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Abstract: A key sampling formula for discretising a continuos-time system is proved when the signals space is a subclass
of the space of Distributions. The result is applied to the analysis of an open-loop hybrid system.

1 INTRODUCTION

Consider the hybrid system of Figure 1, wherex(t)
andy(t) are input and output,(A/D)T is anA/D con-
verter with sampling periodT, (D/A)T is a zero-order
hold (ZOH) andP andC are the plants of a continuous
time system and a discrete time system, respectively.
In order to perform the transform domain analysis of
the hybrid system of Figure 1, the transform domain
response of a sampled signal must be related to the
transform response of its correspondent continuous
time signal. This is done by building the transform
response of the sampled signal upon the superposi-
tion of infinitely many copies of its continuous time
transform response, using the formula

Gd(e
st) =

1
T

∞

∑
k=−∞

G(s+ jkωs) (1)

whereG is the Laplace transform of a continuous time
signalg, Gd is thez transform of the sequence of its
samples{g(kT)}∞

k=0 and T and ωS = 2π/T are the
sampling period and the sampling frequency, respec-
tively.

Till 1997, with the publication of (Braslavsky
et al., 1997), 1 was mathematical folklore. In fact,
it was very often used in the digital control literature
((M.Araki and T.Hagiwara, 1996), (J.S.Freudenberg
and J.H.Braslavsky, 1995), (T.Hagiwara and M.Araki,
1995)), (Leung et al., 1991), (Y.N.Rosenvasser,
1995a), (Y.N.Rosenvasser, 1995b) and (Yamamoto
and Araki, 1994)) and it appeared in many control
textbooks ((K.J.Astrom and B.Wittenmark, 1990),

(T.Chen and B.A.Francis, 1995), (G.F.Franklin
and M.L.Workman, 1990)), (B.C.Kuo, 1992) and
(K.Ogata, 1987)), but it was not established by a rig-
orous proof that indicated the relevant classes of sig-
nals considered.

Attempts to provide 1 with a proof are in (E.I.Jury,
1958), (K.J.Astrom and B.Wittenmark, 1990) and
(T.Chen and B.A.Francis, 1995). Those proofs are
based on the use of impulse trains of impulse trains,
those defined as the function

∞

∑
k=−∞

δ(x−nT)

whereδ(x) is the impulse function or Dirac function
or Dirac impulse such that

δ(x) =

{

+∞ x = 0
0 otherwise

and Z ∞

−∞
δ(x)dx= 1

However, the proofs lack rigour, since the impulse
function, and hence the impulse trains, cannot be de-
fined as functions.

In (J.R.Ragazzini and G.F.Franklin, 1958) it is
shown the similarity between 1 and the Poisson Sum-
mation Formula

∞

∑
n=−∞

f (n) =
∞

∑
k=−∞

Z ∞

−∞
f (s)e−2πiksds

Consequently, 1 is often indicated as the Poisson
Sampling Formula. In (G.Doetsch, 1971) a rigorous
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Figure 1: Open Loop Hybrid System.

proof,that avoids the use of the impulse trains, for

Gd(e
st) =

g(0+)

2
+

1
T

∞

∑
k=−∞

G(s+ jkωs)

is derived under the assumption that the series
∑k G(s+ jkωs) is uniformly convergent. However,
since this condition is a transform domain condition,
it is not obvious when a time domain function satisfies
it.

In (Braslavsky et al., 1997) it is pointed that for
1 to hold, it is not enough to require that the Laplace
transformG of g and its sampled version,GD, are well

defined. It is shown that, fornp = 222p

and the con-
tinuous function

g(t) = sin((2np +1)t), t ∈ [pπ,(p+1)p], p∈ N

1 does not hold, despite the fact thatGd(est) and its
sampled version with periodT = π, are both well de-
fined in the open right-half plane. In fact, it is proved
that

lim
n=∞

n

∑
k=−n

G(s+ jkωs)

does not converges for anys ≥ 0. Because of the
rapid oscillations ofg as t → ∞ the class of signals
is restricted to functions with bounded and uniform
bounded variation.

Definition 1 ((Braslavsky et al., 1997)). A functiong
defined on the closed real interval[a,b] is of bounded
variation (BV) when the total variation ofg on [a,b],

Vg(a,b) = sup
a=t0<t1<...<tn−1<tn=b

n

∑
k=1

|g(tk)−g(tk−1)|

is finite. The supremum is taken over everyn∈N and
every partition of the interval[a,b] into subintervals
[tk,Tk+1] wherek = 0,1, ...,n− 1 anda = t0 < t1 <
... < tn−1 < tn = b.

