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Abstract. An associative memory (AM) is a special kind of neural network that 
only allows associating an output pattern with an input pattern. However, some 
problems require associating several output patterns with a unique input pattern. 
Classical associative and neural models cannot solve this simple task. In this 
paper we propose a new network composed of several AMs aimed to solve this 
problem. By using this new model, AMs can be able to associate several output 
patterns with a unique input pattern. We test the accuracy of the proposal with a 
database of real images. We split this database of images into four collections 
of images and then we trained the network of AMs. During training we 
associate an image of a collection with the rest of the images belonging to the 
same collection. Once trained the network we expected to recover a collection 
of images by using as an input pattern any image belonging to the collection. 

1 Introduction 

An associative memory AM is a special kind of neural network that allows recalling 
one output pattern given an input pattern as a key that might be altered by some kind 
of noise (additive, subtractive or mixed). Several models of AMs are described in [1], 
[2], [3], [5], [9], [10], [11] and [12]. In particular, models described in [5], [9] and 
[10] cannot handle with mixed noise. Associative model presented in [11] and [12] is 
robust to mixed noise.  

An association between input pattern x  and output pattern y  is denoted as 

( ),k kx y , where k  is the corresponding association. AM W  is represented by a 

matrix whose component ijw  can be seen as the synapse of the neural network. 
Operator W  is generated from a finite a priori set of know associations, known as the 
fundamental set of association and is represented as: ( ){ }, 1, ,k k k p=x y … where p  

is the number of associations. If 1, ,k k k p= ∀ =x y …  then W  is auto-associative, 
otherwise it is hetero-associative. A distorted version of a pattern x  to be restored 
will be denoted as x . If an AM W  is fed with a distorted version of kx  and the 
output obtained is exactly ky , we say that recalling is perfect. 

In this paper we present how a network of AMs can be used to recall nor just one 
pattern but several of them given an input pattern. In this proposal an association 



between input pattern x  and a collection of output pattern Y  is denoted as, 

( ){ }, 1, ,k k k p=x Y …  where p  is the number of association, { }1, ,k r=Y y y…  is a 

collection of output patterns and r  is the number of patterns belonging to collection 
Y . 

The remaining of the paper is organized as follows. In section 2 we describe the 
associative model used in this research. In section 3 we describe the proposed 
network of AMs. In section 4 we present the experimental results obtained with the 
proposal. In section 5 we finally present the conclusions and several directions for 
further research in this direction. 

2 Dynamic Associative Model 

The brain is not a huge fixed neural network, as had been previously thought, but a 
dynamic, changing neural network that adapts continuously to meet the demands of 
communication and computational needs [8]. This fact suggests that some 
connections of the brain could change in response to some input stimuli. 

Humans, in general, do not have problems to recognize patterns even if these are 
altered by noise. Several parts of the brain interact together in the process of learning 
and recalling a pattern. For example, when we read a word the information enters the 
eye and the word is transformed into electrical impulses. Then electrical signals are 
passed through the brain to the visual cortex, where information about space, 
orientation, form and color is analyzed. After that, specific information about the 
patterns passes on the other areas of the cortex that integrate visual and auditory 
information. From here information passes through the arcuate fasiculus, a path that 
connects a large network of interacting brain areas; paths of this pathway connect 
language areas with other areas involving in cognition, association and meaning, for 
details see [4] and [7].  

Based upon the above example we have defined in our model several interacting 
areas, one per association we would like the memory to learn. Also we have 
integrated the capability to adjust synapses in response to an input stimulus.  

As we could appreciate from the previous example, before an input pattern is 
learned or processed by the brain, it is hypothesized that it is transformed and codified 
by the brain. In our model, this process is simulated using the following procedure 
recently introduced in [11]: 
Procedure 1. Transform the fundamental set of associations into codified patterns 
and de-codifier patterns: 

Input: FS Fundamental set of associations: 

{1. Make d const=  and make ( ) ( )1 1 1 1, ,=x y x y  

 2. For the remaining couples do { 
    For 2k =  to p { 

  For 1i =  to n { 

    1k k
i ix x d−= + ; ˆ k k k

i i ix x x= − ; 1k k
i iy y d−= + ; ˆ k k k

i i iy y y= −   

}}} Output: Set of codified and de-codifying patterns. 
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This procedure allows computing codified patterns from input and output patterns 
denoted by x  and y  respectively; x̂  and ŷ  are de-codifying patterns. Codified and 
de-codifying patterns are allocated in different interacting areas and d defines of much 
these areas are separated. On the other hand, d determines the noise supported by our 
model. In addition a simplified version of kx  denoted by ks  is obtained as: 

( )k k
ks s= =x mid x  (1) 

where mid operator is defined as ( )1 / 2 nx +=mid x . 

