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Abstract: The work of this paper contributes to the structural analysis of batch deterministic and stochastic Petri nets 
(BDSPNs). The BDSPN model is a class of Petri nets introduced for the modelling, analysis and 
performance evaluation of discrete event systems with batch behaviours.  The model is particularly suitable 
for the modelling of flow evolution in discrete quantities (batches of variable sizes) in a system with 
activities performed in batch modes. In this paper, transformation procedures for some subclasses of 
BDSPN are developed and the necessity of the introduction of the new model is demonstrated. 

1 INTRODUCTION 

A Petri net model, called batch deterministic and 
stochastic Petri nets (BDSPN), was introduced for 
the modelling, and performance evaluation of 
discrete event systems with batch behaviours. As we 
know, industrial systems are often characterized as 
batch processes where materials are processed in 
batches and many operations are usually performed 
in batch modes to take advantages of the economies 
of scale or because of the batch nature of customer 
orders. It is shown in our previous papers that the 
model is a powerful tool for both analysis and 
simulation of those systems and its capability to 
meet real needs was demonstrated through 
applications to logistical systems (Labadi, et al. 
2005, 2007; Chen, et al. 2005). The objective of this 
paper is to study the transformation of a BDSPN 
model into an equivalent classical Petri net model. 
Such a transformation is possible for some cases for 
which the corresponding transformation procedures 
are developed. We will also show that for the model 
with variable arc weights depending on its marking, 
the transformation is impossible. This study allows 
us to establish a relationship between BDSPNs and 
classical discrete Petri nets and to demonstrate the 
necessity of introducing the BDSPN model. 

2 DESCRIPTION OF THE 
MODEL 

BDSPN model is developed from deterministic and 
stochastic Petri nets (Marsan, et al. 1987; 
Lindemann, 1998) by introducing batch components 
(batch places, batch tokens, and batch transitions) 
and new transition enabling and firing rules. Firstly, 
we recall the basic definition and the dynamical 
behavior of the model (Labadi, et al. 2005, 2007; 
Chen, et al. 2005). 

2.1 Definition of the Model 

A BDSPN is a nine tuple (P, T, I, O, V, W, Π, D, µ0) 
where:  

P = Pd ∪ Pb is a finite set of places consisting of 
the discrete places in set Pd and the batch places in 
set Pb. Discrete places and batch places are 
represented by single circles and squares with an 
embedded circle, respectively. Each token in a 
discrete place is represented by a dot, whereas each 
batch token in a batch place is represented by an 
Arabic number that indicates its size. 

T = Ti ∪ Td ∪ Te is a set of transitions consisting 
of immediate transitions in set Ti, the deterministic 
timed transitions in set Td, and exponentially 
distributed transitions in set Te. T can also be 
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partitioned into TD ∪ TB: a set of discrete transitions 
TD and a set of batch transitions TB. A transition is 
said to be a batch transition (respectively a discrete 
transition) if it has at least an input batch place 
(respectively if it has no input batch place). 

I ⊆ (P × T), O ⊆ (T × P), and V ⊆ (P × T) define 
the input arcs, the output arcs and the inhibitor arcs 
of all transitions, respectively. It is assumed that 
only immediate transitions are associated with 
inhibitor arcs and that the inhibitor arcs and the input 
arcs are two disjoint sets.  

W: (I ∪ O ∪ V)×IN|P|→IN, where IN is the set of 
nonnegative integers, defines the weights for all 
ordinary arcs and inhibitor arcs. For any arc (i, j) ∈  
I ∪ O ∪ V, its weight W(i, j) is a linear function of 
the M-marking with integer coefficients α, β, i.e., 
w(i, j) = αij + ∑p∈ P β(i, j)p × M(p). The weight w(i, j) 
is assumed to take a positive value. 

Π: T→IN is a priority function assigning a 
priority to each transition. Timed transitions are 
assumed to have the lowest priority, i.e.; Π(t) = 0 if t 
∈ Td ∪ Te. For each immediate transition t ∈ Ti, 
Π(t) ≥ 1.  

D: T→[0, ∞) defines the firing times of all 
transitions. It specifies the mean firing delay for 
each exponential transition, a constant firing delay 
for each deterministic transition, and a zero firing 
delay for each immediate transition 

µ0: P→IN ∪ 2IN is the initial µ-marking of the 
net, where 2IN consists of all subsets of IN, µ0(p) ∈ 
IN if p ∈ Pd, and µ0(p) ∈ 2IN if p ∈ Pb. 