A functiong defined on the positive real axis is of
uniform bounded variation (UBV) if for some∆ > 0
the total variationVg(x,x+∆) on intervals[x,x+∆] of
length∆ is uniformly bounded, that is, if

sup
x∈R

−
0

Vg(x,x+∆) < ∞

With the class of signals restricted to UBV func-
tions, a proof for

Gd(e
st)

=
g(0+)

2
+

∞

∑
k=1

g(kT+)−g(kT−)

2
e−skT

+
1
T

∞

∑
k=−∞

G(s+ jl ωs)

a more general formulation of 1, is provided.
Note that the well posedness of 1 is proved for

an open loop context, when the system considered is
stable. Despite the fact that it is rather common to
analyse a hybrid feedback system with the help of
1, even if the class of signals is restricted to UBV
functions, there is no proof of the well posedness of
the feedback when applying 1.

The discussion about the consistency of Mathe-
matical Frameworks in Systems Theory that started
with the exposure of the Georgiou Smith paradox in
(Georgiou and Smith, 1995) made Leithead and al., in
(Leithhead and J.O’Reilly, 2003) and (W.E.Leithead
et al., 2005), to attempt a Mathematical Framework
that expands the class of signals to the class of Dis-
tributions (an advantage of a Framework using Distri-
butions is that signals like steps, train pulses and delta
functions can be rigorously defined as distributions).
Consequently, when dealing with hybrid systems, as
the one of Figure 1, in a Distributions Framework, the
well posedeness of 1 must be proved again.

However, despite 1 being quoted in Theorem 16.8
of (D.C.Champeney, 1987), no proof could be found
in the literature. In this paper a rigorous proof of The-
orem 16.8 of (D.C.Champeney, 1987), establishing
1 in a Distributions context, is provided in the Ap-
pendix. Furthermore, an application of this result to a
open loop hybrid system is provided. In particular, a
correct formulation for theD/A andA/D converters
in a Distributions context is established.
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2 SAMPLING THE
TRANSFORMS OF A
DISTRIBUTION

The following notations and conventions are adopted.

The value assigned to eachφ(t) ∈ D, the class of
good functions with finite support, by the functional
x∈D , the class of distributions , is denoted byx[φ(t)].
The symbols for, respectively a regular functional in
D and the ordinary function by which it is defined,
e.g.x andx(t), are distinguished by the explicit pres-
ence in the latter of the variable. The following sub-
classes ofD are required.

DB = {x∈ D : x regular withx(t) BV on each
finite interval and|x(t)| ≤ c(1+ |t|)N

for somec > 0};N ≥ 0

DBN = {x∈ D : x regular withx(t) BV on each
finite interval and|x(t)| ≤ c(1+ |t|)N

for someN ≥ 0 andc > 0}

DV = {x∈ D : x regular with
Var[a+t,b+t]{x(t)} ≤ c(1+ |t|)N for each
finite interval[a,b]
for someN ≥ 0 andc > 0}

DVN = {x∈ D : x regular with
Var[a+t,b+t]{x(t)} ≤ c(1+ |t|)N for each
finite interval[a,b] for somec > 0};N ≥ 0

D T = {x∈ D : x = ∑∞
−∞ akδkT};T > 0

D T
B = {x∈ D : x = ∑∞

−∞ akδkT with
|ak| ≤ (1+ |k|)N for some
c > 0 andN ≥ 0};T > 0

D T
BN = {x∈ D : x = ∑∞

−∞ akδkT with
|ak| ≤ (1+ |k|)N for somec > 0};
N ≥ 0,T > 0

whereVar[a,b]{x(t)} is the variation ofx(t) on the in-
terval [a,b] and the functionalδτ is the delta func-
tional inD defined by

δτ[φ(t)] = φ(τ)

Each functionalx∈ D is related by a linear bijections
to a functionalU such that

x[φ(t)] = 2πX[Φ(ω]

for all φ(t) ∈ D with

Φ(ω) = F [φ(t)](ω)

The functionalsx andX constitutes a Fourier trans-
form pair with

X = F {x} andx = F −1{X}

The subclassesUB, UBN, UV , UVN, U T
B andU T

BN
are the Fourier transforms of the the corresponding
subclass ofD . The members ofU T and its subclasses
are periodic with period 2π/T.

