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Foreword 

The nowadays’ applicative and technological challenges emanating from 
industrial, socioeconomic or environment needs open new dilemmas and 
decisively highlight limitations of conventional computational science. 
Recent borders’ contraction between biological and computational 
sciences, especially the latest developments in bio-inspired artificial 
systems over the last decade, may play a central role in designing adequate 
solutions to these new challenging dilemmas. The fantastic ever-increasing 
intellectual dynamics created around bio-inspired Artificial Intelligence 
and related topics (as Artificial Neural Networks, Humanoid Robotics, 
Ambient Intelligence, etc…), uphold by escalating interest of both 
confirmed and young researchers on this relatively juvenile science, 
generates a reach multidisciplinary synergy between a large number of 
scientific communities making conceivable a forthcoming emergence of 
viable solutions to real-world dilemmas.  

Since 2005, the international workshop on Artificial Neural Networks and 
Intelligent Information Processing (ANNIIP), within the frame of the 
prestigious ICINCO International Conference, takes part in the 
aforementioned appealing dynamics by offering a privileged space to 
overhaul and exchange the knowledge about further theoretical advances, 
new experimental discoveries and novel technological improvements in 
the promising area of the bio-inspired Artificial Intelligence. The present 
book is the outcome of the fourth edition of this annual event.  

Around a deliberately limited number of papers, the objective of this book 
is to convene a set of relevant recent works focusing bio-inspired Artificial 
Intelligence related fields and applications. Conformably to our 
philosophy, the choice of publishing a relatively restricted number of 
papers has been motivated on the one hand by the premeditated desire to 
give a large space to exchanges and discussions during the ANNIIP 
workshop, and on the other hand by the strong principle of the 
presentation of each accepted article by its authors. If “Bio-inspired 
Artificial Intelligence” and its real-world applications remain, as in the 
previous editions of this international workshop, the foremost themes of 
this 4th ANNIIP edition, a particular interest has been devoted to the 
equilibrium between theoretical and applicative aspects.  
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It is important to remind that scientific relevance and technical quality of a 
collective volume emerge from quality of its contributors: those who 
contribute by the high quality of their manuscripts and those who take 
part in reviewing of submitted papers ensuring the distinction of the book 
by their valuable expertise. I would like to express again my 
acknowledgements to contributors of all accepted papers: You are the central 
reason of the nobles of this tome.  

Also, I would like to reedit my gratitude to Reviewing Board and Program 
Committee for the valuable work that they accomplished: my heartfelt 
recognition to those who already were members of ANNIIP Program 
Committee as well as my sincere thanks to those who kindly accepted to 
enlarge the Reviewing Board of this new edition of the workshop.  

It is also essential to be reminiscent that frequently, creative dynamics is 
the result of fruitful human contacts within a same scientific field or the 
consequence of interaction of humans from different scientific 
communities and since 2004, the date of the its first edition, the ICINCO 
multi-conference has been an outstanding bench of such creative 
synergies. For that, again, I would like to express my warm appreciation 
and my particular gratitude to my friend Prof. Joaquim Filipe, ICINCO 
2008 Conference’s Chair, for his faith in young science of “Bio-inspired 
Artificial Intelligence” and for his reliance on devoting once more this 
privileged space to the ANNIIP workshop within his valuable conference.  

Finally, if ICINCO Organizing Committee’s professionalism became an 
obvious skill of the organization of this international event in so accurate 
way, it should never be forgotten that the organization of a prestigious 
conference remains a challenging undertaking requiring a reliable and a 
solid team. I would like acknowledge all of the ICINCO Organizing 
Committee’s members, with a special word for Marina Carvalho from 
ICINCO Secretariat who, since 2005, is a key person in ANNIIP 
workshop’s organization.  
 

Kurosh Madani 
PARIS XII – Val de Marne University 
France 
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Combining Selective-Presentation  
and Selective-Learning-Rate Approaches for  

Neural Network Forecasting of Stock Markets 

Kazuhiro Kohara1 

 1Department of Electrical, Electronics and Computer Engineering 
Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba, 275-0016, Japan 

kohara.kazuhiro@it-chiba.ac.jp 

Abstract. We have investigated selective learning techniques for improving the 
ability of back-propagation neural networks to predict large changes. We previ-
ously proposed the selective-presentation approach, in which the training data 
corresponding to large changes in the prediction-target time series are presented 
more often, and selective-learning-rate approach, in which the learning rate for 
training data corresponding to small changes is reduced. This paper proposes 
combining these two approaches to achieve fine-tuned and step-by-step selec-
tive learning of neural networks according to the degree of change. Daily stock 
prices are predicted as a noisy real-world problem. Combining these two ap-
proaches further improved the performance. 

1 Introduction 

Prediction using back-propagation neural networks has been extensively investigated 
(e.g., [1-5]), and various attempts have been made to apply neural networks to finan-
cial market prediction (e.g., [6-16]), electricity load forecasting (e.g., [17]) and other 
areas. In the usual approach, all training data are equally presented to a neural net-
work (i.e., presented in each cycle) and the learning rates are equal for all the training 
data independently of the size of the changes in the prediction-target time series. Also, 
network learning is usually stopped at the point of minimal mean squared error be-
tween the network’s outputs and the desired outputs. 

Generally, the ability to predict large changes is more important than the ability to 
predict small changes, as we mentioned in the previous paper [12]. When all training 
data are presented equally with an equal learning rate, the BPNN will learn the small 
and large changes equally well, so it cannot learn the large changes more effectively. 
We have investigated selective learning techniques for improving the ability of neural 
networks to predict large changes. We previously proposed the selective-presentation 
and selective-learning-rate approaches and applied them into stock market prediction 
[12-14]. In the selective-presentation approach, the training data corresponding to 
large changes in the prediction-target time series are presented more often. In the 
selective-learning-rate approach, the learning rate for training data corresponding to 
small changes is reduced. The previous paper [12] also investigated another stopping 
criterion for financial predictions. Network learning is stopped at the point having the 



maximum profit through experimental stock-trading. 
This paper proposes combining the selective-presentation and selective-learning-

rate approaches. By combining these two approaches, we can easily achieve fine-
tuned and step-by-step selective learning of neural networks according to the degree 
of change. Daily stock prices are predicted as a noisy real-world problem. 

