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Abstract: We propose in this paper, to introduce a method to validate logic controller programs adapted to the 
teaching of Discrete Event Systems. The use of real systems for teaching raises two problems. The first one 
concerns the security of human beings (students and teachers) and materials. The second problem is the 
necessity to be able to detect possible errors done by students and to bring an explanation. We propose a 
method to define a level of system abstraction, to validate the student’s control by the mean of a validation 
filter placed between the plant and the controller. The specifications contained in the filter make it possible 
to detect errors and to generate an explanation automatically. We applied this method to an original project 
where it was proposed to 7 year-old children, to discover automation, by programming a tablets packaging 
system. 

1 INTRODUCTION 

The implementation of a control in a PLC 
(Programmable Logic Controller) raises necessarily 
validation problems: “Is the running (plant: PO and 
control part PC) safe?”; “Is the specification 
respected?”, and if it is not the case, “Which control 
errors have been done?”… Our research aims at 
ensuring that the control is valid with respect to the 
safety and running technical system requirements. 
For that, we propose to set up a module which 
validates on line the logic controller program. At 
each evolution of the system (PO and PC), the 
validation module authorizes or not the outputs sent 
from the PC to PO. This work finds an interest in the 
field of remote maintenance as well as education. 
The paper focuses on the last point. We are 
interested in the problem of the control validation 
carried out by students in automatic-control during 
work practise in the field of the Discrete Event 
System (DES) and the PLC. 

The teaching of automatic control in broad sense 
requires the transfer of knowing and know-how to 
learners. Know-how concerns for instance the use 
and the programming of PLC by means of software 
respecting standards like IEC 1131.3. The 
acquisition of this technical know-how requires 
practical work in specialized and expensive rooms 

including PLC and simplified manufacturing 
systems which are a replica on a reduced scale of 
real systems found in the industry. The use of PLC 
raises two problems: safety and explanations. 
Indeed, if a programming error occurs, safety has to 
be guarantee for materials as well as human 
operators being around and explanation has to be 
given about the error and its effects on the system. 
The suggested solution in this paper is articulated 
around a validation filter defined by means of safety 
and liveness constraints. The first guarantee the 
system safety by prohibiting any evolution being 
able to deteriorate it. The second make sure that the 
suggested control is coherent with the running 
specification (defined in our case by the teacher). It 
is important to note that the constraints definition is 
related to the possibility of learner’s authorized 
actions (i.e. errors done by learners depend on the 
possibilities that he has to act on PO). It is very 
interesting in the pedagogy field, to propose various 
actions levels related to various abstraction levels. 
To achieve this goal, the constraints are defined in 
reference to a PO functional identification which 
makes it possible to fix the abstraction or granularity 
degree chosen by the teacher. The use of constraints 
makes possible to supply explanatory capacities to 
the validation tool. That makes it possible to 
guarantee an efficient Human Machine dialogue. 
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In a first part, the suggested approach of 
validation is presented in a general way. This one is 
thus based on a functional identification of the 
system. The functional model obtained is used to 
define the selected abstraction degree. The writing 
of the constraints is based on an original 
classification which distinguishes the constraints not 
only according to their type (safety and liveness) but 
also according to their intrinsic characteristic 
(combinative or sequential). This classification is the 
object of second part. In a third part of the paper, the 
approach is applied to a concrete example where we 
propose to “young novice” engineers to control a 
packaging system. 

2 VALIDATION APPROACH 

Work in the field of the automatic control validation 
aims to insure that mathematical properties are 
respected by model (Canet, 2001), (Lampérière and 
al, 2000). The work undertaken within the 
framework of tool UPPAAL (Behramm and al, 
2004) defines three types of properties: attainability, 
safety and liveness. We chose to use the safety 
constraints: what the system should not do, and 
liveness constraints: what the system should do 
according to the running specification. The 
validation can be considered off line or on line. In 
the first case, the control is completely validated 
before being sent to the PO (Machado, 2006). 
Within this framework, we proposed an off line 
approach (Tajer and al., 2006) based on the 
Ramadge Wonham supervisory control theory 
(Womham and Ramadge, 1987) and the synthesis 
algorithm by Kumar (Kumar, 1991). The suggested 
approach makes it possible to guarantee that the 
control behaviour is safe, deterministic and without 
deadlocks. However, it presents several 
disadvantages: the combinatorial explosion, the 
difficulty to give a comprehensible explanation to 
learner. So, we directed our work towards an on line 
approach of control validation. 
The idea is to inhibit the evolutions which can lead 
the system to a situation of deterioration, of setting 
in danger of the operators or which does not respect 
running specification. Cruette’s work (Cruette, 
1991) for the monitoring of automation systems 
proposes to intercalate a filter between the PO and 
control. The filter ensures on the one hand coherence 
between the output and the expected one, and on the 
other hand coherence between the evolution of the 
expected PO and that produced. This idea of an 
approach on line by filter is taken up partially and 

