaches. It is primarily
suited to C++, but can easily be ported to other
object-oriented languages (e.g. JAVA).

3 THE NEW APPROACH

3.1 Requirements

The requirement for this software library was to
provide a portable and highly flexible set of new
data types for use with C++ programs. The new data
types should encapsulate a Triple Modular
Redundant (TMR) approach which is completely

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

216

hidden from the programmer. The data types, to all
intents and purposes, appear to the programmer as
their basic simplex counterparts; and all the new
data types can also be used interchangeably with
their simplex counterparts. The library should be as
non-intrusive as possible and not require the use of
an automatic code generator for its implementation.

Every write operation to the new types invokes a
write to three duplicated variables of the
corresponding type, and each read operation invokes
a two-from-three vote on the duplicated variables.
This concept is shown for a generic data type in
Figure 3.

We assume that if the data is so corrupted that a
two-from-three vote cannot be achieved, then a user-
defined error handler is called. This required
functionality of this error hander is highly
application dependant; it could, for example, freeze
the mechanical system and execute a software based
self test (SBST) algorithm to verify that no
permanent hardware failures have occurred in the
CPU peripherals or RAM. Hamdioui et al. (2002)
and Sosnowski (2006) have proposed efficient SBST
algorithms to achieve this.

Figure 3: Generic TMR data concept.

3.2 C++ Implementation

In order to create a generic and flexible
implementation, the required TMR behaviour was
defined in a generic C++ class template named
TMR_datatype. The prototype of the class template
is shown in Figure 4. This class template for a given
data type T can then be applied to any of the basic
in-built C++ data types by means of suitable #define
statements, also shown in Figure 4.

01: template <class T>
02: class TMR_datatype
03: {
04: public:
05: inline TMR_datatype(const T);
06: inline TMR_datatype(void);
07: inline T operator =(const T);
08: inline operator T();
09: inline T operator+=(const T);
10: inline T operator-=(const T);
11: inline T operator*=(const T);
12: inline T operator/=(const T);
13: inline T operator++(int);
14: inline T operator++(void);
15: inline T operator--(int);
16: inline T operator--(void);
17: inline T operator &=(const T);
18: inline T operator |=(const T);
19: inline T operator ^=(const T);
20: private:
21: T Primary_Copy;
22: T Secondary_Copy;
23: T Tertiary_Copy;
24: };
25: #define TMR_int TMR_datatype
 <int>
26: #define TMR_float TMR_datatype
 <float>

Figure 4: TMR_Datatype class template.

From the class template, it can be seen that each
derived object of the template contains three private
data declarations, Primary_Data, Secondary_Data
and Tertiary_Data, corresponding to the simplex
data type T. The required read and write operations
on this data are then achieved by defining new
operator member functions using the operator
keyword. It can be seen that all of these operator
functions are expanded inline by the compiler, with
the use of the inline keyword; this is to reduce any
overheads associated with the call of a member
function.

By way of example, the member functions for
both the assignment and reference operations on the
class template are shown in Figure 5. Note that the
use of the explicit reference operator is used in the
implementation; thus only the operator functions
that explicitly modify the data contents (such as =,
++, --, +=, and so on) needed to be overloaded; this
creates a very efficient and portable implementation.

01: inline T TMR_data::operator
 =(const T Value)
02: {
03: Primary_Copy=Value;
04: Secondary_Copy=Value;
05: Tertiary_Copy=Value;
06: return(Value);
07: }
08: inline TMR_data::operator T()
09: {
10: if(Primary_Copy==Secondary_Copy)

EFFICIENT IMPLEMENTATION OF FAULT-TOLERANT DATA STRUCTURES IN PC-BASED CONTROL
SOFTWARE

217

11: {
12: Return(Primary_Copy);
13: }
14: else
 if(Primary_Copy==Tertiary_Copy)
15: {
16: Return(Primary_Copy);
17: }
18: else
 if(Secondary_Copy==Tertiary_Copy)
19: {
20: Return(Secondary_Copy);
21: }
22: else
23: {
24: Error();
25: }
26: }

Figure 5: Assignment and reference member functions.