2 Combining Selective-Presentation and Selective-Learning-Rate 
Approaches 

To allow neural networks to learn about large changes in prediction-target time series 
more effectively, we separate the training data into large-change data (L-data) and 
small-change data (S-data). L-data (S-data) have next-day changes that are larger 
(smaller) than a preset value. 

In the selective-presentation approach, the L-data are presented to neural networks 
more often than S-data. For example, all training data are presented every fifth learn-
ing cycle, while the L-data are presented every cycle. In the selective-learning-rate 
approach, all training data are presented in every cycle; however, the learning rate of 
the back-propagation training algorithm for S-data is reduced compared with that for 
L-data. These two approaches are outlined as follows. 
  
Selective-Presentation Approach 
  1. Separate the training data into L-data and S-data. 
  2. Train back-propagation networks with more presentations of L-data than of S-data. 
3. Stop network learning at the point satisfying a certain stopping criterion (e.g., stop  
at the point having the maximum profit). 

  
Selective-Learning-Rate Approach 
  1. Separate the training data into L-data and S-data. 
2. Train back-propagation networks with a lower learning rate for the S-data than for  
the L-data. 
3. Stop network learning at the point satisfying a certain stopping criterion (e.g., stop  
at the point having the maximum profit). 

  
We combine these two approaches to achieve fine-tuned and step-by-step learning 

of neural networks according to the degree of change. The outline is as follows. 
  
Combining Selective-Presentation and Selective-Learning-Rate Approaches 
1. Separate the training data into L-data and S-data. 
2. Separate L-data into two subsets: L1-data and L2-data, where changes in L2- data  
are larger than those in L1-data. 
3. Separate S-data into two subsets: S1-data and S2-data, where changes in S2-data 
are larger than those in S1-data. 
4. Train back-propagation networks with more presentations of L1- and L2-data than 
of S1- and S2-data, and with a lower learning rate for L1- and S1-data than for L2 
and S2-data. 
5. Stop network learning at the point satisfying a certain stopping criterion (e.g., stop  
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at the point having the maximum profit). 
  

In general, we can separate the training data into N subsets (N ≥ 2): D1-, D2-, …, 
and DN-data, where changes in Di-data are larger than those in Di-1-data, and give 
“selective intensities” I (number of presentations times learning rate) to D1-, D2-, …, 
and DN-data as I1 < I2 < I3 < … < IN. 

3 Evaluation through Experimental Stock-Price Prediction 

We considered the following types of knowledge for predicting Tokyo stock prices. 
These types of knowledge involve numerical economic indicators [12-14]. 
  

  1. If interest rates decrease, stock prices tend to increase, and vice versa. 
2. If the dollar-to-yen exchange rate decreases, stock prices tend to decrease, and 
vice versa. 

  3. If the price of crude oil increases, stock prices tend to decrease, and vice versa.  
  
We used the following five indicators as inputs to the neural network. 
• TOPIX: the chief Tokyo stock exchange price index 
• EXCHANGE: the dollar-to-yen exchange rate (yen/dollar) 
• INTEREST: an interest rate (3-month CD, new issue, offered rates) (%) 
• OIL: the price of crude oil (dollars/barrel)  
• NY: New York Dow-Jones average of the closing prices of 30 industrial stocks 

(dollars) 
  

TOPIX was the prediction target. EXCHANGE, INTEREST and OIL were cho-
sen based on the knowledge of numerical economic indicators. The Dow-Jones aver-
age was used because Tokyo stock market prices are often influenced by New York 
exchange prices. We assume that tomorrow’s change in TOPIX is determined by 
today’s changes in the five indicators according to the knowledge. Therefore, the 
daily changes in these five indicators (e.g. Δ  TOPIX(t) = TOPIX(t) - TOPIX(t-1)) 
were input into neural networks, and the next-day’s change in TOPIX was presented 
to the neural network as the desired output (Figure 1). The back-propagation algo-
rithm was used to train the network. All the data of the daily changes were scaled to 
the interval [0.1, 0.9]. A 5-5-1 multi-layered neural network was used (five neurons in 
the input layer, five in the hidden layer, and one in the output layer). 

3.1 Experiments 

We used data from a total of 409 days (from August 1, 1989 to March 31, 1991): 300 
days for training, 30 days for validation (making decisions on stopping the network 
learning), and 79 days for making predictions. In Experiment 1, all training data were 
presented in each cycle with an equal learning rate (ε = 0.7). In Experiment 2, L-data 
were presented five times as often as S-data. Here, the large-change threshold was 
14.78 points (about US$ 1.40), which was the median of absolute value of TOPIX 
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daily changes in the training data. In Experiment 3, the learning rate for the S-data 
was reduced up to 20% (i.e., ε = 0.7 for the L-data and ε = 0.14 for the S-data). 
Experimental conditions in Experiments 1, 2, and 3 are shown in Table 1, 2, and 3. 
   

Fig. 1. Neural prediction model. 

Table 1. Experimental conditions in Experiment 1: conventional technique. 

  S-data L-data 
Range of absolute  
value of Δ TOPIX(t) 

0 to 50% 50 to 100% 

Number of data 150 150 
Relative number of  
presentations (P) 1 1 

Learning rate (ε ) 0.7 0.7 
P timesε  
(relative value) 

0.7 
(1) 

0.7 
(1) 

Table 2. Experimental conditions in Experiment 2: selective presentation. 

  S-data L-data 
Range of absolute  
value of Δ TOPIX(t) 

0 to 50% 50 to 100% 

Number of data 150 150 
Relative number of  
presentations (P) 1 5 

Learning rate (ε ) 0.7 0.7 
P timesε  
(relative value) 

0.7 
(1) 

3.5 
(5) 

Table 3. Experimental conditions in Experiment 3: selective-learning-rate. 