When the brain is stimulated by an input pattern, some regions of the brain 
(interacting areas) are stimulated and synapses belonging to those regions are 
modified.  

In our model, we call these regions active regions and could be estimated as 
follows: 

( ) ( )
1

arg min
p

ii
ar r s s

=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

x x  
(2) 

Once computed the codified patterns, the de-codifying patterns and ks  we can 
build the associative memory. 

Let ( ){ }, 1, ,k k k p=x y … , k n∈x R , k m∈y R  a fundamental set of associations 

(codified patterns). Synapses of associative memory W  are defined as:  

ij i jw y x= −  (3) 

After computed the codified patterns, the de-codifying patterns, the reader can 
easily corroborate that any association can be used to compute the synapses of W  
without modifying the results. In short, building of the associative memory can be 
performed in three stages as: 

 
1. Transform the fundamental set of association into codified and de-

codifying patterns by means of previously described Procedure 1. 
2. Compute simplified versions of input patterns by using equation 1. 

3. Build W  in terms of codified patterns by using equation 3. 

2.1 Modifying Synapses of the Associative Model 

As we had already mentioned, synapses could change in response to an input 
stimulus; but which synapses should be modified? For example, a head injury might 
cause a brain lesion killing hundred of neurons; this entails some synapses to 
reconnect with others neurons. This reconnection or modification of the synapses 
might cause that information allocated on brain will be preserved or will be lost, the 
reader could find more details concerning to this topic in [6] and [13]. 

This fact suggests there are synapses that can be drastically modified and they do 
not alter the behavior of the associative memory. In the contrary, there are synapses 
that only can be slightly modified to do not alter the behavior of the associative 
memory; we call this set of synapses the kernel of the associative memory and it is 
denoted by WK .  
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In the model we can find two types of synapses: synapses that can be modified and 
do not alter the behavior of the associative memory; and synapses belonging to the 
kernel of the associative memory. These last synapses play an important role in 
recalling patterns altered by some kind of noise. 

Let n∈WK R  the kernel of an associative memory W . A component of vector 

WK  is defined as:  

( ) , 1, ,i ijkw w j m= =mid …  (4) 

According to the original idea of our proposal, synapses that belong to WK  are 
modified as a response to an input stimulus. Input patterns stimulate some active 
regions, interact with these regions and then, according to those interactions, the 
corresponding synapses are modified. Synapses belonging to WK  are modified 
according to the stimulus generated by the input pattern. This adjusting factor is 
denoted by wΔ  and can be computed as:  

( ) ( ) ( )arw s sΔ = Δ = −x x x  (5) 

where ar  is the index of the active region. 
Finally, synapses belonging to WK  are modified as:  

( )oldw w= ⊕ Δ −ΔW WK K  (6) 

where operator ⊕  is defined as 1, ,ie x e i m⊕ = + ∀ =x … . As you can appreciate, 
modification of WK  in equation 6 depends of the previous value of wΔ  denoted by 

oldwΔ  obtained with the previous input pattern. Once trained the AM, when it is used 
by first time, the value of oldwΔ  is set to zero. 

2.2 Recalling a Pattern using the Proposed Model 

Once synapses of the associative memory have been modified in response to an input 
pattern, every component of vector y  can be recalled by using its corresponding input 
vector x  as:  

( ) , 1, ,i ij jy w x j n= + =mid …  (7) 

In short, pattern y  can be recalled by using its corresponding key vector x  or x  
in six stages as follows: 

 
1. Obtain index of the active region ar  by using equation 2. 
2. Transform kx  using de-codifying pattern ˆ arx  by applying the 

following transformation: ˆk k ar= +x x x . 

3. Compute adjust factor ( )wΔ = Δ x  by using equation 5. 

4. Modify synapses of associative memory W  that belong to WK  by 

using equation 6. 

5. Recall pattern ky  by using equation 7. 
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6. Obtain ky  by transforming ky  using de-codifying pattern ˆ ary  by 

applying transformation: ˆk k ar= −y y y . 

