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Abstract. If over the past decades understanding, modeling and improvement 
of learning and generalization capabilities of Artificial Neural networks have 
been subject to a particular attention, nowadays, these connectionist models 
have to face up to new challenges dealing with industrial requirements and real-
world dilemmas. The target is to explore this pertinent point through a set of 
ANN based solutions developed in order to defy a number of applicative 
challenges dealing with industrial and real world requirements.  

1 Introduction  

Overcoming limitations of conventional approaches thank to their learning and 
generalization capabilities, Artificial Neural Networks (ANN) made appear a number 
of expectations to design “intelligent” information processing systems. If over the 
past decades understanding, modeling and improvement of learning and 
generalization capabilities of these bio-inspired models have been subject to a 
particular attention, nowadays, these connectionist models have to face up to new 
challenges dealing with industrial requirements and real-world dilemmas. In other 
words, now the time is to fulfill the following question: do ANN based approaches 
remain simulation toys or they reveal real solutions for reaching farther technological 
borders?  

The present paper aims to contribute in discussion around the possible answer to 
the above-formulated question. The target is to discuss and explore this pertinent 
question through a set of ANN based solutions developed in order to defy a number of 
applicative challenges dealing with industrial and real world requirements.  

The present paper is organized in following way: the next section will introduce 
the first application of ANN based approaches dealing with “automated visual 
inspection” in industrial production of VLSI devices. Section 3, will present another 
industrial application of ANN based concepts focusing fault detection and defects’ 
classification in high-tech optical devices production. Finally the last section of this 
paper will conclude the present article and discuss a number of perspectives.  



2 ANN based Probe Mark Inspection in VLSI Chips Production  

One of the main steps in VLSI circuit production is the testing step. This step verifies 
if the final product (VLSI circuit) operates correctly or not. The verification is 
performed thank to a set of characteristic input signals (stimulus) and associated 
responses obtained from the circuit under test. A set of such stimulus signals and 
associated circuit’s responses are called test vectors. Test vectors are delivered to the 
circuit and the circuit’s responses to those inputs are catch through standard or test 
dedicated Input-Output pads (I/O pads) called also vias. As in the testing step, the 
circuit is not yet packaged, the test task is performed by units, which are called 
probers including a set of probes performing the communication with the circuit. The 
problem is related to the fact that the probes of the prober may damage the circuit 
under test. So, an additional step consists of inspecting the circuit’s area to verify vias 
(I/O pads) status after circuit’s testing: this operation is called developed Probe Mark 
Inspection (PMI). Fig.1-a shows a picture of probes relative to such probers. Fig.1-b 
gives examples of faulty and correct vias.  

 
(a)                                                                         (b) 

Fig. 1. Photograph giving an example of probes in industrial prober (a). Example of probe 
impact: correct and faulty (b).  

Many prober constructors had already developed PMI software based on 
conventional pattern recognition algorithms with little success]. The difficulty is 
related to the compromise between real time execution (production constraints) and 
methods reliability. In fact, even sophisticated hardware using DSPs and ASICs 
specialized in image processing are not able to perform sufficiently well to convince 
industrials to switch from human operator (expert) defects recognition to 
electronically automatic PMI. That’s why a neural network based solution has been 
developed and implemented on ZISC-036 neuro-processor, for the IBM Essonnes 
plant. The main advantages of developed solutions are real-time control and high 
reliability in fault detection and classification tasks. Our automatic intelligent PMI 
application, detailed in [1] and [2], consists of software and a PC equipped with this 
neural board, a video acquisition board connected to a camera and a GPIB control 
board connected to a wafer prober system. Its goal is image analysis and prober 
control.  