  S-data L-data 
Range of absolute  
value of Δ TOPIX(t) 

0 to 50% 50 to 100% 

Number of data 150 150 
Relative number of  
presentations (P) 1 1 

Learning rate (ε ) 0.14 0.7 
P timesε  
(relative value) 

0.14 
(1) 

0.7 
(5) 

)(
)(

)(
)(
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tNY
tOIL

tINTEREST
tEXCHANGE

tTOPIX
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Experimental conditions in Experiment 4 are shown in Table 4. S-data were separated 
into S1- and S2-data, where changes in S2-data were larger than those in S1-data. 
Here, the boundary between S1- and S2-data was at the 25% point. (The 25% point 
means that 25% of the data is between the minimum data and the 25% point data. The 
50% point corresponds to the “median.”) L-data were separated into L1- and L2-data, 
where changes in L2-data were larger than those in L1-data. Here, the boundary be-
tween L1- and L2-data was the 75% point. The 25%, 50%, and 75% points were 5.36 
(about US$ 0.51), 14.78 (US$ 1.40) and 31.04 points (US$ 2.94), respectively. L1-, 
L2-, S1-, and S2-data each had 75 data. In Experiment 4, L1- and L2-data were pre-
sented five times as often as S1- and S2-data. In Experiment 4, the learning rate for 
L1- and S1-data was reduced to 50% (i.e., ε = 0.7 for L2- and S2-data, and ε = 0.35 
for L1- and S1-data). Relative selective intensities (number of presentations times 
learning rate) for S1-, S2-, L1-, and L2-data were 1, 2, 5, and 10, respectively.  

 Table 4. Experimental conditions in Experiment 4: the hybrid technique. 

   S1-data S2-data L1-data L2-data 
Range of absolute  
value of ΔTOPIX(t) 

0 to 25% 25 to 50% 50 to 75% 75 to 100% 

Number of data 75 75 75 75 
Relative number of  
presentations (P) 

1 1 5 5 

Learning rate (ε ) 0.35 0.7 0.35 0.7 
P timesε  
(relative value) 

0.35 
 (1) 

0.7  
(2) 

1.75  
(5) 

3.5 
 (10) 

  
In each experiment, network learning was stopped at the point having the maxi-

mum profit (the learning was stopped at the point having the maximum profit for the 
validation data during 8000 learning cycles). The prediction error and profit were 
monitored after every hundred learning cycles. 

When a large change in TOPIX was predicted, we tried to calculate “Profit” as fol-
lows: when the predicted direction was the same as the actual direction, the daily 
change in TOPIX was earned, and when it was different, the daily change in TOPIX 
was lost. This calculation of profit corresponds to the following experimental TOPIX 
trading system. A buy (sell) order is issued when the predicted next-day's up (down) 
in TOPIX is larger than a preset value which corresponds to a large change. When a 
buy (sell) order is issued, the system buys (sells) TOPIX shares at the current price 
and subsequently sells (buys) them back at the next-day price. Transaction costs on 
the trades were ignored in calculating the profit. The more accurately a large change 
is predicted, the larger the profit is. 

In each experiment, the momentum parameter α was 0.7. All the weights and bi-
ases in the neural network were initialized randomly between -0.3 and 0.3. In each 
experiment the neural network was run four times for the same training data with 
different initial weights and the average was taken. 
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3.2 Results 

The experimental results are shown in Table 5. Multiple regression analysis (MR) was 
also used in the experiments. The “prediction error on large-change test data” is the 
mean absolute value of the prediction error for the test L-data. 

Applying our selective-presentation approach (Experiment 2) reduced the predic-
tion error for test L-data and improved profits: the prediction-error on L-data was 
reduced by 7% (1- (21.3/22.9)) and the network’s ability to make profits through 
experimental TOPIX-trading was improved by 30% (550/422) compared with the 
results obtained with the usual presentation approach (Experiment 1). 

The prediction error and profits in Experiment 3 (selective-learning-rate approach) 
were comparable to those in Experiment 2 (selective-presentation approach). Com-
bining selective-presentation with selective-learning-rate approaches (Experiment 4) 
further reduced the prediction error for test L-data and improved profits: the predic-
tion-error was reduced by 10% (1- (20.7/22.9)) and the network’s ability to make 
profits was improved by 38% (581/422). 

Table 5. Experimental results.  

  MR Exp. 1 Exp. 2 Exp. 3 Exp. 4 
Presentation 
method 

equal equal selective equal selective 

Learning rate  equal equal selective selective 
Prediction error for  
large-change data 
(relative value) 

24.3 
(1.06) 

22.9 
(1) 

21.3 
(0.93) 

21.3 
(0.93) 

20.7 
(0.90) 

Profit on test data 
(relative value) 

265 
(0.62) 

422 
(1) 

550 
(1.30) 

563 
(1.33) 

581 
(1.38) 

4 Conclusions 

We investigated selective learning techniques for forecasting. In the first approach, 
training data corresponding to large changes in the prediction-target time series are 
presented more often, in the second approach, the learning rate for training data cor-
responding to small changes is reduced, and in the third approach, these two tech-
niques are combined. The results of several experiments on stock-price prediction 
showed that the performances of selective-presentation and selective-learning-rate 
approaches were both better than the usual presentation approach, and combining 
them further improved the performance. Next, we will apply these techniques today’s 
stock market and other real-world forecasting problems. We also plan to develop a 
forecasting method that integrates statistical analysis with neural networks. 
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Learning and Evolution in Artificial Neural Networks:  
A Comparison Study 

Eva Volna 

University of Ostrava, 30ht dubna st. 22, 701 03 Ostrava, Czech Republic 
eva.volna@osu.cz 

Abstract. This paper aims at learning and evolution in artificial neural 
networks. Here is presented a system evolving populations of neural nets that 
are fully connected multilayer feedforward networks with fixed architecture 
solving given tasks. The system is compared with gradient descent weight 
training (like backpropagation) and with hybrid neural network adaptation. All 
neural networks have the same architecture and solve the same problems to be 
able to be compared mutually. In order to test the efficiency of described 
algorithms, we applied them to the Fisher's Iris data set [1] that is the bench 
test database from the area of machine learning. 

1 Learning in Artificial Neural Networks 

Learning in artificial neural networks is typically accomplished using examples. This 
is also called training in artificial neural networks because the learning is achieved by 
adjusting the connection weights in artificial neural networks iteratively so that 
trained (or learned) artificial neural networks can perform certain tasks. The essence 
of a learning algorithm is the learning rule, i.e. a weight-updating rule, which 
determines how connection weights are changed. Examples of popular learning rules 
include the delta rule, the Hebbian rule, the anti-Hebbian rule, and the competitive 
learning rule, etc. More detailed discussion of artificial neural networks can be found 
in [2]. Learning in artificial neural networks can roughly be divided into supervised, 
unsupervised, and reinforcement learning. Without commonness, we are going to 
target multilayer feedforward neural networks that are adapted with backpropagation 
algorithm. 