A multiplier in D is an ordinary functionf (x) that
is infinitely differentiable at each real value ofx. The
multipliers inD are denoted byM . The subclassM T

is the class of periodic multipliers with period 2π/T.
The relations between the transform of a distribu-

tion and its sampled version is established in the fol-
lowing Theorem.

Theorem 2(16.8 (D.C.Champeney, 1987)). Suppose
f̃ ∈ U has a transformF̃ ∈ D that is regular and
equal to a function F that is of bounded variation
on each finite interval (though not necessarily on
(−∞,∞)): then

(i) F (y) will be equal a.e. to a function FD(y) such
that, at all y,

FD(Y) =
1
2
[FD(y−)+FD(y+)]

(ii) also

X
∞

∑
−∞

f̃ (x−nX) (2)

will converge inU to define a periodic functional̃g
whose Fourier coefficients Gn are given by

Gn = FD(n/X), n = 0,±1,±2, ...

(iii) if in addition f̃ ∈DS and F(y)/(1+ |y|)N is of
bounded variation on(−∞,∞), then 2 will converge
in DS.

A proof of 2 is given in the Appendix.

3 OPEN LOOP HYBRID
FEEDBACK SYSTEM

Reconsider the plantsP andC of the open loop hybrid
system of Figure 1 as the stable systems onDE and
D T

E , respectively.

C : x∈ D T 7→ y∈ D T ,y = Ψ∗x

P : x∈ D 7→ y∈ D ,y = Φ∗x

whereΨ andΦ are convolutes onD T andD , respec-
tively. However, since it is required that the idealised
sampling of continuous time signal is well-defined,
a more appropriate reformulation of continuous time
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signals is provided by the subclass of distributions
DB.

Consequently, the convolutesΨ and Φ corre-
sponding to plantsC andP must be restricted toD T

B
andDB, respectively. In transform domain the Fourier
transforms of signals are represented by functionals
in UB and the transfer functions of systems are func-
tionals inM B, the class of multipliers onUB mapping
UBN into itself for allN ≥ 0. It remains to establish a
correct formulation of theD/A andA/D converters.

3.1 Frequency Domain Analysis -D/A
Converter

Consider an idealD/A converter which acts, with a
time constantT, on a discrete time signal,{x[k]} to
produce a piecewise constant continuous time signal,
y(t); that is, it acts as an ideal zero-order-hold (ZOH).
The linear relationship between{x[k]} and y(t) in
the frequency domain is established by the following
Theorem.

Theorem 3. A discrete time signals{x[k]} is acted on
by a ZOH, with time constant T , to produce a piece-
wise constant time signal y(t) such that

y(t) =
∞

∑
k=−∞

x[k]hT(t −k)

where hT(t) = 1 when t∈ [0,T), zero otherwise. Pro-
vided there exists a periodic functional X∈ U T

BN with
Fourier coefficients{x[k]}, then y(t) defines a regular
functional, y∈ DBN∩DVN such that Y= HTX where
Y = F {y} ∈ UBN∩UVN and HT = F {hT} with hT

the functional inD defined by hT(t).

Proof. y(t) is of bounded variation on any finite inter-
val, and, sinceX ∈ U T

BN implies |x[k]| ≤ c(1+ |k|)N

for somec, |y(t)| < c∗(1+ |t|)N for somec∗. Hence
y = ∑∞

k=−∞ x[k]hT
kT ∈ DBN. Furthermore for allbi ∈

{−1,1} and{τ1,τ2, ...,τn+1} satisfyinga≤ τ1 < τ2 <
... < τn+1 ≤ b

n

∑
i=1

bi(y(t + τi+1)−y(t + τi))

=
n̄

∑
i=1

bi(y(t + τi+1)−y(t + τi))

≤
n̄

∑
i=1

(|y(t + τi+1)|+ |y(t + τi)|

≤
n̄

∑
i=1

(c∗(1+ |t + τi+1|)+c∗(|t + τi |)

