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Abstract. This paper presents an original architecture of Wavelet Neural Net-
work based on multi Wavelets activation function and uses a selection method 
to determine a set of best wavelets whose centers and dilation parameters are 
used as initial values for subsequent training library WNN for one dimension 
and two dimensions function approximation. Every input vector will be consid-
ered as unknown functional mapping and then it will be approximated by the 
network. 

1 Introduction 

Wavelet Neural Networks (WNN) were introduced by Zhang and Benveniste [1-3] in 
1992 as a combination of artificial neural networks and wavelet decomposition. 
WNN have recently attracted great interest, because of their advantages over radial 
basis function networks (RBFN) as they are universal approximators but achieve 
faster convergence and are capable of dealing with the so-called “curse of dimension-
ality.” In addition, WNN are generalized RBFN. However, the generalization per-
formance of WNN trained by least-squares approach deteriorates when outliers are 
present. 

The task of training WNN involves estimating parameters in the network by mini-
mizing some cost function, a measure reflecting the approximation quality performed 
by the network over the parameter space in the network. The least squares (LS) ap-
proach is the most popularly used in estimating the synaptic weights which provides 
optimal results. 

Feed forward neural networks such as multilayer perceptrons (MLP) and radial ba-
sis function networks (RBFN) have been widely used as an alternative approach to 
functions approximation since they provide a generic black-box functional represen-
tation and have been shown to be capable of approximating any continuous function 
defined on a compact set in Rn with arbitrary accuracy [4]. Following the concept of 
locally supported basis functions such as RBFN, a class of wavelet neural networks 
(WNN) which originate from wavelet decomposition in signal processing has become 
more popular lately [5, 6, 7, 8, 9]. In addition to the salient feature of approximating 

mailto:mohamed.othmani@ieee.org


any non-linear function, WNN outperforms MLP and RBFN due to its capability in 
dealing with the so-called “curse of dimensionality” and non-stationary signals and in 
faster convergence speed [10]. It has also been shown that RBFN is a special case of 
WNN. 

This paper comprises four sections. Section 2 discusses the architecture of Multi 
Library Wavelet Neural Networks (MLWNN) and its performance function approxi-
mation. Section 3 contributes to Beta MLWNN and to discuss the implementation 
and results. Finally, Section 4 gives conclusions and summary for present research 
work and other possibilities of future research directions. 

2 Theoretical Background  

2.1 Classical Wavelet Neural Network Architecture 

Wavelets occur in family of functions and each is defined by dilation ai which con-
trols the scaling parameter and translation ti which controls the position of a single 
function, named the mother wavelet ψ(x). Mapping functions to a time-frequency 
phase space, WNN can reflect the time-frequency properties of function. Given an n-
element training set, the overall response of a WNN is:  
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where Np is the number of wavelet nodes in the hidden layer and wi is the synaptic 
weight of WNN. 

This can also be considered as the decomposition of a function in a weighted sum 
of wavelets, where each weight is proportional to the wavelet coefficient scaled 

and shifted by ai and ti. This establishes the idea for wavelet networks [11, 12]. 
jw

This network can be considered composed of three layers: a layer with Ni inputs, 
a hidden layer with Np wavelets and an output linear neuron receiving the weighted 
outputs of wavelets. Both input and output layers are fully connected to the hidden 
layer.  

2.2 Multi Library Wavelet Neural Network (MLWNN) 

A MLWNN can be regarded as a function approximator which estimates an unknown 
functional mapping: 

y = f(x) +ε (2) 

where f is the regression function and the error term ε is a zero-mean random vari-
able of disturbance. Constructing a MLWNN involves two stages: First, we should 
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construct a wavelet library W={W1, W2,…,Wn} of discretely dilated and translated 
versions of some mothers wavelets functionΨ1, Ψ2,…, Ψn  : 
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Where xk is the sampled input, and L is the number of wavelets in each sub library 
Wj. Then select the best M wavelets based on the training data from multi wavelet 
library W, in order to build the regression. The architecture of multi library wavelet 
network is given in figure 1. 

 
Fig. 1. MLWNN architecture. 
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2.3 An Initialization Procedure using a Selection Method 

It is very inadvisable to initialize the dilations and translations randomly, as is usually 
the case for the weights of a standard neural network with sigmoid activation func-
tion. In the case of wavelet neural network and due to the fact that wavelets are rap-
idly vanishing functions, a wavelet may be too local if its dilation parameter is too 
small (it may sit out of the domain of interest), if the translation parameter is not cho-
sen appropriately.  

We propose to make use of multi library wavelet using a selection method to ini-
tialize the translation and dilation parameters of wavelet networks trained using gra-
dient-based techniques. The procedure comprises five steps: 

1- Adapt mother wavelets support as input signal support, 
2- Generate a multi library of wavelets, using some families of wavelets described 

by relation (3), 
3- Compute the mean square error for every wavelet output, 
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4- Choose, from the library, the Np wavelets that have the weakest error. 
5- Use the translations and dilations of the Np relevant wavelets as initial values 

and use gradient descent algorithms like least mean squares (LMS) to minimize the 
mean-squared error: 
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where J(W) is the real output from a trained MLWNN at the fixed weight vector 
W. 