adapted to ensure the control validation i.e. with 
each new control evolution, the filter receives in 
inputs: the evolution of the outputs (controllable 
events Ec: actuators) coming from the control 
designed by the student as well as the evolutions of 
the inputs (uncontrollable events Euc: sensors) of 
PO. In the same time that the command execution, 
the validation filter authorize or not the new 
evolution. For that, the filter contains the safety and 
liveness constraints and according to the sensor and 
actuators information, it tests the constraints. If all 
constraints are true, the evolution is authorized and 
the control continues. If not, the evolution is 
prohibited and the system is stopped.  

2.1 Functional Identification 

The suggested approach is based on a hierarchical 
functional identification of the system. The first idea 
consists in using the functional decomposition to 
determine the authorized student’s actions. Indeed, it 
seems us that for a beginner for example his possible 
actions on PO must be reduced. The second idea 
deals with a constraints definition on two levels: 
One on the low level (sensor actuator level) to 
ensure the safety and the other based on the 
functional decomposition to detect programming 
errors and to generate an explanation (high level). 
That means that the constraints will be defined 
starting from the functions that learner is allowed to 
implement. 

 

Fi 
Ca 

Cd 

↑Fi ↓Fi

Action : ∑{Ec} 

Procedure (controlled 
or automatic) 

 
Figure 1: Definition of « Function » notion. 

To identify the system functions, of the methods 
as SADT (I.G.L technology, 1989), MERISE 
(Tardieu and al., 2000) make it possible to cut out 
the system in functions and under functions 
according to a downward hierarchical approach. 
Within the framework of the suggested approach, it 
is necessary for each function identified to know the 
activation conditions Ca (initial conditions), the 
deactivation conditions Cd (function goal) and its 
execution mode (controlled or automatic) (figure 1). 
The procedure will make possible to define an 
additional degree of freedom in the control, for a 
level of functional decomposition fixed. In the case 
of the controlled mode, the learner must manage the 
activation and the deactivation of a function, when 
the conditions become true. On the other hand, in the 
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case of the automatic mode, student must only 
activate the function which is deactivated when the 
deactivation conditions are true. 

The model of figure 1 shows that each function 
can be activated (↑Fi) or be deactivated (↓Fi). The 
action of activation is always controllable. On the 
other hand, the action of deactivation is controllable 
when the execution is in controlled mode and 
uncontrollable when the procedure is automatic. 
According to the selected granularity (the degree of 
decomposition), the term “function” represents the 
control (activation, deactivation) of a whole station 
as well as a simple actuator. The decomposition or 
abstraction degree will allow a teaching at various 
levels and adapted to the learner knowledge. 

2.2 Use in the Teaching 

In the framework of the DES teaching, the level of 
granularity will allow to propose more or less 
difficult and evolutionary exercises adapted to the 
training level. The granularity is at the responsibility 
of the teacher who must adapt this one to the level of 
learning. Indeed, if teaching is addressed to: 

 a novice, description can stop at the 
functional level (high level) of the plant. It is the 
teacher who gives the control of each function and 
learner has to provide the chronology. 

 a beginner, with regard to the difficulty of 
each function, he can control several of them (high 
level) and program completely the others (low 
level). It is the teacher who has to decide which 
functions are automated. 

 an advanced student is able to control the 
system as a whole and thus he acts on the plant at 
the low level. 

Once the teacher has defined the granularity of 
the system, he can choose according to two 
procedures already presented. 