The state of the net is represented by its µ-
marking. We use two different ways to represent the 
µ-marking of a discrete place and the µ-marking of a 
batch place. The first marking is represented by a 
nonnegative integer, whereas the second marking is 
represented by a multiset of nonnegative positive 
integers. The multiset may contain identical 
elements and each integer in the multiset represents 
a batch token with a given size. Moreover, for 
defining the net, another type of marking, called M-
marking, is also introduced. For each discrete place, 
its M-marking is the same as its μ-marking, whereas 
for each batch place its M-marking is defined as the 
total size of the batch tokens in the place. 

2.2 Transition Enabling and Firing 

The state or µ-marking of the net is changed with 
two types of transition firing called “batch firing” 
and “discrete firing”. They depend on whether a 
transition has no batch input places. In the 
following, a place connected with a transition by an 
arc is referred to as input, output, and inhibitor 

place, depending on the type of the arc. The set of 
input places, the set of output places and the set of 
inhibitor places of transition t are denoted by •t, t•, 
and °t, respectively, where •t  = { p | (p, t) ∈ I }, t• = 
{ p | (t, p) ∈ O }, and  °t  = { p | (p, t) ∈ V }. The 
weights of the input arc from a place p to a transition 
t, of the output arc from t to p are denoted by w(p, t), 
w(t, p) respectively. 

2.2.1 Batch Enabling and Firing Rules  

A batch transition t is said to be enabled at µ-
marking µ if and only if there is a batch firing index 
(positive integer) q∈IN (q > 0) such that: 
 

( ) ( ), :    ,bp t P b μ p q b w p t•∀ ∈ ∩ ∃ ∈ =  (1) 

( ) ( ),            ,dp t P M p q w p t•∀ ∈ ∩ ≥ ×  (2) 
( ) ( ),                  ,p t M p w p t∀ ∈ <  (3) 

 
The batch firing of t leads to a new µ-marking µ’:  
 

( ) ( ) ( ): ' ,dp t P μ p μ p q w p t•∀ ∈ ∩ = − ×  (4) 
( ) ( ) ( ){ }: ' ,bp t P μ p μ p q w p t•∀ ∈ ∩ = − ×  (5) 
( ) ( ) ( ): ' ,dp t P μ p μ p q w t p•∀ ∈ ∩ = + ×  (6) 
( ) ( ) ( ){ }• : ' ,bp t P μ p μ p q w t p∀ ∈ ∩ = + ×  (7) 

2.2.2 Discrete Enabling and Firing Rules 

A discrete transition t is said to be enabled at µ-
marking µ (its corresponding M-marking M) if and 
only if: 
 

( ) ( ),         ,p t M p w p t•∀ ∈ ≥  (8) 
( ) ( ),         ,p t M p w p t∀ ∈ <  (9) 

 
The discrete firing of t leads to a new µ-marking µ’: 
 

( ) ( ) ( )•∀ ∈ = −:          ' ,p t μ p μ p w p t  (10) 
( ) ( ) ( )•∀ ∈ ∩ = +:   ' ,dp t P μ p μ p w t p  (11) 
( ) ( ) ( ){ }•∀ ∈ ∩ = +:   ' ,bp t P μ p μ p w t p  (12) 

2.2.3 An Illustrative Example 

We describe as an example the BDSPN model of a 
simple assembly-to-order system that requires two 
components shown in Fig. 1. In the model, discrete 
places p1 and p2 are used to represent the stock of 
component A and the stock of component B 
respectively. Batch place p3 is used to represent 
batch customer orders with different and variable 
sizes. To fill a customer order of size b, we need b × 
w(p1, t1) = 2b units of component A from the stock 
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represented by p1 and b × w(p2, t1) = b units of 
component B from the stock represented by p2. 
These components will be assembled to b units of 
final product to fill the order. For instance, at the 
current µ-marking µ0 = (4, 3, {4, 2, 3}, ∅, 0)T, it is 
possible to fill the batch customer order b = 2 in 
batch place p3 since the batch transition t1 is enabled 
with q = b/ w(p3, t1) = 2. After the batch firing of 
transition t1 (start assembly), the corresponding 
batch token b = 2 will be removed from batch place 
p3, q× w(p1, t1) = 4 discrete tokens will be removed 
from discrete place p1, and q × w(p2, t1) = 2 discrete 
tokens will be removed from discrete place p2. A 
batch token with size equal to q × w(t1, p4) = 2 will 
be created in batch place p4 and 2 discrete tokens 
will be created in discrete place p5. Therefore, the 
new µ-marking of the net after the batch firing is: µ1 
= (0, 1, {4, 3}, {2}, 2)T and its corresponding M-
marking is M1  = (0, 1, 7, 2, 2)T. 

t1 

p1 

p2 

2 Batch assembly 
operation 

p4 

4 

p3 

t2
2 

Arrival of batch  
customer orders 

Replenishment of 
component B 

Replenishment of 
component A 

3

p5 

Stock 1 

Stock 2 

Outstanding 
batch orders 

Start 
assembly 

End 
assembly 

 
Figure 1: An assembly-to-order system. 