≤ 2c∗n̄(1+ |t +b|)N

wheren̄ = int(t/(kT)). Hence,Var[a+t,b+t]{y(t)} ≤

c̄(1+ |t|)N, for some ¯c > 0, andy∈ DVN. In addition,
sincehT is a convolute onD ,

y = lim
n→∞

hT ∗
n

∑
k=−n

x[n]hT
kT

= lim
n→∞

∗
n

∑
k=−n

x[k]δkT

= hT ∗ lim
n→∞

n

∑
k=−n

x[k]δkT = hT ∗x

with x = F −1{X} andY = HTX as required. �

Therefore, aD/A converter is represented in the
frequency domain by the multiplierHT mappingU T

BN
into UBN∩UVN. Moreover, as a consequence, a dis-
crete time subsystem positioned before aD/A con-
verter is equivalent to a continuous time subsystem
positioned after theD/A converter, provided their fre-
quency response functions are the same.

3.2 Frequency Domain Analysis -A/D
Converter

Consider an idealA/D converter which samples, with
a sampling intervalT, a continuous time signal,x(t),
to produce a discrete time signal{y[k]}= {x[k]}. The
linear relationship betweenx(t) and{y[k]} in the fre-
quency domain is established by the following Theo-
rem.

Theorem 4. A continuous time signal, x(t), is acted
by a sampler with sampling interval T to produce a
discrete time signal{y[k]}. Provided there exists a
regular functional x∈ DBN defined by x(t) then

(i) x(t) is equal almost everywhere to a function
xD(t) such that, at all t,

xD(t) =
(x−D(t)+x+

D(t))
2

and so sampling is well defined with y[k] = xD(kT).
(ii) the summation1

T ∑∞
k=−∞ X2πk/T converges in

U , where X= F {x} ∈ UBN, and {y[k]} are the
Fourier coefficients for a periodic functional Y∈
U T

BN with period 2π/T such that Y= O T [X] =
1
T ∑∞

k=−∞ X2π/T

Proof. SinceX ∈ DBN, x(t) is of bounded variation
on each finite interval and part (i) follows from The-
orem 2. In addition, there exists a periodic func-
tional Y ∈ U , with period 2π/T and Fourier co-
efficients yk[k] = xD(kT) such that the summation
1
T ∑∞

k=−∞ X2πk/T converges inU and Y = O T [X] =
1
T ∑∞

k=−∞ X2πk/T . Furthermore, sincex ∈ DBN, y =

F −1{Y} ∈ D T
BN as required by part (ii). �
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Therefore, anA/D converter is represented in the
frequency domain by the linear operatorO T on UB
mappingUBN intoU T

BN for all N ≥ 0. Further proper-
ties of the operatorO T are established in the following
Theorem.

Theorem 5. If X is a functional inUB with nth deriva-
tive X(n), Y is a functional inUB and MT is a periodic
multiplier inM B with period2π/T then

(i) O T [X] is a periodic multiplier inM B with pe-
riod 2π/T provided jnX(n) ∈ UB0 for all n ≥ 0;

(ii)O T [MTX] = MTO T [X];
(iii) O T [YO T [X]] = O T [Y]O T [X] provided

jnX(n) ∈ U 0 for all n ≥ 0.

Proof. (i)The regular functionalx= F −1{X} ∈DB is
defined by a functionx(t), which by Theorem 4 part
(i) is equal almost everywhere to a functionxD(t) such
that, at allt,

xD(t) =
(x−D(t)+x+

D(t))
2

For all n ≥ 0, since jnX(n) ∈ UB0, y ∈ DB0, where
y is the functional defined bytnx(t), and the se-
ries ∑∞

k=−∞(kT)nxD(kT)e− jkωT converges for allω.
Hence, by Theorem 4 part (ii),O T [X] is an infinitely
differentiable regular functional. Furthermore, thenth

derivative ofO T [X] is continuous and periodic and so
bounded. Consequently,O T [X] is a multiplier inM B
with period 2π/T.

(ii) For anyX ∈ UBN, MTX ∈ UBN and by Theo-
rem 4 bothO T [X] ∈ U T

BN andO T [MTX] ∈ U T
BN exist.

Moreover, sinceMT is a multiplier inM B with period
2π/T,

1
T

lim
n→∞

n

∑
k=−n

MT
kTXkT

=
1
T

lim
n→∞

n

∑
k=−n

MTXkT =
1
T

lim
n→∞

MT
n

∑
k=−n

XkT

= MT 1
T

lim
n→∞

n

∑
k=−n

XkT

andO T [MTX] = MTO T [X] as required.
(iii) It follows directly from part (i) and (ii). �

A consequence of Theorem 4 part (ii) is that, in
frequency domain, a continuous time sub systems po-
sitioned before anA/D converter is equivalent to a
discrete time subsystem positioned after theA/D pro-
vided their frequency response functions are the same.