The IBM ZISC-036 (see [3] and [4]) is a parallel neural processor based on the 
RCE and KNN algorithms. Each chip is capable of performing up to 250 000 
recognitions per second. Thanks to the integration of an incremental learning 
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algorithm, this circuit is very easy to program in order to develop applications; a very 
few number of functions (about ten functions) are necessary to control it. Each ZISC-
036 like neuron implements two kinds of distance metrics called L1 and LSUP 
respectively. Relations (1) and (2) define the above-mentioned distance metrics were 
Pi represents the memorized prototype and Vi is the input pattern. The first one (L1) 
corresponds to a polyhedral volume influence field and the second (LSUP) to a hyper-
cubical influence field.  
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(a)                                                                      (b) 

Fig. 2. IBM ZISC-036 chip’s bloc diagram (a) and an example of input feature space mapping 
in a 2-D space using ROI and 1-NN modes, using norm L1 (b).  

Figure 2 gives the ZISC-036 chip’s bloc diagram and an example of input feature 
space mapping in a 2-D space. A 16 bit data bus handles input vectors as well as other 
data transfers (such as category and distance), and chip controls. Within the chip, 
controlled access to various data in the network is performed through a 6-bit address 
bus. ZISC-036 is composed of 36 neurons. This chip is fully cascadable which allows 
the use of as many neurons as the user needs (a PCI board is available with a 684 
neurons). A neuron is an element, which is able to:  

• memorize a prototype (64 components coded on 8 bits), the associated 
category (14 bits), an influence field (14 bits) and a context (7 bits),  

• compute the distance, based on the selected norm (norm L1 given by relation 
or LSUP) between its memorized prototype and the input vector (the distance 
is coded on fourteen bits),  

• compare the computed distance with the influence fields,  
• communicate with other neurons (in order to find the minimum distance, 

category, etc.),  
• adjust its influence field (during learning phase).  
Two kinds of registers hold information in ZISC-O36 architecture: global registers 

and neuron registers. Global registers hold information for the device or for the full 
network (when several devices are cascaded). There are four global registers 
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implemented in ZISC-036: a 16-bits Control & Status Register (CSR), a 8-bits Global 
Context Register (GCR), a 14-bits Min. Influence Field register (MIF) and a 14-bits 
Max. Influence Field register (MAF). Neuron registers hold local data for each 
neuron. Each neuron includes five neuron registers: Neuron Weight Register (NWR), 
which is a 64-by-8 bytes register, a 8-bits Neuron Context Register (NCR), Category 
register (CAT), Distance register (DIST) and Neuron Actual Influence Field register 
(NAIF). The last three registers are both 14-bites registers. Association of a context to 
neurons is an interesting concept, which allows the network to be divided in several 
subsets of neurons. Global Context Register (GCR) and Neuron Context Register 
(NCR) hold information relative to such subdivision at network and neuron levels 
respectively. Up to 127 contexts can be defined.  

The process of analyzing a probe mark can be described as following: the PC 
controls the prober to move the chuck so that the via to inspect is precisely located 
under the camera; an image of the via is taken through the video acquisition board, 
then, the ZISC-036 based PMI:  

• finds the via on the image,  
• checks the integrity of the border (for damage) of via,  
• locates the impact in the via and estimates its surface for statistics.  

 
(a)                                                                        (b) 

Fig. 3. Example of profiles extraction after via centring process (a). Example of profiles to 
category association during the learning phase (b).  

All vias of a tested wafer are inspected and analyzed. At the end of the process, the 
system shows a wafer map which presents the results and statistics on the probe 
quality and its alignment with the wafer. All the defects are memorized in a log file. 
In summary, the detection and classification tasks of our PMI application are done in 
three steps: via localization in the acquired image, mark size estimation and probe 
impact classification (good, bad or none).  

The method, which was retained, is based on profiles analysis using kennel 
functions based ANN. Each extracted profile of the image (using a square shape, 
figures 3 and 4) is compared to a reference learned database in which each profile is 
associated with its appropriated category. Different categories, related to different 
needed features (as: size, functional signature, etc).  
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(a)                                       (b) 

Fig. 4. Profiles extraction for size and localization of the probe mark (a). Experimental result 
showing a fault detection and its localization in the via (b).  