2.3 Reachability Graph 

For the analysis of the transformation procedures 
developed in the rest of this paper, we need to define 
in the following the concept of the reachability 
graph of the model. 

A µ-marking reachability graph of a given 
BDSPN is a directed graph (Vμ, Eμ), where the set of 
vertices Vμ is given by the reachability set (µ0

*: all 
μ-markings reachable from the initial marking μ0 by 
firing a sequence of transitions and the initial 
marking), while the set of directed arcs Eμ is given 
by the feasible µ-marking changes in the BDSPN 
due to transition firing in all reachable μ-markings.  

Similarly, we define M-marking reachability 
graph (VM, EM) which can be obtained from (Vμ, Eμ) 
by transforming each μ-marking in Vμ into its 
corresponding M-marking and by merging 
duplicated M-markings (and duplicated arcs). 

3 TRANSFORMATION 
METHODS 

The objective of this section is to study the 
transformation of a BDSPN model into an 
equivalent classical Petri net model. 

3.1 Special Case 

Firstly, we consider the case where all batch tokens 
in each batch place of the BDSPN are always 
identical. A batch place pi is said to be simple if the 
sizes of its all batch tokens are the same for any µ-
marking reachable from µ0. 
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Figure 2: Transformation of a BDSPN (special case). 

To illustrate the transformation method, we consider 
an example given in Fig. 2. The net (a) whose all 
batch places are simple can be easily transformed 
into an equivalent classical discrete Petri net (b). We 
observe that the two nets have the same M-marking 
reachability graph (the same dynamical behaviour). 
Indeed, the two properties, (i) all batch places of the 
net are simple and (ii) the net has no variable arc 
weight, lead to a constant batch firing index qj for 
each batch transition tj ∈ Tb of the net. As 
formulated in the following procedure, the 
transformation method consists of (i) transforming 
each batch place into a discrete place and (ii) 
integrating the constant batch firing index of each 
batch transition in the weights of its input and output 
arcs in the resulting classical net in order to respect 

TRANSFORMATION ANALYSIS METHODS FOR THE BDSPN MODEL

137



 

the dynamic behaviour of the original batch net. 
Transformation procedure (special case) 

Given a BDSPN whose all batch places are simple 
and whose all arcs have a constant weight. This net 
can be transformed into an equivalent classical 
discrete Petri net, denoted by DPN by the following 
procedure: 
Step1. The set of discrete places Pd of the BDSPN 
and their markings remain unchanged for the DPN. 

0 0,  ( ) ( )i d i ip P M p μ p∀ ∈ =  (13) 
 

Step2. Each batch place of the BDSPN is 
transformed into a discrete place M-marked in the 
DPN. 

( )
( )∈

∀ ∈ = ∑0,  
i

i b i
b μ p

p P M p b  (14) 

Step3. The set of transitions T of the BDSPN 
remains unchanged for the DPN.   
 

Step4. The weight of each output arc of each batch 
place pi∈ Pb of the BDSPN is set to the size of its 
batch tokens bi. 

•

∗

∀ ∈ ∀ ∈

= × =

,  ,

( , ) ( , )
( , )

i b j i

i
i j i j i

i j

p P t p

b
W p t W p t b

W p t
 (15) 

Step5. The weight of each output arc of each batch 
transition tj ∈ Tb of the BDSPN is set to its original 
weight multiplied by its batch firing index qj. 

• ∗∀ ∈ ∀ ∈

= × = ×

,  , ( , )

( , ) ( , ) .
( , )

i b j i j i

i
j i j j i

i j

p P t p W t p

b
W t p q W t p

W p t
 (16) 

Step6. The weight of each output arc of each 
discrete transition tj ∈ Td of the BDSPN remains 
unchanged for the DPN. 