 
 The formal set of prepositions that support the correct functioning of this dynamic 
model can be found in [14]. 

3 Architecture of the Network 

Classical AMs (see for example [1], [2], [3], [5], [9], [10], [11] and [12]) are able to 
recover a pattern (an image) from a noisy version of it. In their original form classical 
AMs are not useful when image is altered by image transformations, such as 
translations, rotations, and so on. 

The network of AMs proposed in this paper is robust under some of these 
transformations. Taking advantage of this fact, we can associate different versions of 
an image (rotated, translated and deformed) to an image. 

Our task is to propose a network of AMs aimed to associate an image with other 
images belonging to the same collection. In order to achieve this, first suppose we 
want to associate images belonging to a collection with an image of the same 
collection using an AM. A good solution could be to compute the average image of 
whole images belonging to the collection and then associate the average image with 
any image that belongs to the collection. The same solution can be applied to other 
collections. Once computed the average images from different collections and chosen 
the images to be associated, we can train the AM as was described in section 2. 

Until this point the AM only can recover an association between a collection of 
input patterns X  and output pattern y  denoted as, ( ){ }, 1, ,k k k p=X y … where p  

is the number of association, { }1, ,k r=X x x…  is a collection of input patterns and r  

is the number of patterns belonging to collection X . This means that it can only be 
recovered the associated image using any image from a collection. However, we 
would like to get the inverse result; instead of recovering the associated image using 
any image from a collection, we would like to recover all the images belonging to the 
collection using any image of the collection. 

To achieve this goal we will train a network of AMs built as in previous sections. 
Each AM will associate all the images of a collection with one image of this 
collection. This implies that for recovering all images of a given collection, we would 
need r  AMs, where r  is the number of images belonging to the collection. The 
network architecture of AMs needed for recovering a collection of images is shown in 
Fig. 1.  

In order to train the network of r  AMs, first of all we need to know the number of 
collections we want to recover. Training phase is done as follows: 

 
1. Transform each image into a vector. 

2. Build n  collections of images n

q r×
⎡ ⎤⎣ ⎦CI  where q  is the number of 

pixels of each image and r  the number of images. 
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3. Let [ ]q n×
AI  a matrix of average images. For 1k =  to n  compute the 

average image as: 

1

r
k
s

s
k r

==
∑CI

AI      (8) 

4. For 1s =  to r  build an sAM as described in Section 2.2. For 1k =  

to n  k
k=x AI  and k k

s=y CI  

 
Once trained the network of AMs, when is fed with any image of a collection, 

each AM will respond with an image that belongs to the collection. To recover a 
collection of images we just operate each AM with the input image as described in 
Section 2.3. 

 
Fig. 1. Architecture of a network of AMs for recalling a collection of patters using an input 
pattern. 

4 Experimental Results 

In this section the accuracy of the proposal is tested using different collections of 
images shown in Fig. 2. 
 

      

     

     

     
(a)  (b)  (c)  (d)  (e) 

Fig. 2. (a-e) Collections of images taken from the Amsterdam Library of Objects Images 
(ALOI). 

Twenty complex images were grouped into five collections composed by four 
images, see Fig. 2. After that, we proceeded to train the network of AMs as was 
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explained in Section 3. For this problem our network is composed of four AMs. It is 
important to say that the number of images composing a collection could by any, the 
only restrictions to guaranty perfect and robust recall is that patterns (images) satisfy 
propositions described in [14]. 

Once trained the network, four experiments were performed to test the accuracy of 
the proposal. The first experiment consisted on recovering a collection of images 
using any image of the collection in order to verify how much robust is the proposal 
under image deformations. Second experiment consisted on recovering a collection of 
images using any image of the collection altered by mixed noise in order to verify 
how much robust is the proposal under deformations and noisy version of the images. 
In the third experiment each image of the training set was rotated (from 0 to 360). We 
then used them to fed the network of AMs in order to verify how much robust is the 
proposal under deformations and rotations. Finally for forth experiment the images of 
the training set were rotated (from 0 to 360) and translated, and then used them to fed 
the network of AMs in order to verify how much robust is the proposal under 
deformations, rotations and translations. 