3.3 The Response of the Open Loop
Hybrid Feedback System

In time domain the stable hybrid feedback system of
Figure 1 has solution

y = Φ∗ [(D/A)T(Ψ∗ [(A/D)Tx])] (3)

DefineKT
C andKP the multipliers inM B, the trans-

fer functions of the convolutesΨ andΦ, respectively.
Therefore, by Theorems 3 4 and 5, in Frequency Do-
main, to 3 corresponds the solution

Y = KP[HT(KC[O TX])]

whereY and X are functionals inUB, the Fourier
transforms ofy andx.

4 CONCLUSION

In this paper the proof of the well posedness of the
sampling of a the transform of a distribution is given,
establishing the correctness of the Sampling Theorem
16.8 quoted in (D.C.Champeney, 1987). Moreover,
the result is applied to the frequency domain response
of an open loop hybrid system, through the correct
formulation for theD/A andA/D converters.
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APPENDIX

Theorem 2 (D.C.Champeney, 1987)

Proof. (i) and (ii) Let f̃N ∈ D be the regular func-
tional defined byfN(x) where

fN(x) =
N

∑
n=−N

ejn(2π/X)x =
sin(π(2N+1)x/(2X))

sin(πx/(2X))

f̃N is a multiplier onD and fN(x) is periodic with
periodX such thatZ X/2

−X/2
fN(x)dx= X

For any regular ˜g∈D , with g(x) of bounded variation
on any finite interval, and anyψ(x) ∈ D,

( f̃Ng̃)[ψ(x)] = g̃[ fN(x)ψ(x)] =
Z ∞

−∞
g(x) fN(x)Ψ(x)dx

Sinceψ(x) is of finite support,∃K such thatψ(x) = 0
for |x| > (K + 1

2)X. Hence,

f̃Ng̃[ψ[x]] =
Z (K+1/2)X

−(K+1/2)X
g(x) fN(x)ψ(x)dx

=

Z X/2

−X/2

{

K

∑
k=−K

fN(x)g(x+kX)ψ(x+kX)

}

dx

=
Z X/2

−X/2
fN(x)φK(x)dx

=

Z X/2

−X/2





sin
(

π(2N+1)x
2X

)

x





{

φk(x)x

sin
( πx

2X

)

}

dx

where

φk(x) =
K

∑
k=−K

g(x+kX)ψ(x+kX)

For all k, g(x) is of finite variation on [(k −
1/2)X,(k+1/2)X] and soφK(x)x/(sin(πx/(2X))) is
of finite variation on[(k−1/2)X,(k+1/2)X]. Conse-
quently, by Theorem 5.10 of (D.C.Champeney, 1987),
x = 0 is a Dirichlet point and

lim
N→∞

Z X/2

−X/2
(sin(π(2N+1)x/(2X))/x)

{φk(x)x/sin(πx/(2X))}dx= X(φk(0
+)+φk(0

−))/2

It follows that

lim
N→∞

( f̃Ng̃)[ψ(x)]

= X
K

∑
k=−K

1
2
(g(kX−)+g(kX+))ψ(kX)

= X
K

∑
k=−K

1
2
(g(kX−)+g(kX+))δ̃kX[ψ(x)]

Hence,1
N f̃Ng̃ converges to

h̃ =
K

∑
k=−K

1
2
(g(kX−)+g(kX+))δ̃kX

in D . Furthermore,

H̃ = F {h̃}=
∞

∑
k=−∞

1
2
(g(kX−)+g(kX+))ẽk(2π/X) ∈U

and by Theorem 16.3 of (D.C.Champeney, 1987),H̃
is periodic with period 2π/X and Fourier coefficients
{

1
2(g(kX−)+g(kX+))

}

. However

F

{

1
X

f̃Ng̃

}

=
1
X
F { f̃N}∗F {g̃}

=
1
X

(

N

∑
n=−N

δ̃n(2π/X)

)

∗ G̃ =
1
N

N

∑
n=−N

G̃n(2π/X)
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It immediately follows that 1
X ∑∞

n=−∞ G̃n(2π/X) ∈ U

and is equal toH̃. Thus part (i) part and (ii) are
established.