Experiments on different kinds of chips and on various probe defects have proven 
the efficiency of the neural approach to this kind of perception problem. The 
developed intelligent PMI system outperformed the best solutions offered by 
competitors by 30%: the best response time per via obtained using other wafer 
probers was about 600 ms and our neural based system analyzes one via every 400 
ms, 300 of which were taken for the mechanical movements. Measures showed that 
the defect recognition neural module’s execution time was negligible compared to the 
time spent for mechanical movements, as well as for the image acquisition (a ratio of 
12 to 1 on any via). This application is presently inserted on a high throughput 
production line.  

3 Automated Classification of High-Tech Optical Devices’ Defects 
in Industrial Production  

Fault diagnosis in industrial environment is a challenging but crucial task, since it 
ensures products’ nominal specification and manufacturing control. Concerning High-
Tech optical industry, a major step for high-quality optical devices’ faults diagnosis 
concerns scratches and digs defects detection and characterization in such products. 
These kinds of aesthetic flaws, shaped during different manufacturing steps, could 
provoke harmful effects on optical devices’ functional specificities, as well as on their 
optical performances by generating undesirable scatter light, which could seriously 
damage the expected optical features. A reliable diagnosis of these defects becomes 
therefore a crucial task to ensure products’ nominal specification. Moreover, such 
diagnosis is strongly motivated by manufacturing process correction requirements in 
order to guarantee mass production quality with the aim of maintaining acceptable 
production yield.  

Unfortunately, detecting and measuring such defects is still a challenging problem 
in production conditions and the few available automatic control solutions remain 
ineffective. That’s why, in most of cases, the diagnosis is performed on the basis of a 
human expert based visual inspection of the whole production. However, this 
conventionally used solution suffers from several acute restrictions related to human 

119



operator’s intrinsic limitations (reduced sensitivity for very small defects, detection 
exhaustiveness alteration due to attentiveness shrinkage, operator’s tiredness and 
weariness due to repetitive nature of fault detection and fault diagnosis tasks). Figure 
5 gives an example of High-Tech optical products, showing four optical filters. The 
same figure shows an example of visual inspection process of the aforementioned 
defects, requiring expert knowledge and a consequent delay [5].  

 
Fig. 5. Example of High-Tech optical devices performing optical filtering (a) and the visual 
fault detection, performed by an expert (b). 

To construct an automatic diagnosis system, we propose an approach based on 
three main operations: detection, classification and decision. Our motivation to adopt 
the approach dissociating detection and diagnosis tasks is based on requirement 
relative to the frame of industrial production. In fact, two complementary options 
could de required in industrial production environment. The first is inherent to mass 
production where it is not always necessary to diagnose whole manufactured products 
during the production, but it is crucial to detect the presence of defects in order to 
state if the number of defects is conform to the process’ intrinsic limitations. 
However, at the same time, diagnosis ability could help to state (offline) if detected 
defects are due to intrinsic limitations of the used manufacturing process or a number 
of them correspond to different derivations. The second situation is specific to High-
Tech products manufacturing requirements, where additionally to systematic defect 
detection it is crucial to state on nature of detected defects in order to reach high-
quality specifications.  

 
Fig. 6. Block diagram of the proposed optical devices diagnosis system.  

To perform this challenging task, we choose to use neural network based 
techniques, which have shown many attractive features in complex patterns 
recognition and classifications. The outline of the process, we propose to use in order 
to carry out the defect classification is shown in the diagram of figure 6. As one could 
remark, the whole system includes four main stages (tasks): defect detection stage, 
data extraction module, dimensionality reduction stage and classification module [5]. 
The detection approach is based on Nomarski’s microscopy issued imaging (NMI) 
[6], [7], [8], [9]. This method provides robust detection and reliable measurement of 
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outward defects (essentially scratches and digs defects), making plausible a fully 
automatic inspection of optical products.  

The aim of the second stage is to extract defects images from Nomarski detector 
issued digital image. A new method has been proposed including four phases:  

• Pre-processing: Nomarski issued digital image transformation in order to 
reduce lighting heterogeneity influence and to enhance the aimed defects’ 
visibility,  

• Adaptive matching: adaptive process to match defects,  
• Filtering and segmentation: noise removal and defects’ outlines 

characterization.  
• Defect image extraction: correct defect representation construction.  