The validation approach must make possible to 
ensure the safety and the respect of the running 
specification. For that we propose to set up safety 
and liveness constraints which are defined starting 
from the functional identification of the procedure. 
The suggested method requires to make some 
assumptions and to specify certain terms. The 
functional identification gives a finished set of 
functions and the functions are independent to each 
other. Moreover, it is supposed that it is not possible 
to have multiple activation of the same function (i.e. 
an only instance at a time). 

On the low level, the description of a control 
model can be made by means of the input/outputs 
vector. The vector value at time t corresponds to the 

current state of the system. By analogy, on a fixed 
level of functional decomposition, it is possible to 
define a vector of state corresponding to the input-
outputs of the function. The inputs are then the 
activation and deactivation conditions of the 
function and the outputs the actions related to the 
function represent.  

3 VALIDATION FILTER 

To ensure the safety and the correct running of the 
system, the validation filter uses some specifications 
to detect and to bring an automatic explanation. The 
definition of the specifications is not easy. Thus, we 
propose to carry out a distinction on their role 
(safety or liveness) and on their intrinsic 
characteristics (combinational, sequential, dynamic 
or static). 

3.1 Safety Validation of System 

The safety constraints characterize what the system 
should not do. It seems us important to place the 
safety constraints at the sensors - actuators level. 
Three types of safety constraint are defined. 

3.1.1 Static Safety Constraint 

The static safety constraints express physical and 
technical impossibilities of the system elements. The 
static safety constraints depend only on the 
controllable events. The Syntax is: C = Eci ∧ Ecj. 
For example, if the event Ec1 cannot be carried out 
at the same time as the event Ec2, then: Ec1∧Ec2=0. 

3.1.2 Dynamic Safety Constraint 

The dynamic safety constraints relate to the 
occurrence of an event which is not compatible with 
an other event. The event corresponds either at the 
activation of controllable event (↑Ec), or with the 
validation of the deactivation condition (↑Euc): 

 In the first case, the constraint is written in 
the following way: Euci ∧ ↑Ecj = 0. Indeed, if the 
deactivation conditions are present, the sending of 
the associated controllable event is prohibited.  

 In the second case, the constraint is written: 
Ecj ∧ ↑Euci = 0. Indeed, as soon as the deactivation 
conditions are present, the actuator must be 
deactivated.  

The safety constraints make it possible to protect 
the system against deteriorations. For these 
constraints, the validation filter can be placed in the 
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control part (PLC). The validation filter prohibits the 
sending of a command if this one of the safety 
constraints does not respect constraints. 

The definition of the safety constraints is re-used 
at the functional level, in a redundant way to bring 
an automatic explanation to the learner’s errors:  

 If functions cannot be activated at the same 
time:  Fi∧ Fj = 0 

 If the deactivation condition of a function is 
present, the sending of the function is prohibited: 
Cd_Fi ∧ ↑Fi = 0. 

 If the activation condition is not true, the 
function cannot always be activated: /Ca_Fi∧↑Fi=0. 

 As soon as the deactivation condition is 
true, the function must be deactivated: Fi∧↑Cd_Fi=0 

It is necessary now to determine if functioning is 
correct compared to the running specification. For 
that it is proposed to set up liveness constraints. 

3.2 Liveness Validation 

The control validation compared to functioning, 
goes through by the definition of liveness constraints 
(what the system must do compared to the running 
specification). Contrary to the safety constraints, the 
liveness constraints are placed only at the functional 
level. Two types of constraints are defined: 
combinational and sequential liveness constraints.  

3.2.1 Combinational Liveness Constraints  

The combinational liveness constraints allow 
activation or deactivation when the conditions are 
present. The combinational liveness constraints are 
defined in a similar way to the dynamic safety 
constraints. For example the function Fi can occur 
only under the condition Cai: ↑Fi ∧ Cai = 1 or the 
function F1 must be deactivated when the condition 
Cdi is true: ↓ Fi ∧ Cdi = 1.  

3.2.2 Sequential Liveness Constraints  

By the sequential liveness constraints, the function 
sequencing is described. The idea is thus to represent 
the sequence described by the running specification 
without to describe one unique behaviour. The 
logical equations do not make it possible to manage 
this sequential aspect simply. 