From Figure 5, it can be seen that the TMR
behaviour has been captured by the template; when
an assignment (write) operator is encountered, the
value is written to the three copies of the data. When
the reference (read) operator is encountered, a two-
from-three vote is employed and the data returned. If
no vote is possible, the user defined function Error
is called.

3.3 Hardening Procedure

In Figure 6, the code library described in this section
is applied to the code example shown in Figure 1.
From Figure 6 it can be seen that the length of the
hardened source code is identical to the original and
is also highly readable. Additionally, it is noted that
– unlike the code shown in Figure 2 - the variable i
is also hardened in this case.

01: #define N (10)
02: TMR_int i;
03: TMR_int a[N],b[N];
04: for (i=0;i<N;i++)
05: {
06: b[i]=a[i];
07: }

Figure 6: Hardened code.

From these descriptions it can be seen that this
library does not require the use of automatic code
generators for its implementation: all that is required
is for the programmer to have a basic understanding
of the new data types. The hardening procedure can
be accomplished extremely rapidly; all that is
required is the inclusion of the new TMR template
into a project, and altering the variable declarations
that require hardening to their redundant
counterparts.

4 EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed code
library, a fault-injection study was performed on a
Intel® Pentium 4-based PC, with a CPU speed of
2.6 GHz and 512 MB RAM, running the Windows
NT® operating system. A simple (yet
representative) application program was created to
perform a 6x6 floating point matrix multiplication.
During each experiment, transient faults were
injected into the program data area at random times,
performing random single bit-flips in the used data
areas. The fault injection was performed using a
secondary application running on the PC. In the
program, the source matrices are first initialized with
known constant values. The matrix multiplication is
then performed. The values contained in the result
matrix are then compared with known constant
results. The process then repeats endlessly. Any
failures or corrected errors are logged by the
application program.

Two different implementations of the program
were considered; the normal (simplex) case, and the
hardened TMR version. To asses the impact of
applying the library on execution time, we also
measured the iteration time for each loop of each
program using the Pentium performance counter.
Table 1 shows the recorded results. In the hardened
program, the number of faults injected was increased
to reflect the increased size of the program data
areas. Fault effects were classified into one of three
categories, as follows:

• Effect-less: the fault does not result in a

computation failure.
• Corrected: the fault is detected and has been

corrected.
• Failure: the fault is not detected or corrected and

results in an invalid computation output.

From these results, it can be seen that for both

cases, the error activation level was approximately
77%. Application of the TMR data structures
increased the execution time of the multiplication
task by a factor of 3.2; this is to be expected as we
have introduced instruction duplication and voting.
Additionally it should be noted that each hardened
variable increases the overall memory usage due to
its triplicate implementation. The increase in overall
program code size was 7.1% in this case.

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

218

Table 1: Fault injection results for each program.

 Normal Hardened
Injected 10000 30000

No Effect 2240 6690
Failures 7760 0

Corrected 0 23010
 Calc. Time (us) 4.72 15.27

We can also see from the results that of the 77%

of activated faults, 100% of these caused
computation failures in the normal program case.
The hardened case however, detected and corrected
100% of the activated faults.

5 CONCLUSIONS

In this paper, the mechanisms that can lead to
memory corruption in COTS PC control devices
have been considered. A novel approach to software
implemented fault-tolerance has been presented. The
approach, based on an SPMD architecture, can be
used to compliment existing error detection and
SBST techniques for COTS processors used in open
architecture controllers. The approach relies on data
and instruction duplication. It has been shown that
the method is easily applied, results in readable
code, and is able to tolerate 100% of the injected
faults in the benchmark described. Whilst the
application of the techniques provides high levels of
data fault tolerance, there is obviously a trade-off
with increases in the code and data size and task
execution time. Prospective designers must
obviously take these factors into account when
considering the techniques.