3.2 General Case  

The proposed transformation procedure can be 
generalized to allow the transformation of a BDSPN 
containing batch places which are not simple into an 
equivalent classical Petri net. The transformation is 
feasible if we know in advance all possible batch 
firings of all batch transitions and all possible batch 
tokens which can appear in each batch place of the 
net during its evolution. In other words, the 
transformation can be performed when we well 
know the dynamic behaviour of the BDSPN for its 
given initial µ-markings µ0. 

(a) Let D(tj) denote the set of all q-indexed 
transitions tj[q] generated by the firings of the batch 

transition tj with all possible batch firing indexes q 
during the evolution of the BDSPN starting from µ0. 

[ ] [ ]= ∃ ∈ →*
0( ) {  , [ }j j q j qD t t μ μ μ t  (17) 

where µ0 denotes the set of reachable µ-markings 
from µ0 and µ[tj[q]→ denote that the batch transition 
tj can be fired from µ with a batch firing index q. 

(b) Let D(pi) denote the set of all possible batch 
tokens which can appear in the batch place pi during 
the evolution the BDSPN starting from µ0. 

 = ∃ ∈ ∈*
0( ) {  , ( )}i iD p b μ μ b μ p  (18) 
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Figure 3: Transformation of a BDSPN (general case). 

By analogy with the transformation procedure 

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

138



 

for the special case, the transformation for the 
general case consists of the transformation of its 
each batch place pi into a set of discrete places 
corresponding to D(pi) and the transformation of its 
each batch transition tj into a set of discrete 
transitions corresponding to D(tj). For example, the 
transformation of the BDSPN given in Fig. 3 is 
realized by transforming the batch transition t1 (resp. 
t2) into a set of discrete transitions {t1[1], t1[2]} (resp 
{t2[1], t2[2]}) and by transforming the batch place p1 
(resp. p2) into a set of discrete places  {p1[1],p1[2]} 
(resp. {p2[1], p2[2]} as shown in Fig. 3b. Similar to the 
special case, to respect the dynamical behaviour of 
the BDSPN, each possible batch firing index of each 
batch transition is integrated in the weights of the 
input and output arcs of the corresponding transition 
in the resulting classical net. After a close look of 
the reachability graphs of the two nets, we find that 
the two nets have the same behaviour. As illustrated 
in the figure, each µ-marking µi of the BDSPN 
corresponds to the marking Mi of the resulting 
classical Petri net. The M-marking of each batch 
place pi is expressed by its corresponding set of 
discrete places D(pi). The transformation procedure 
for the general case is outlined in the following. 

 
Transformation procedure (general case) 

Step1. The set of discrete places Pd of the BDSPN 
and their markings remain unchanged for the DPN. 

 0 0,  ( ) ( )i d i ip P M p μ p∈ =  (19) 

Step2. Each batch place pi of the BDSPN is 
converted into a set of discrete places D(pi) in the 
DPN such as: 

 
[ ]

[ ] [ ]( )
( )∈ =

= ∈

∀ ∈ = ∑0
 and 

( ) { ( )} and 

( ),  
i

i ii b

ii b i b
l μ p l b

D p p b D p

p D p M p l
 (20) 

Step3. Each batch transition tj of the BDSPN is 
converted into a set of discrete transitions D(tj) in the 
DPN such that:  
 [ ] [ ]= ∈( ) { ( )}j jj q j qD t t t D t  (21) 

The set of discrete transitions Tb of the BDSPN 
remains unchanged for the DPN. 

Step4. Each place [ ] ( )ii bp D p∈  is connected to the 

output transitions [ ]
•( )i bp such that: 

 
[ ] [ ]

[ ]

•∀ ∈

= ∈ =•

( ),( )

{   and / ( , )}.

ii b i b

j i i jj q

p D p p

t t p q b W p t
 (22) 

 
[ ] [ ] [ ]

[ ] [ ]

•∀ ∈ ∀ ∈

= ×

( ),  ( )

( , ) ( , ) .
i ib j q i b

i ji b j q

p D p t p

W p t W p t b
 (23) 

Step5. Each transition [ ] ( )jj qt D t∈  is connected to 

the output places [ ]( )j qt
•  such that: 

 

[ ] [ ]

[ ] [ ]

•

•

•

∀ ∈ =

∈ ∈ ∩

=

∪ ∈ ∩

( ),( )

{ ( ( )),( )

and ( / ( , ))}

{ }.

jj q j q

i i j di b i b

i j

i i j d

t D t t

p p D p p t P

q b W p t

p p t P

 (24) 