The possibility to carry out a function compared 
to the expected behaviour depends on the system 
situation, i.e.: the functions which have been carried 
out. We point out that the possibility to carry out a 
function compared to the system state is expressed 
by the combinational liveness constraints. To take 
into account the functions sequencing, for each 

function, we define the deactivation conditions and 
the functions which had to be fulfilled. In the same 
way, the function execution will influence the future 
behaviours and thus the functions which will not be 
realizable any more. To express the functioning 
sequencing, it is proposed to draw up a table with 
information: the deactivation conditions, the 
functions which had to precede, the functions which 
will not be realizable any more. For each function, 
we define Grafcet with the states {not carried out, in 
execution, carried out}. Grafcet evolves at the same 
time as the command. Grafcet makes it possible to 
know the functions authorized or not compared to at 
functioning awaited. 

According to the functional identification, if the 
functions are carried out the ones after the others or 
in parallel, all the constraints will not be defined. 
Indeed, if the execution is in automatic mode, the 
function is deactivated automatically when the 
deactivation conditions are present. In this case, it is 
not necessary to define the dynamic safety 
constraints on the uncontrollable events. 

3.3 Use in the DES Teaching 

Within the framework of teaching, we can propose a 
tool that ensures in priority the system and operators 
safety, thanks to the definition of the safety 
constraints on the sensor actuator level. The 
definition at the functional level, of the safety 
constraints makes it possible to generate simply and 
automatically explanations related to an error. The 
detection and the management of the errors will be 
done in a simple way by the constraint validation or 
not. During the validation stage, three different cases 
are possible:  

 All the specifications are validated, the 
validation filter allows the sending of the 
controllable event to the plant  

 One or more safety specifications or 
constraints are not respected. In this case, the 
validation filter does not authorize the controllable 
event and informs the student on the specifications 
which are not respected. 

 One or more liveness constraints are not 
respected. That means that the running specifications 
are not all respected. In this case, if all safety 
constraints are OK, controllable events can be 
accepted because there is no risk for the system. The 
explanation generation associated with an error, is 
also done in a simple way. Indeed, the distinction 
that we could establish in the two previous parts for 
the safety and liveness constraints enables us to find 
an automatic explanation to the non respect. The 
safety constraints must be validated permanently 
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independently to each other. If there is one or more 
safety constraint violation that means: 

 For the static safety constraints, the control 
wants to send an order whereas the system is making 
the contrary order. 

 For the dynamic safety constraints on an 
uncontrollable event, the non deactivation of an 
order whereas a sensor indicates that it should be 
deactivated. 

 For the dynamic safety constraints on a 
controllable event, either the associated sensor with 
this action is already in the wished state, or the 
evolution of this order is impossible compared to the 
system conditions. 

For the combinational liveness constraints, we 
use the same approach as previously, if the 
constraint equation is not respected, that means that 
the control wants to send an order whereas it is not 
the waited behaviour. The automatic generation of 
explanation for the sequential liveness constraints is 
more difficult, because they are not defined by 
logical equations. We can go up the evolution which 
has just occurred by the mean of the active states in 
the different Grafcets. With this information, the 
teacher should find by himself an explanation. 

4 APPLICATION  

The idea was to collaborate (Riera et al., 2005) with 
a teacher of “primary” school. We wanted to allow 
the child to discover and to control really the system 
by programming his/her own sequence. 

Station 5

Station 1
Distribution of green tablets Station 2

installation of a large stopper

Station 3
Distribution of white tablets

Station 4 
installation of a small stopper 

and evacuation

 
Figure 2: Productis Machine. 

The system used for this project is the 
“Productis” machine. This system allows the 
packaging of tablets (figure 2). The system is 
composed of 5 stations and a conveyor: Station 1: 
distribution of green tablets by counting, Station 2: 
installation of a large stopper on the large tube, 
Station 3: distribution of white tablets by counting, 
Station 4: installation of a small stopper on the small 
tube and/or evacuation of the tube in a box, and 
Station 5: Feeding of the system. In order to make 
the activity of control design funny for the child, we 