ACKNOWLEDGEMENTS

The work described in this paper was supported by
the Leverhulme Trust (Grant F/00 212/D).

REFERENCES

Burn, K., Short, M., Bicker, R., 2003. Adaptive And
Nonlinear Force Control Techniques Applied to
Robots Operating in Uncertain Environments. Journal
of Robotic Systems, Vol. 20, No. 7, pp. 391-400.

Dhillon, B.S., Fashandi, A.R.M., 1997. Safety and
reliability assessment techniques in robotics. Robotica,
Vol. 15, pp. 701-708.

Fu, K.S., Gonzales, R.C., Lee, C.S.G., 1987. Robotics:
Control, Sensing, Vision And Intelligence. McGraw-
Hill International Editions.

Gong, C., Melhem, R., Gupta, R., 1997. On-line error
detection through data duplication in distributed
memory systems. Microprocessors and Microsystems,
Vol. 21, pp. 197-209.

Hamdioui, S., van der Goor, A., Rogers, M., 2002. March
SS: A Test for All Static Simple RAM Faults. In Proc.
Of the 2002 IEEE Intl. Workshop on Memory Tech.,
Design and Testing.

Hong, K.S., Choi, K.H., Kim, J.G., Lee, S., 2001. A PC-
based open robot control system: PC-ORC. Robotics
and ComputerIntegrated Manufacturing, Vol. 17, pp.
355-365.

Lee, C.J., Mavroidis, C., 2000. WinRec V.1: Real-Time
Control Software for Windows NT and its
Applications. In Proc. American Control Conf.,
Chicago, Il., pp. 651-655.

Levenson, N.G., 1995. Safeware: System Safety and
Computers, Reading, M.A., Addison-Wesley.

Messer, A., Bernadat, P., Fu, G., Chen, G., Dimitrijevic,
Z., Lie, D., Mannaru, D.D, Riska, A., Milojicic, D.,
2001. Susceptibility of Modern Systems and Software
to Soft Errors, In Proc. Int. Conf. on Dependable Sys.
And Networks, Goteburg, Sweden.

MIL-HDBK-217F, 1991. Military Handbook of Reliability
Prediction of Electronic Equipment. December 1991.

Normand, E., 1996. Single Event Effects in Avionics,
IEEE Trans. on Nuclear Science, Vol. 43, No. 2.

Oh, N., Shivani, P.P., McCluskey, E.J., 2001. Control
Flow Checking by Software Signature. IEEE Trans.
On Reliability, September 2001.

Ong, H.L.R, Pont, M.J., 2002. The impact of instruction
pointer corruption on program flow: a computational
modelling study. Microprocessors and Microsystems,
25: 409-419.

Rajabzadeh, A., Miremadi, S.G., 2006. Transient detection
in COTS processors using software approach,
Microelectronics Reliability, Vol. 46, pp. 124-133.

Rebaudengo, M., Sonza Reorda, M., Violante, M., 2002.
A new approach to software-implemented fault
tolerance. In Proc. IEEE Latin American Test
Workshop, 2002.

Schofield, S., Wright, P., 1998. Open Architecture
Controllers for Machine Tools, Part 1: Design
Principles. Trans. ASME Journ. of Manufacturing Sci.
& Engineer, Vol. 120, Pt. 2, pp. 417-424.

Short, M., 2003. A Generic Controller Architecture for
Advanced and Intelligent Robots. PhD. Thesis,
University of Sunderland, UK.

Sosnowski, J., 2006. Software-based self-testing of
microprocessors. Journal of Systems Architecture,
Vol. 52, pp. 257-271.

Storey, N., 1996. Safety Critical Computer Systems.
Addison Wesley Publishing.

EFFICIENT IMPLEMENTATION OF FAULT-TOLERANT DATA STRUCTURES IN PC-BASED CONTROL
SOFTWARE

219