Supervised learning is based on direct comparison between the actual output of an 
artificial neural network and the desired correct output, also known as the target 
output. It is often formulated as the minimization of an error function such as the total 
mean square error between the actual output and the desired output summed over all 
available data. A gradient descent-based optimization algorithm such as 
backpropagation [2] can then be used to adjust connection weights in the artificial 
neural network iteratively in order to minimize the error. There have been some 
successful applications of backpropagation in various areas [3]–[5], but 
backpropagation has drawbacks due to its use of gradient descent. It often gets 
trapped in a local minimum of the error function and is incapable of finding a global 
minimum if the error function is multimodal and/or nondifferentiable.  



2 NeuroEvolutionary Learning in Artificial Neural Networks 

Evolutionary algorithms refer to a class of population-based stochastic search 
algorithms that are developed from ideas and principles of natural evolution. They 
include evolution strategies, evolutionary programming, genetic algorithms etc. [6]. 
One important feature of all these algorithms is their population based search strategy. 
Individuals in a population compete and exchange information with each other in 
order to perform certain tasks. Evolutionary algorithms are particularly useful for 
dealing with large complex problems, which generate many local optima. They are 
less likely to be trapped in local minima than traditional gradient-based search 
algorithms. They do not depend on gradient information and thus are quite suitable 
for problems where such information is unavailable or very costly to obtain or 
estimate. They can even deal with problems where no explicit and/or exact objective 
function is available. These features make them much more robust than many other 
search algorithms. There is a good introduction to various evolutionary algorithms for 
optimization in [6]. 

Evolution has been introduced into artificial neural networks at roughly three 
different levels [7]: connection weights; architectures; and learning rules. The 
evolution of connection weights introduces an adaptive and global approach to 
training, especially in the reinforcement learning and recurrent network-learning 
paradigm where gradient-based training algorithms often experience great difficulties. 
The evolution of architectures enables artificial neural networks to adapt their 
topologies to different tasks without human intervention and thus provides an 
approach to automatic artificial neural network design as both connection weights and 
structures can be evolved. The evolution of learning rules can be regarded as a 
process of learning to learn in artificial neural networks where the adaptation of 
learning rules is achieved through evolution. It can also be regarded as an adaptive 
process of automatic discovery of novel learning rules. 

The evolutionary approach to weight training in artificial neural networks consists 
of two major phases. The first phase is to decide the representation of connection 
weights, i.e., whether in the form of binary strings or real strings. The second one is 
the evolutionary process simulated by an evolutionary algorithm, in which search 
operators such as crossover and mutation have to be decided in conjunction with the 
representation scheme. Different representations and search operators can lead to 
quite different training performance. In a binary representation scheme, each 
connection weight is represented by a number of bits with certain length. An artificial 
neural network is encoded by concatenation of all the connection weights of the 
network in the chromosome. The advantages of the binary representation lie in its 
simplicity and generality. It is straightforward to apply classical crossover (such as 
one-point or uniform crossover) and mutation to binary strings [6]. Real numbers 
have been proposed to represent connection weights directly, i.e. one real number per 
connection weight [6]. As connection weights are represented by real numbers, each 
individual in an evolving population is then a real vector. Traditional binary crossover 
and mutation can no longer be used directly. Special search operators have to be 
designed. Montana and Davis [8] defined a large number of tailored genetic operators, 
which incorporated many heuristics about training artificial neural networks. The idea 
was to retain useful feature detectors formed around hidden nodes during evolution.  
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One of the problems faced by evolutionary training of artificial neural networks is 
the permutation problem [7] also known as the competing convention problem. It is 
caused by the many-to-one mapping from the representation (genotype) to the actual 
artificial neural network (phenotype) since two artificial neural networks that order 
their hidden nodes differently in their chromosomes will still be equivalent 
functionally. In general, any permutation of the hidden nodes will produce 
functionally equivalent artificial neural networks with different chromosome 
representations. The permutation problem makes crossover operator very inefficient 
and ineffective in producing good offspring. The role of crossover has been 
controversial in neuroevolution as well as among the evolutionary computation 
community in general. However, there have been successful applications using 
crossover operations to evolve neural networks [9]. Compared with the mutation only 
system, the performance of the system using crossover operations is in general better 
and that it also helps to compress the overall size of search space faster. 

3 Comparison between Evolutionary Training and  
Gradient-based Training 

The evolutionary training approach is attractive because it can handle the global 
search problem better in a vast, complex, multimodal, and nondifferentiable surface. 
It does not depend on gradient information of the error (or fitness) function and thus is 
particularly appealing when this information is unavailable or very costly to obtain or 
estimate. For example, the same evolutionary algorithms can be used to train many 
different networks: recurrent artificial neural networks [10], higher order artificial 
neural networks [11], and fuzzy artificial neural networks [12]. The general 
applicability of the evolutionary approach saves a lot of human efforts in developing 
different training algorithms for different types of artificial neural networks. The 
evolutionary approach also makes it easier to generate artificial neural networks with 
some special characteristics. For example, the artificial neural networks complexity 
can be decreased and its generalization increased by including a complexity 
(regularization) term in the fitness function. Unlike the case in gradient-based 
training, this term does not need to be differentiable or even continuous. Weight 
sharing and weight decay can also be incorporated into the fitness function easily.  

However, evolutionary algorithms are generally much less sensitive to initial 
conditions of training. They always search for a globally optimal solution, while a 
gradient descent algorithm can only find a local optimum in a neighbourhood of the 
initial solution.  

4 Hybrid Training 

Most evolutionary algorithms are rather inefficient in fine-tuned local search although 
they are good at global search. This is especially true for genetic algorithms. The 
efficiency of evolutionary training can be improved significantly by incorporating 
a local search procedure into the evolution, i.e. combining evolutionary algorithm’s 
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global search ability with local search’s ability to fine tune. Evolutionary algorithms 
can be used to locate a good region in the space and then a local search procedure is 
used to find a near-optimal solution in this region. The local search algorithm could 
be backpropagation [2] or other random search algorithms. Hybrid training has been 
used successfully in many application areas: Lee [13] and many others used genetic 
algorithms to search for a near-optimal set of initial connection weights and then used 
backpropagation to perform local search from these initial weights. Their results 
showed that the hybrid algorithm approach was more efficient than either the genetic 
algorithm or backpropagation algorithm used alone. If we consider that 
backpropagation often has to run several times in practice in order to find good 
connection weights due to its sensitivity to initial conditions, the hybrid training 
algorithm will be quite competitive. Similar work on the evolution of initial weights 
has also been done on competitive learning neural networks [14] and Kohonen 
networks [15]. 