The accuracy of the proposal was of 100% in the first experiment. The five 
collections of images where perfectly recovered by using any image of the collection 
(20 images), in Table 1 are shown some results obtained in this experiment. 
Remember that we train the network of AMs with average images, so then; when we 
fed the network with an image of any collection this image could be seen as a 
deformed version of the average images. The results provided by our proposal in this 
experiment show that the associative model used to train the network of AMs is 
robust under deformations. Something important to say is that if we use other 
associative models for training the network of AMs such as morphological or median 
AMs, the collections might not be correctly recovered due to they are not robust under  
these kind of transformations or deformations. 

Table 1. Some results obtained for the first experiment. As you can appreciate all sets of 
images were perfectly recovered. 

Input image Image recovered by each AM. 

 
The accuracy of the proposal, in the second experiment, was of 100%. The five 

collections of images where recovered perfectly by using any image of the collection 
even when this images were altered by noise (200 images). As you can see in Table 2, 
despite of the level of noise add to the images, the collections were correctly 
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recovered. Despite of other associative models are robust to this kind of noise, they 
might not recover the all collections due to they are only robust under additive, 
subtractive and mixed noise but not to deformations.  

Table 2. Some results obtained for the second experiment. Despite of the noise added to the 
images, all sets of images were again correctly recovered. 

Input image Image recovered by each AM 

 
The accuracy of the proposal, in the third experiment, was also of 100%. The five 

collections of images where recovered perfectly even when rotated version of the 
images were used (700 images), see in Table 3. Some important to say is, to our 
knowledge, neither morphological AMs nor other classical models are robust under 
rotations. Due to we used simplified patterns using mid operator and due to this 
operator is invariant to rotations the accuracy of the proposal was of 100%. 

Table 3. Some results obtained for the third experiment. Despite of the noise added to the 
images and rotations, all sets of images were again correctly recovered. 

Input image Image recovered by each AM 

 
Finally, the accuracy of the proposal, in the forth experiment was of 40%. In this 

experiment with 700 images; with some images we recall a collection, but with some 
other images (when patterns do not satisfied the proposition which guarantee robust 
recall) the collections were not recalled, see Table 4. However, the results obtained by 
our proposal are acceptable if they are compared with the results provided by order 
associative models (less of 10% of accuracy). 

10



Table 4. Some results obtained for the forth experiment. With some images we recall a 
collection, but with some other images (when patters do not satisfied the proposition which 
guarantee robust recall) the collections was not recalled.  

Input image Image recovered by each AM 

 

In general, the accuracy of the proposal with different banks of images (altered by 
noisy and rotated) was of 100%. This was due to the input patterns (the images) 
satisfy the propositions presented in [14]. If these patterns do not satisfy these 
propositions, as images used in experiment four (translated and rotated images), the 
accuracy of the proposal diminish. However, the results provided by our proposal up-
performed the results provide by other associative models. 

5 Conclusions and Directions for Further Research 

In this paper we have proposed a network of AMs. This network is useful for 
recalling a collection of output patterns using an input pattern as a key. The network 
is composed by several dynamic associative memories (DAM). This DAM is 
inspirited in some aspects of human brain. The model, due to plasticity of its synapses 
and functioning, is robust under some transformations as rotation, translation and 
deformations. 
 In addition, we describe an algorithm for training a network of AMs codifying the 
images of a collection by using an average image. Once computed the average images 
we proceed to training the network of AMs. 
 The network is capable to recall a collection of images (patterns) even if images 
are altered by noise or suffer some deformations, rotations and translations.  

Through several experiments we have shown the efficiency of the proposal. In the 
first three experiments the proposal provided an accuracy of 100%. Even when the 
images were altered with mixed noise and rotated, the network of AMs recovered the 
corresponding collection. When object in images suffer translations, the accuracy of 
the proposal diminish. This is because most of the patterns under this transformation 
do not satisfied the propositions that guarantee robust recall. However, the results 
provided by our proposal up-performed the results provide by other associative 
models. 

The performed experiments could be seen as an application for image retrieval 
problems. We could say that we have developed a small system able to recover a 
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collection of images (previously organized), even in the presence of altered versions 
of the images. 

Nowadays we are working and directed this research to solve real problems in 
images retrieval system. We are focusing our efforts to propose new associative 
models able to associate and recall images under more complex transformations. 
Furthermore, this new models have to work with images of much more complicated 
objects such as flowers, animals, cars, faces, etc. 
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