 The weights of the corresponding arcs are given by: 

 
[ ] [ ] [ ]

[ ] [ ]

•∀ ∈ ∀ ∨ ∈

= ×

( ), ( ) ( ) , 

( , ) ( , ).
j ij q i b j q

j ij q i b

t D t p p t

W t p q W t p
 (25) 

Step6. Each place [ ] ( )ii bp D p∈  is connected to the 

input transitions [ ]( )i bp
•

 such that:  

 

[ ] [ ]

[ ]

•∀ ∈ =

∈ =

∪ ∈ ∩

•

•

( ),  ( )

{   and / ( , )}

{ ( )}.

ii b i b

j i j ij q

j i d

p D p p

t t p q b W t p

t p P

 (26) 

The weights of the corresponding arcs are given by:  

 
[ ] [ ] [ ]

[ ] [ ]

•∀ ∈ ∀ ∨ ∈

= ×

( ),  ( ) ( )

( , ) ( , ).
i i jb j q i b

j ij q i b

p D p t t p

W t p q W t p
 (27) 

Step7. Each transition [ ] ( )jj qt D t∈  will be 

connected to the set [ ]( )j qt
•  of input places such that: 

 

[ ] [ ]

[ ]

•

•

•

∀ ∈ =

∈ ∩ =

∪ ∈ ∩

( ), ( )

{  ( ) and ( / ( , ))}

{ }.

jj q j q

i j d i ji b

i i j d

t D t t

p p t P q b W p t

p p t P

(28) 

The weights of the corresponding arcs are given by: 

 
[ ] [ ] [ ]

[ ] [ ] [ ]

•∀ ∈ ∀ ∨ ∈

= ×

( ), ( ) ( ), 

( , ) ( , ).
j ij q i b j q

ii b j q j q

t D t p p t

W p t q W p t
 (29) 

Step8. The arcs which connect discrete places with 
discrete transitions in the BDSPN and their weights 
remain unchanged in the DPN. 

3.3 Case with Inhibitor Arcs 

The transformation is also possible for BDSPNs 
with inhibitor arcs whose weights are constant. We 
will illustrate it by using some examples. 

Sub-case 1. As shown in the net depicted in Fig. 
4a, in the case where there is an inhibitor arc 
connecting a discrete place pi to a batch transition tj, 
the corresponding inhibitor condition must be 
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reproduced in the resulting classical Petri net for all 
q-indexed transitions tj[q] generated by the batch 
transition tj. Clearly, in this example, the batch 
transition t1 can be fired with three possible batch 
firing indexes during the evolution of the net. In 
other words, the transition t1 generates three possible 
q-indexed transitions t1[1], t1[2], t1[3]. Thus, in the 
corresponding classical Petri net there are three 
inhibitor arcs which connect the discrete place p2 to 
the three q-indexed transitions, respectively. It is 
easily to observe that the two nets are identical in 
terms of their dynamical behaviours. 

2 
3 

t1 

t2 
p1 p2 

p1[3] 

p1[2] 

p1[1] 

t1[3]

t1[2]

t1[1]

t2

p2 
3 

2 

3 

2 

(a)

(b)

 

Figure 4: Transformation of a BDSPN with inhibitor arc. 
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2 
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p3 t3 
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4× 2
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(b) 

 
Figure 5: Transformation of a BDSPN with inhibitor arc. 

Sub-case 2. We now consider the case as shown 
in Fig. 5.a where there is an inhibitor arc connecting 
a batch place to a transition. The enabling of the 
transition t1 for a given batch firing index q in the 
net (a) must satisfy the condition M(p2) < w(t1, p2) 
imposed by the inhibitor arc. After the 
transformation of each batch place (resp. batch 
transition) into a set of discrete places (resp. a set of 
transitions), we observe that to respect the enabling 
condition imposed by the inhibitor arc in the net (a), 
it is necessary to capture the total marking of the 

discrete places generated by the batch place p2 by 
using a supplementary place ps in the classical Petri 
net. 

3.4 Case of the Temporal Model 

The transformation techniques discussed so far do 
not consider temporal and/or stochastic elements in a 
BDSPN, but they can be adapted for the BDSPN 
model with timed and/or stochastic transitions. The 
basic idea is as follows: Each discrete transition in 
the BDSPN model keeps its nature (immediate, 
deterministic, stochastic) in the resulting classical 
Petri net. The q-indexed transition tj[q] which may be 
generated by each batch transition tj has the same 
nature as the transition tj. Other elements of the 
BDSPN model may also be taken into account in the 
resulting classical model such as the execution 
policies; the priorities of some transitions; etc. 