It is interesting to consider finding good initial weights as locating a good region in 
the weight space. Defining that basin of attraction of a local minimum as being 
composed of all the points, sets of weights in this case, which can converge to the 
local minimum through a local search algorithm, then a global minimum can easily be 
found by the local search algorithm if an evolutionary algorithm can locate a point, 
i.e. a set of initial weights, in the basin of attraction of the global minimum. Fig. 1 
illustrates a simple case where there is only one connection weight in the artificial 
neural networks. If an evolutionary algorithm can find an initial weight such as wI2, it 
would be easy for a local search algorithm to arrive at the globally optimal weight wB 
even though wI2 itself is not as good as wI1. 

 
Fig. 1. An illustration of using an evolutionary algorithm to find good initial weights such that 
a local search algorithm can find the globally optimal weights easily. wI2 in this figure is an 
optimal initial weight because it can lead to the global optimum wB using a local search 
algorithm. 
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5 Experiments 

In order to test the efficiency of described algorithms, we applied it to the Iris flower 
data set or Fisher's Iris data set is a multivariate data set introduced by Sir Ronald 
Aylmer Fisher as an example of discriminated analysis [1]. It is sometimes called 
Anderson's Iris data set because Edgar Anderson collected the data to quantify the 
geographic variation of Iris flowers in the Gaspe Peninsula. The dataset consists of 50 
samples from each of three species of Iris flowers (Iris setosa, Iris virginica and Iris 
versicolor). Four features were measured from each sample, they are the length and 
the width of sepal and petal. Based on the combination of the four features, Fisher 
developed a linear discriminated model to determine which species they are (see 
Table 1). There are three-layer feedforward neural networks with architecture 
is 4 - 4 - 3 (e.g. four units in the input layer, four units in the hidden layer, and three 
units in the output layer) in all experimental works, because the Fisher's Iris data set 
[1] is not linearly separable and therefore we cannot use neural network without 
hidden units. All nets are fully connected. The input values of the training set from the 
Table 1 are transformed into interval <0; 1> to be use backpropagation algorithms for 
adaptation. 

Weight Evolution in Artificial Neural Networks: the initial population contains 
30 individuals (weight representations of three-layer neural networks). There are 
connection weights represented by real numbers in each chromosome. We use the 
genetic algorithm with the following parameters: probability of mutation is 0,01 and 
probability of crossover is 0,5. Adaptation of each neural network starts with 
randomly generated weight values in the initial population.  

The Gradient Descent adaptation deals through backpropagation with the 
following parameters: learning rate is 0.4, momentum is 0. 

The Hybrid Training combines parameters from genetic algorithms and 
backpropagation. It makes one backpropagation epoch with probability 0,5 in each 
generation.  

6 Conclusions 

History of error functions is shown in the Figure 2. There are shown average values of 
error functions in the given population. The “gradient descent adaptation” represents 
an adaptation with the backpropagation. There are shown average values of error 
functions, because the adaptation with backpropagation algorithm was applied 10 
times for each calculation.  

All networks solve Fisher's Iris data set [1] in our experiment. Now we can 
compare results from all experiments, e.g. weight evolution, gradient descent 
adaptation, and hybrid training. Other numerical simulations give very similar results. 
If we can see from Figure 2, the hybrid training shows the best results from all of 
them. In general, hybrid algorithms tend to perform better than others for a large 
number of problems, because they combine evolutionary algorithm’s global search 
ability with local search’s ability to fine tune 
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Table 1. The set of patterns (the Fisher's Iris Data training set), where Se means setosa, 
Vi means virginica, and Ve means versicolor. 
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Sepal 
Width 
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Petal 
Width 

Spe- 
cies 
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Sepal
Width

Petal 
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Petal 
Width
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cies 

Sepal
Lengt

Sepal
Width

Petal 
Length 

Petal 
Width 

Spe- 
cies 

5,1 3,5 1,4 0,2 Se 6,3 3,3 6 2,5 Vi 7 3,2 4,7 1,4 Ve 
4,9 3 1,4 0,2 Se 5,8 2,7 5,1 1,9 Vi 6,4 3,2 4,5 1,5 Ve  
4,7 3,2 1,3 0,2 Se 7,1 3 5,9 2,1 Vi 6,9 3,1 4,9 1,5 Ve 
4,6 3,1 1,5 0,2 Se 6,3 2,9 5,6 1,8 Vi 5,5 2,3 4 1,3 Ve  
5 3,6 1,4 0,2 Se 6,5 3 5,8 2,2 Vi 6,5 2,8 4,6 1,5 Ve 

5,4 3,9 1,7 0,4 Se 7,6 3 6,6 2,1 Vi 5,7 2,8 4,5 1,3 Ve  
4,6 3,4 1,4 0,3 Se 4,9 2,5 4,5 1,7 Vi 6,3 3,3 4,7 1,6 Ve 
5 3,4 1,5 0,2 Se 7,3 2,9 6,3 1,8 Vi 4,9 2,4 3,3 1 Ve  