 
                             (a)                           (b)             (c)                         (d) 

Fig. 7. Examples of images of different characteristic items obtained after “data extraction” 
stage: (a) scratch; (b) dig; (c) dust; (d) cleaning marks.  

The dimensionality reduction task consists on constructing a set of lower 
dimension homogenous invariant (regarding translation and rotation) representation 
of characteristic items obtained from “data extraction” stage. In fact, processing high-
dimensional data may induce several problems among which, the exponentially 
increase of the number of samples, required to reach a predefined level of precision in 
approximation tasks, with the dimension of considered space [10]. Concerning a ANN 
based classification, taking into account the above-mentioned problem, one can 
intuitively understand that the number of samples needed to properly learning high-
dimensional data becomes quickly too large to be collected by a real systems.  

A first data dimensionality reduction is performed using “Fourier-Mellin” 
transformation as it provides invariant descriptors, which are considered to have good 
coding capacity in classification tasks [11], [12], [13] and [14]. In fact, because of 
different sizes of items’ images and their relative positions (due to translation and 
rotation) it is necessary to have a “normalize” representation for classification stage’s 
input patterns. After “Fourier-Mellin” transformation each item image obtained from 
the second stage is represented as a 13-D vector. Then, such 13-D translation-rotation 
invariant vector is normalized thanks to a centring-reducing transformation, modify 
ing each feature iF  conformably to the relation (3), where M is the mean value of the 

feature iF  over the database and σ its standard deviation.  

 

i
i

F MF
σ
−

=
 (3) 

A second data dimensionality reduction is then performed using a projection based 
approach from a high-dimensional space to a lower-dimensional space. Several 

121



techniques have been studied, among which, Kohonen Self-Organizing Map (SOM), 
Curvilinear Component Analysis (CCA) and Curvilinear Distance Analysis (CDA).  

These aspects are presented and discussed in [15]. SOM is often used in industrial 
engineering [16], [17] to characterize high-dimensional data or to carry out 
classification tasks. Its main advantage is to offer an additional “pre-classification” 
ability. However, it suffers from a number of drawbacks: first the SOM’s topology is 
static and should be fixed a priori; moreover the method defines only a discrete 
nonlinear subspace; finally algorithm is computationally too expensive to be 
practically applied for projection space dimension higher than 3 [15], [18]. 
Concerning CCA [19], if it is able to reproduce the topology of an n-dimension 
original space in a new p-dimension space (where p<n) without any a priori 
configuration of the topology (constituting its advantage regarding SOM), it remains 
essentially a linear projection (its main drawback regarding complex classification 
tasks) [20]. CDA involves curvilinear distances allowing dealing with non-linear 
manifolds (its main advantage) [21]. Finally, the classification stage, including an 
unsupervised learning based “pre-classification” stage and a supervised learning 
based classifier, performs the defects’ classification operation.  

Table 1. Validation results relative to the MLP classification performances. 

Training database 
dimensionality Correct classification Standard Deviation 

13 76 % 1.33 % 
2 94 % 0.87 % 

 
The validation of proposed approach has been done using data issued from real 

industrial production process [15]. Two Multi-Layer Perceptron (MLP) based 
classifiers, one classifying 13-D data and the other classifying 2-D data have been 
implemented. The first MLP structure includes13 input neurons, 35 neurons in hidden 
layer, and 2 output neurons (13-35-2 MLP) and the second one engages 2 input 
neurons, 35 neurons in hidden layer, and 2 output neurons (2-25-2 MLP). For both of 
above-indicated structures, the training was achieved 20. Results are presented in 
Table 4. These results clearly prove that the considered classification problem is 
simplified, when properly reformulated in an appropriated lower dimensional space.  

4 Conclusion and Perspectives  

The main goal of this paper was to show how ANN models could be sources of 
inspiration in emergence of real industrial solutions. The presented applications and 
issued results show the significant potentiality of connectionist architectures for 
designing real world applications dealing with complex industrial dilemmas.  
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