(iii) Let fN as above. For any functiong(x), with
g(x)/(1+ |x|)M of bounded variation on(−∞,∞) for
someM > 0, and anyψ(x) ∈ S

|g(x)ψ(x)| < c/(1+ |x|)2

for somec > 0. Hence,Z ∞

−∞
g(x) fN(x)ψ(x)dx

= lim
K→∞

{Z (K+1/2)X

−(K+1/2)X
fN(x)g(x)ψ(x)dx

}

= lim
K→∞

Z X/2

−X/2
fN(x)

{

K

∑
k=−K

g(x+kX)ψ(x+kX)

}

dx

In addition, for anyx,

|g(x+kX)ψ(x+kX)| < c/(1+ |kX|)2

for somec > 0 and the series

φK(x) =
K

∑
k=−K

g(x+kX)ψ(x+kX)

is absolutely convergent. Hence, there exists a func-
tion, φ(x), such thatφK(x) converges pointwise to
φ(x) and there exists a constant,A, such that, for all
K > 0, |φK(x)|< A, ∀x∈ [−X/2,X/2]. Consequently,
by Theorem 4.1 of (D.C.Champeney, 1987),

lim
K→∞

Z X/2

−X/2
fN(x)

{

K

∑
k=−K

g(x+kX)ψ(x+kX)

}

dx

=

Z X/2

−X/2
fN(x)φ(x)dx

=
Z X/2

−X/2





sin
(

π(2N+1)x
2X

)

x



















φ(x)
(

sin( πx
2X )

x

)















dx

Furthermore, φ(x)x/(sin(πx/(2X)) is of bounded
variation on [−X/2,X/2]. By Theorem 5.10 of
(D.C.Champeney, 1987),x= 0 is a Dirichlet point and

lim
N→∞

Z X/2

−X/2





sin
(

π(2N+1)x
2X

)

x





{

φk(x)x

sin
( πx

2X

)

}

dx= X(φk(0
+)+φk(0

−))/2

Since, for|x| < X/2,

|g(kX+x)ψ(kX+x)| < c/(1+ |kX|)2

for somec > 0

φ(0+) =
∞

∑
k=−∞

g(kX+)ψ(kX+)

and

φ(0−) =
∞

∑
k=−∞

g(kX−)ψ(kX−)

and it follows that

lim
N→∞

Z ∞

−∞
fN(x)g(x)ψ(x)dx

=
1
2

X
∞

∑
k=−∞

((g(kX+)ψ(kX+))

+(g(kX−)ψ(kX−)))

=
1
2

X
∞

∑
k=−∞

(g(kX+)+g(kX−)ψ(kX−))ψ(kX)

Let f̃N ∈ DS be the regular functional defined by
fN(x) then f̃N is a multiplier onDS. For the regular
functionalg̃∈ DS defined byg(x)

( f̃Ng̃)[ψ(x)] = g̃[ fN(x)ψ(x)] =
Z ∞

−∞
g(x) fN(x)ψ(x)dx

From the foregoing, it follows that

lim
N→∞

( f̃Ng̃)[ψ(x)]

= X
∞

∑
k=−∞

1
2
(g(kX−)+g(kX+))ψ(kX)

= X
∞

∑
k=−∞

1
2
(g(kX−)+g(kX+))δ̃kX[ψ(x)]

Hence,1
X f̃Ng̃ converges to

h̃ =
∞

∑
k=−∞

1
2
(g(kX−)+g(kX+))δ̃kX

in DS. Furthermore,

H̃ = F {h̃} =
∞

∑
k=−∞

1
2
(g(kX−)+g(kX+))ẽk(2π/X) ∈ S

and by Theorem 16.3 of (D.C.Champeney, 1987),H̃
is periodic with period 2π/X and Fourier coefficients
{

1
2(g(kX−)+g(kX+))

}

. However

F

{

1
X

f̃Ng̃

}

=
1
X
F { f̃N}∗F {g̃}

=
1
X

(

N

∑
n=−N

δ̃n(2π/X)

)

∗ G̃ =
1
N

N

∑
n=−N

G̃n(2π/X)

It immediately follows that1
X ∑∞

n=−∞ G̃n(2π/X) ∈ DS

and is equal tõH. Thus part (iii) is established. �
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