4,4 2,9 1,4 0,2 Se 6,7 2,5 5,8 1,8 Vi 6,6 2,9 4,6 1,3 Ve 
4,9 3,1 1,5 0,1 Se 7,2 3,6 6,1 2,5 Vi 5,2 2,7 3,9 1,4 Ve  
5,4 3,7 1,5 0,2 Se 6,5 3,2 5,1 2 Vi 5 2 3,5 1 Ve 
4,8 3,4 1,6 0,2 Se 6,4 2,7 5,3 1,9 Vi 5,9 3 4,2 1,5 Ve  
4,8 3 1,4 0,1 Se 6,8 3 5,5 2,1 Vi 6 2,2 4 1 Ve 
4,3 3 1,1 0,1 Se 5,7 2,5 5 2 Vi 6,1 2,9 4,7 1,4 Ve  
5,8 4 1,2 0,2 Se 5,8 2,8 5,1 2,4 Vi 6,7 3,1 4,4 1,4 Ve 
5,7 4,4 1,5 0,4 Se 6,4 3,2 5,3 2,3 Vi 5,6 2,9 3,6 1,3 Ve  
5,4 3,9 1,3 0,4 Se 6,5 3 5,5 1,8 Vi 5,6 3 4,5 1,5 Ve 
5,1 3,5 1,4 0,3 Se 7,7 3,8 6,7 2,2 Vi 5,8 2,7 4,1 1 Ve  
5,7 3,8 1,7 0,3 Se 7,7 2,6 6,9 2,3 Vi 5,6 2,5 3,9 1,1 Ve 
5,1 3,8 1,5 0,3 Se 6 2,2 5 1,5 Vi 6,2 2,2 4,5 1,5 Ve  
5,4 3,4 1,7 0,2 Se 6,9 3,2 5,7 2,3 Vi 5,9 3,2 4,8 1,8 Ve 
5,1 3,7 1,5 0,4 Se 5,6 2,8 4,9 2 Vi 6,1 2,8 4 1,3 Ve  
4,6 3,6 1 0,2 Se 7,7 2,8 6,7 2 Vi 6,3 2,5 4,9 1,5 Ve 
5,1 3,3 1,7 0,5 Se 6,3 2,7 4,9 1,8 Vi 6,1 2,8 4,7 1,2 Ve  
4,8 3,4 1,9 0,2 Se 6,7 3,3 5,7 2,1 Vi 6,4 2,9 4,3 1,3 Ve 
5 3 1,6 0,2 Se 7,2 3,2 6 1,8 Vi 6,6 3 4,4 1,4 Ve  
5 3,4 1,6 0,4 Se 6,2 2,8 4,8 1,8 Vi 6,8 2,8 4,8 1,4 Ve 

5,2 3,5 1,5 0,2 Se 6,1 3 4,9 1,8 Vi 6,7 3 5 1,7 Ve  
5,2 3,4 1,4 0,2 Se 6,4 2,8 5,6 2,1 Vi 6 2,9 4,5 1,5 Ve 
4,7 3,2 1,6 0,2 Se 7,2 3 5,8 1,6 Vi 5,7 2,6 3,5 1 Ve  
4,8 3,1 1,6 0,2 Se 7,4 2,8 6,1 1,9 Vi 5,5 2,4 3,8 1,1 Ve 
5,4 3,4 1,5 0,4 Se 7,9 3,8 6,4 2 Vi 5,5 2,4 3,7 1 Ve  
5,2 4,1 1,5 0,1 Se 6,4 2,8 5,6 2,2 Vi 5,8 2,7 3,9 1,2 Ve  
5,5 4,2 1,4 0,2 Se 6,3 2,8 5,1 1,5 Vi 6 2,7 5,1 1,6 Ve 
4,9 3,1 1,5 0,2 Se 6,1 2,6 5,6 1,4 Vi 5,4 3 4,5 1,5 Ve  
5 3,2 1,2 0,2 Se 7,7 3 6,1 2,3 Vi 6 3,4 4,5 1,6 Ve 

5,5 3,5 1,3 0,2 Se 6,3 3,4 5,6 2,4 Vi 6,7 3,1 4,7 1,5 Ve  
4,9 3,6 1,4 0,1 Se 6,4 3,1 5,5 1,8 Vi 6,3 2,3 4,4 1,3 Ve 
4,4 3 1,3 0,2 Se 6 3 4,8 1,8 Vi 5,6 3 4,1 1,3 Ve  
5,1 3,4 1,5 0,2 Se 6,9 3,1 5,4 2,1 Vi 5,5 2,5 4 1,3 Ve 
5 3,5 1,3 0,3 Se 6,7 3,1 5,6 2,4 Vi 5,5 2,6 4,4 1,2 Ve  

4,5 2,3 1,3 0,3 Se 6,9 3,1 5,1 2,3 Vi 6,1 3 4,6 1,4 Ve 
4,4 3,2 1,3 0,2 Se 5,8 2,7 5,1 1,9 Vi 5,8 2,6 4 1,2 Ve  
5 3,5 1,6 0,6 Se 6,8 3,2 5,9 2,3 Vi 5 2,3 3,3 1 Ve 

5,1 3,8 1,9 0,4 Se 6,7 3,3 5,7 2,5 Vi 5,6 2,7 4,2 1,3 Ve  
4,8 3 1,4 0,3 Se 6,7 3 5,2 2,3 Vi 5,7 3 4,2 1,2 Ve 
5,1 3,8 1,6 0,2 Se 6,3 2,5 5 1,9 Vi 5,7 2,9 4,2 1,3 Ve  
4,6 3,2 1,4 0,2 Se 6,5 3 5,2 2 Vi 6,2 2,9 4,3 1,3 Ve  
5,3 3,7 1,5 0,2 Se 6,2 3,4 5,4 2,3 Vi 5,1 2,5 3 1,1 Ve 
5 3,3 1,4 0,2 Se 5,9 3 5,1 1,8 Vi 5,7 2,8 4,1 1,3 Ve  
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Fig. 2. The error function history. 
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Abstract. This paper deals with T-DTS, a self-organizing information process-
ing system and especially with its complexity estimation mechanism which is 
based on a ZISC © IBM ® neuro-computer. The above-mentioned mechanism 
has been compared with a number probabilistic complexity estimation tech-
niques already implemented in T-DTS.  

1 Introduction 

This work connects closely the Tree-like Divide to Simplify (T-DTS) [1] framework, 
which is a hybrid multiple Neural Networks software platform constructing a decom-
posed-tree of neural structures aiming to solve complex classification problems using 
“divide and conquer” paradigm. In other words, the solution of a complex classifica-
tion task is approached by dividing the initial complex task into a set of classification 
sub-problems with reduced complexity. So, the splitting mechanism and associated 
policy play a key role in tree-like self-organization to obtain multi-neural structure as 
well as in its classification performances. In T-DTS, the splitting is performed using a 
complexity estimation mechanism acting as a regulation loop on decomposition proc-
ess [2]. If several probabilistic (or statistical) complexity estimation perspectives have 
been investigated in [3], an appealing slant consists of using Artificial Neural Net-
work’s (ANN) learning issued mechanisms as indicators for complexity estimation: 
especially, those modifying the ANN topology. Among various available ANNs, a 
promising candidate is the Restricted Coulomb Energy (RCE) neural model and the 
relatively simple learning mechanism of such ANN, modifying directly its topology 
(number of neurons in hidden layer). Moreover, the standard CMOS based ZISC © 
IBM ® neuro-computer, implementing this kind of neural model, is an attractive 
feature offering hardware implementation potentiality of a ZISC based diffi-
culty/complexity tasks estimator [4]. If the expected impact of the complex task de-
composition is to increase the classification quality, an additional impact of a ZISC 
based difficulty/complexity tasks estimator is the decreasing of learning time (gener-
ally, processing time consumer). 