propose the following original scenario. The 
instructions to use the machine have been lost. So, it 
is impossible for us to manufacture drug to heal sick 
fairies. Children have to find the running of the 
machine in order to manufacture specific drug. We 
have to adapt the vocabulary used to describe the 
system, at the age of the children. The activity is 
proposed with children, they know to rebuild a 
history according to a chronology. The children 
must create a sequence of functions to manufacture a 
tablets bottle. The functions execution is done in 
automatic mode. The child sends the order to 
activate a function which is automatically 
deactivated when the deactivation conditions are 
true. The functions are entirely carried out the one 
after the others. For this activity, we decided that the 
simultaneous sending of functions was impossible. 
Only one pallet circulates in the system in order to 
simplify the system comprehension. After functional 
identification of the system, we selected 20 
functions could be programmed by children. For 
that, we analysed the system by stations. The pallet 
is manually loaded (station 5). The child presses on 
a button to release the pallet. We choose to describe 
only the station 4: positioning of a small stopper and 
evacuation. This station is composed of a prehensor, 
i.e. two cylinders (one for the vertical movement and 
one for the horizontal movement), and a vacuum 
system. To install a stopper, it is necessary to 
position the cylinder to the top, go down, take the 
cap, go up, advance the cylinder, go down and 
release the aspiration. In order to avoid 
synchronization in the control program designed by 
children, functions “put the stopper” have been 
divided into respectively two functions: “Take the 
stopper” and “Loosen the stopper”. With regard to 
the functional analysis, children also have to 
program the control of the ejection by the mean of 
the gripper. In this part, only the constraints at the 
functional level of station 4 will be developed and 
explained: 

 Static safety constraints: it is not necessary 
because the learner cannot send several actions 
simultaneously.  

 Dynamic safety constraints on a 
controllable event: 
/up4∧(↑Go_out∨↑Go_in) =0; ↑Close4∧/ (down4 ∧ in4) = 0 

 Dynamic safety constraints on 
uncontrollable events are not necessary because 
learner must not deactivate the function. The 
execution of the functions is in automatic mode 

 Combinational liveness constraints:  
• the aspiration of the stopper is authorized 

only in the position : down and in (in the same 
way for the gripper) 
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↑Take4 ∧ (down4 ∧ in4) =1; ↑Close_gripper4 ∧ (down4 ∧ in4)=1  
• the ejection of stopper can only be done in 

the position : down and out 
↑Loosen4 ∧(down4∧out4) =1; ↑Open_gripper4 ∧ (down4∧out4 )=1 

 Sequential liveness constraints have to 
ensure that: the bottle is closed before carrying out 
the function of bottle evacuation.  

                 
a) “Step by step” mode  b) Sequence mode 

Figure 3: Interfaces. 

The activity with the children proceeds in two 
parts. In the first, the child has at his disposal an 
interface (figure 3.a) with 20 buttons. The 20 buttons 
represent the 20 functions of the system. In this 
activity, the child has to understand the role of each 
button. For that, the child presses a button of the 
interface. Thus, the child causes the movement or 
the movements corresponding to the function on the 
machine and he has to associate a function to a 
button. According to the state of the system, all the 
buttons are not activated. For example, if the 
cylinder of station 4 is in position “in”, the button 
“To Go_in cylinder” of station 4 cannot be pressed. 
After having understood the role of each button, the 
child can perform the second part of work (second 
interface). During the second activity (figure 3.b), 
the child programs his own sequence of functions to 
build a bottle of drugs. The sequence execution is 
validated on line. Hence, if the constraints are 
respected, the function having to be performed is 
performed, and the sequence can continue. If not, the 
validation system informs the child what are the 
constraints which are not respected. 

5 CONCLUSIONS 

We bring in this article some answers to the 
problems raised by the provision of automated 
material, for the teaching of automated systems 
control. For that, a validation approach on line by 
filter was proposed. This approach makes it possible 
to filter the evolutions which are dangerous for the 
system, or which do not answer the running 
specifications. The proposed approach can generate 
automatically an explanation. For that, the validation 
filter uses safety and liveness constraints of which 
definitions have been proposed. The modelling of 

sequential liveness constraints is a point that has to 
be developed, particularly to be able to generate 
automatic explanations. The proposed modelling of 
sequential liveness constraints has been designed to 
manage only one product in the manufacturing 
system. This extension has to be thought of doing. In 
addition, we also must improve the error explanation 
stage for the teacher. It seems possible, for example, 
at the same time as the system evolution (real plant) 
to use a simulated plant where the errors effects are 
displayed. In the simulated plant, learner could 
observe the consequences of his error. 
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