4 NECESSITY OF THE MODEL 

In this section, the necessity of the introduction of 
the BDSPN model is demonstrated through the 
analysis of the transformation procedures presented 
in the previous section. The advantages of the model 
are discussed in two cases:  the case where a 
BDSPN can be transformed into a classical Petri net 
and the case where the transformation is impossible. 

Case 1. The BDSPN model is transformable: 
In the case where the transformation is possible, the 
advantages of the BDSPN model are outlined in the 
following: (a) As shown in the transformation 
procedures developed in the section 4, we note that 
the resulting classical Petri net depends on the initial 
µ-marking of the BDSPN. Obviously, if we change 
the initial µ-marking of the BDSPN given in Fig. 
3.a, we will obtain another classical Petri net. For 
example, if there is another batch token of different 
size in the batch place p1, all the structure of the 
corresponding classical Petri net must be changed. 
In fact, the batch places of the BDSPN may not 
generate the same set of q-indexed transitions D(tj) 
for each batch transition tj and may not generate the 
same set of discrete places D(pi) for each batch place 
pi during the evolution of the net. (b) The 
transformation of a given BDSPN model into an 
equivalent classical Petri net may lead to a very 
large and complex structure. According to the 
transformation procedure developed in subsection 
3.2, the number of places |P*| and the number of 
transitions |T*| in the equivalent classical Petri net 
are given by:   
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where |Pb| is the number of the batch places; |Pd| is 
the number of the discrete places; |Tb| is the number 
of the batch transitions; |Td| is the number of the 
discrete transitions of the given BDSPN. D(tj) is the 
set of q-indexed transitions generated by each batch 
transition tj ∈ Tb and D(pi) is the set of all possible 
batch tokens which appear in each batch place pi 

∈ Pb during the evolution of the BDSPN. 

Case 2. The BDSPN is not transformable: The 
modelling of some discrete event systems such as 
inventory control systems and logistical systems, as 
shown in (Labadi, et al., 2005, 2007; Chen, et al. 
2005), require the use of the BDSPN model with 
variables arc weights depending on its M-marking 
and possibly on some decision parameters of the 
systems. It is the case of the BDSPN model of an 
inventory control system whose inventory 
replenishment decision is based on the inventory 
position of the stock considered and the reorder and 
order-up-to-level parameters (see Fig. 6). The 
modelling of such a system is possible by using a 
BDSPN model with variables arc weights depending 
on its M-marking. The BDSPN model shown in Fig. 
6 represents an inventory control system where its 
operations are modelled by using a set of transitions: 
generation of replenishment orders (t3); inventory 
replenishment (t2); and order delivery (t1) that are 
performed in a batch way because of the batch 
nature of customer orders represented by batch 
tokens in batch place p4 and the batch nature of the 
outstanding orders represented by batch tokens in 
batch place p3. In the model, the weights of the arcs 
(t3, p2), (t3, p3) are variable and depend on the 
parameters s and S of the system and on the M-
marking of the model (S-M(p2)+M(p4); s+M(p4)). 
The model may be built for the optimization of the 
parameters s and S. In this case, the techniques for 
the transformation of the BDSPN model into an 
equivalent classical Petri net model proposed in the 
previous section is not applicable. In fact, contrary 
to the example given in Fig. 3, in this model, the 
sizes of the batch tokens that may be generated 
depend on both the initial µ-marking of the model 
and the parameters s and S. In other words, a change 
of the decision parameters s and S of the system or 
the initial µ-marking of the model will lead to 
another way of the evolution of the discrete 
quantities. Moreover, the appearance of stochastic 
transitions in the model makes more difficult to 
characterize all possible sizes of the batch tokens 
that are necessary to be known for the application of 

the transformation methods. 
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Figure 6: BDSPN model of an inventory control system. 

5 CONCLUSION 

The work of this paper has contributed to the 
structural analysis of batch deterministic and 
stochastic Petri nets (BDSPNs). Several procedures 
for the transformation of the model into an 
equivalent classical Petri net are developed. It is 
shown that such a transformation is possible for 
some cases but impossible for the model with 
variable arc weights depending on its marking. In 
this study, relationships between BDSPNs and 
classical discrete Petri nets are established and the 
advantages of introducing the BDSPN model are 
demonstrated. The capability of the BDSPN model 
to meet real needs is shown through industrial 
applications in our previous papers. 
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