In this paper we compare the ZISC based complexity estimation indicator with 
those based on probabilistic (or statistical) measures described in [2] and [3], already 



implanted in T-DTS. We compare obtained results in order to show special niche 
which takes ZISC complexity estimator among the others. 
In Section 2 we describe T-DTS concept and its software platform, highlighting key 
role of complexity estimating unit and providing its’ component analysis. Section 3 
presents ZISC based complexity estimating issue and its influence on T-DTS per-
formance. Section 4 gives results of the above-mentioned comparison obtained on the 
basis of a simple 2D benchmark and two real-world classification problems (available 
in UCI Machine Learning depository). Section 5 includes summary and our further 
progress. 

2 Hybrid Multiple Neural Networks Framework - T-DTS 

In essence, T-DTS is a modular structure [5]. The purpose is based on the use of a set 
of specialized mapping Neural Network, called Processing Units (PU), supervised by 
a set of Decomposition Units (DU). Decomposition Units are a prototypes based on 
Neural Networks. Processing Units are modeling algorithms of Artificial Neural Net-
works origin. Thus, T-DTS paradigm allows us to build a tree structure of models in 
the following way: 

• at the nodes level(s) - the input space is decomposed into a set of optimal 
sub-spaces of the smaller size; 

• at the leaves level(s) - the aim is to learn the relation between inputs and out-
puts of sub-spaces obtained from splitting. 

Following the main paradigm T-DTS acts in two main operational phases: 
Learning: recursive decomposition under DU supervision of the database into sub-
sets:  tree structure building phase; 
Operational: Activation of the tree structure to compute system output (provided by 
PU at tree leaf’s level 

General block scheme of the functioning of T-DTS is described on Fig. 1. The 
proposed schema builds an open software architecture.  It can be adapted to specific 
problem using the appropriate modeling paradigm at PU level: we use mainly Artifi-
cial Neural Network computing model in this work. In our case the tree structure 
construction is based on a complexity estimation module. This module introduces a 
feedback in the learning process and control the tree building process. The reliability 
of tree model to sculpt the problem behavior is associated to the complexity estima-
tion module. The whole decomposing process is built on the paradigm “splitting da-
tabase into sub-databases - decreasing task complexity”. It means that the decompo-
sition process is activated until a low satisfactory ratio complexity is reached. T-DTS 
software architecture is depicted on Fig. 2. T-DTS software incorporates three data-
bases:  decomposition methods, ANN models and complexity estimation modules 
databases. 
T-DTS software engine is the Control Unit. This core-module controls and activates 
several software packages: normalization of incoming database (if it’s required), 
splitting and building a tree of prototypes using selected decomposition method, 
sculpting the set of local results and generating global result (learning and generaliza-
tion rates). T-DTS software can be seen as a Lego system of decomposition methods, 
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processing methods powered by a control engine an accessible by operator thought 
Graphic User Interface. 
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Fig. 1. Bloc scheme of T-DTS: Left – Modular concept, Right – Algorithmical concept. 

 
Fig. 2. T-DTS software architecture. 

Those three databases can be independently developed out of the main frame and 
more important - they can be easily incorporated into T-DTS framework. 

For example, SOM-LSVMDT [6] algorithm; witch is based on the same idea of 
decomposition, can be implement by T-DTS by mean of LSVMDT [7] (Linear Sup-
port Vector Machine Decision Tree) processing method incorporation into PU data-
base. 
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The current T-DTS software (version 2.02) includes the following units and methods: 
1. Decomposition Units: 

• CN (Competitive Network) 
• SOM (Self Organized Map) 
• LVQ (Learning Vector Quantization) 

2. Processing Units: 
• LVQ (Learning Vector Quantization) 
• Perceptrons 
• MLP (Multilayer Perceptron) 
• GRNN (General Regression Neural Network) 
• RBF (Radial basis function network) 
• PNN (Probabilistic Neural Network) 
• LN 

3. Complexity estimators are [3] based on the following criteria: 
• MaxStd (Sum of the maximal standard deviations) 
• Fisher measure. 
• Purity algorithm 
• Normalized mean distance 
• Divergence measure 
• Jeffries-Matusita distance 
• Bhattacharyya bound 
• Mahalanobis distance 
• Scattered-matrix method based on inter-intra matrix-criteria [8] 
• ZISC© IBM ® based complexity indicator [4] 

3 ZISC Complexity Indicator 

3.1 Complexity Estimation in T-DTS Framework 

In this subsection we pass ahead of the possible question concerning the word “com-
plexity”. Let us highlight that in this part we are not focused on studying statistical 
complexity as it is used in the areas of physics and informational theory. There are 
different concepts of complexity which are depending on chosen language base, the 
type of difficulty focused on the type of formulation desired within that language [9]. 
We have to mention a growing criticism concerning the term complexity, because it 
has been misused without a proper definition [10]. 
Accordingly to T-DTS concept Fig. 1, complexity estimation module plays a key-role 
in decomposition process, and so is essential in tree structure construction process. 
There are two main problems: 

• finding of the optimal threshold value for selected complexity estimating in-
dicator, 

• lack of the universal complexity estimator (method of complexity estimat-
ing) that could be applied for any classification task independently of data 
nature. 

We define a task complexity as the amount of neurocomputer computational resource 
that it takes to solve a classification problem [11]. 
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Thus the complexity here is the limited supply of these resources (amount of neurons) 
once the appropriate program (classification methods) is supplied. Our primary study 
interest is in classification complexity in term of computational difficulty of neuro-
computer IBM © ZISC-036 ® hardware to obtain satisfactory learning and generali-
zation rates using RBF algorithm and adjusted initial parameters. 