3 BETA MLWNN for Function Approximation 

In this section, we illustrate the new initialization procedure using a selection method 
on a multi library wavelet neural network based on Beta wavelet family and and com-
pare its effectiveness to that of the classical procedure. 

3.1 Beta Wavelet Family 

The Beta function [14] is defined as: 
if p>0, q>0, (p, q) ∈ IN  
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Where, 
qp
qxpxxc +

+
= 01   

We prove in [15] that all the derivatives of Beta function ∈ L2(ℜ), are of class C∞ 
and satisfy the admissibility wavelet condition. 

3.2 Example 1: 1-D Function Approximation 

The first example is the approximation of a function of a single variable function, 
without noise, given by: 
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The graph of this function is shown on Figure 2. 
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Fig. 2. The function output in the domain of interest. 

First, simulations on the 1-D function approximation are conducted to validate 
and compare the proposed MLWNN with the classical WNN. The input x is con-
structed by the uniform distribution on [-10 10]. The training sequence is composed 
of 101 points. The performance of the model is estimated using a test set of 101 
equally spaced examples different from the training set. 

We define the NMSE (Normalized Mean Square Error) as evaluation criteria. 
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In the following, we present the results obtained with a network of 12 Beta wave-
lets, chosen as mother wavelets (second and third derivative of Beta function), for 
training network. Figure 3 shows the initial error histogram (a) obtained when the 101 
input patterns are initialized with the classical architecture and the final error histo-
gram (b) obtained when the 101 input patterns are training after 1000 iterations. Fig-
ure 4 shows the initial error histogram (c) obtained when the 101 trainings are initial-
ized with the initialization by selection procedure using MLWNN and the final error 
histogram (d) obtained when the 101 input patterns are training after 1000 iterations. 
Comparing figures 3 and 4 shows clearly that the initialization by selection using 
MLWNN leads to:  

- The best result in term of NMSE, 
- Less scattered results both on the training set and on the test set.  
- Using multi wavelet mothers as activation function gives best approximation. 

 

(a)                     (b) 

Fig. 3. (a) Initial error for each sample after initialization using classical WNN architecture.(b) 
Final error for each sample after initialization using classical WNN architecture after 1000 
iterations. 
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    (c)            (d) 

Fig. 4. (c) Initial error for each sample after initialization using MLWNN architecture. (d) Final 
error for each sample after initialization using MLWNN architecture after 1000 iterations. 

Figure 5 shows the evolution of the NMSE according to the iteration; we can see the 
superiority of the proposed initialization selection algorithm based on multi wavelet 
library over the classical WNN based on one mother wavelet. 

Fig. 5. Evolution of the NMSE according to the iteration. 

3.3 Example 2: 2-D Function Approximation 

The process to be modeled is simulated by a function of two variables without noise. 
The expression of this function is given by: 
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Figure 6 is a plot of the surface defined by relation (9). 
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Fig. 6. 2-D data to be approximated. 

In the following, we present the results obtained with a network of 9 Beta wave-
lets, chosen as mother wavelets (second and third derivative of Beta function), for 
training network. The training set contains 11x11 uniform spaced points. The test set 
V is constructed by 21x21 stochastic points on [-1,1]x[-1,1]. Figure 7 shows the final 
error histogram (a) obtained when the 121 trainings are initialized with the classical 
architecture initialization and the final error histogram (b) obtained when the 121 
trainings are initialized with a selection procedure using MLWNN. 

(a)               (b) 

Fig. 7. (a) Final error for each sample after initialization using classical WNN architecture. (b) 
Final error for each sample after initialization using MLWNN architecture. 

These results show that the effect of the classical WNN initialization is much smaller 
than when the wavelet centers and dilations are initialized by selection using a multi 
library WNN, used together with Beta wavelets, it makes wavelet neural network 
training very efficient because of the adjustable parameters of Beta function. 

4 Conclusions 

Wavelet networks are a class of neural networks consisting of wavelets. In this paper, 
we have proposed a new Initialization by Selection algorithm for Multi library Wave-
let Neural Network Training for the purpose of modeling processes having a small 
number of inputs.  
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We have shown that, when used a multi library wavelet networks and a selection 
procedure leads to results that are much more interesting than the classical architec-
ture initialization. The selection of “relevant” wavelets within a regular wavelet lat-
tice can also be performed by the technique of shrinkage. However, wavelet shrink-
age is usually studied with orthonormal (or biorthonormal) wavelet bases, restricted 
to problems of small dimension.  
As future research directions, we propose to use MLWNN in the case of adaptive self 
tuning PID controllers. The MLWNN is needed to learn the characteristics of the 
plant dynamic systems and make use of it to determine the future inputs that will 
minimize error performance index so as to compensate the PID controller parameters. 
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