3.2 Complexity Estimating based on IBM© ZISC-036® Hardware 

This complexity criterion is based on IBM © ZISC-036 ® neuro-computer hardware 
which is a fully integrated circuit based on neural network paradigm [12]. It is a par-
allel neural processor based on the K-Nearest Neighbor (KNN) [13] and Reduced 
Coulomb Energy (RCE) [14] algorithms. The principal idea for extracting informa-
tion about classification task complexity is linked to the limitation of resources (neu-
rons) of IBM © ZISC-036 ® neuron-computer. 
We expect that a more complex problem will involve a more complex ZISC neural 
network structure. The simplest neural network structure feature is the number n of 
neurons created during the learning phase. The following indicator is defined, where 
n is a parameter that reflects complexity: 

m
nQ =  , 0,1 ≥≥ nm  (1) 

We suppose that there exists some function n = g(.) that reflects problem complexity. 
The arguments of this function may be the signal-to-noise ratio, the dimension of the 
representation space, boundary non-linearity and/or database size. In a first approach, 
we consider only g(.) function’s variations according to m (database size) axis: g(m). 
We suppose that our database is free of any incorrect or missing information. 
On the basis on g(m), a complexity indicator is defined as follow: 

m
mg

mQ i
i

)(
)( =  0)(,1, ≥≥ mgm i  (2) 

We expect that for the same problem, as we enhance m, the problem seems to be less 
complex: more information reduces problem ambiguity. On the other hand, for prob-
lems of different and increasing complexity, Qi indicator should have a higher value. 
In order to estimate a task (sub-task) complexity we approximate Qi indicator and 
figure the complexity ration out by the proposed method in [14]. 

In next section we discuss the results of the tests obtained by ZISC complexity es-
timator and compare them to the results of the others complexity estimators of T-DTS 
framework. 

4 Results and Discussion 

In order to evaluate ZISC complexity estimator performance we have used for the 
range of validation problems mentioned in the work [3]. There are: 

1. Specific two-class 2D benchmark problems: 
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• 2 stripes simply separated by line X=0. Each stripe belongs to different 
class. 

• 10 stripes. Each of the class consists 5 stripes. The borders between 
classes are lines X=bi (i = 1,2, … 9) 

2. Tic-tac-toe endgame classification problems. The aim is to predict whether 
each of 958 legal endgame boards for tic-tac-toe is won for `x'. This problem 
is hard for the covering family algorithm, because of multi-overlapping [15] 
that has a place. 

3. Splice-junction DNA Sequences classification problem from Genbank 64.1 
(ftp site: genbank.bio.net) has the following description: 
• Number of Instances: 3190 
• Number of Attributes: 62 
• Missing Attribute Values: none 
• Class Distribution: 

1) EI: 767 (25%) 
2) IE: 768 (25%) 
3) Neither: 1655 (50%) 

We used T-DTS in decomposition mode supposing that task must be divided into two 
sub-tasks at least. 
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Fig. 3. 2D-benchmark, two classes, 2-stripes. The vectors number - 2000. Learning database 
50% (1000 vectors). DU - CN. PU – LVQ. 

For each problem and chosen complexity estimation method the optimal decomposi-
tion threshold have been adjusted. For ZISC complexity estimator the initializing 
intra-parameters have been also optimized. On Fig. 3 the X axis represents the de-
composition threshold ratio, on Y axis the Generalization rate for the whole range of 
complexity estimation criteria. 
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Fig. 4. 2D-benchmark, two classes, 10-stripes. The vectors number - 2000. Learning database 
20% (400 vectors). DU - CN. PU – LVQ. 

For two class’s benchmark within two sub zones, ZISC complexity indicator takes an 
average position among the other complexity indicators; however for threshold 0.900 
the ZISC based complexity estimator can achieve the maximal (e.g. the best) gener-
alization rate attaining approximately 99%. The result obtained for the other case (see 
Fig. 4) spotlights the same conclusion: ZISC complexity indicator is not the worst 
method among others. It is relevant to call attention to the fact that if the problem here 
is already a same 2-D classification dilemma, the complexity has extremely been 
increased (for 10-stripes variant). Moreover, the learning database’s size has been 
reduced in order to check T-DTS generalization / decomposition ability within the 
worst-case constraints. In fact, in such worst-case conditions, crop up from conjunc-
tion of intrinsic classification complexity and information leakage (emerging from 
learning database reduced size) it is expectable to face such low generalization rate 
(around 45%). Finally, the interesting result of Fig.4 highlights the ZISC (and more 
generally, the “learning”) based complexity estimators’ main limit related to the re-
quirement of sufficient amount of training data. 

For Tic-tac-toe highly overlapping problem (results of Fig. 5), ZISC complexity 
estimator holds second position. Only Mahalanobis distance based measure of com-
plexity estimation has achieved better generalization rate than ZISC. However, con-
sidering the same test with a reduced learning database (including 20% of data), it is 
interesting to note that, if the leader complexity estimator was Bhattacharyya bound 
based criterion, again the second rank has been captured by ZISC based complexity 
estimator. 
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Fig. 5. Tic-tac-toe endgame problem. Number of vectors - 958. Learning database size 50% 
(479 vectors). Decomposition unit - CN. Processing unit – MLP. 

Another important note concerning the Tic-tac-toe end game problem is that in this 
case, Purity and Divergence based indicators cannot be applied. In fact, based essen-
tially on clusters’ borders overlap, these indicators conclude on high complexity of 
both problem and sub-problems, due to the high overlapping. As result, it is impossi-
ble to optimize thresholds for those criteria. 
For Splice-junction DNA Sequences classification problem results are given in Fig. 6. 
One can remark that ZISC based complexity estimator is a leader among the indica-
tors. Inapplicable indicators for this problem are: MaxStd (The sum of maximal stan-
dard deviation during decomposition process indicates problem as complex), Normal-
ized mean can not be applied because each vector consists 62 attributes and the com-
plexity ratio which is based on root square deviation indicates problem as a complex. 
In this regard, there is no surprise why Fisher criterion is the worst one. 
Summarizing the comparison of the indicators, we can state that ZISC complexity 
indicator is matchless among the others. It is so, because ZISC based approach is not 
sensitive to the number of attributes (of the input vector). For example (see Fig. 6) 
ZISC complexity estimator for a threshold grater than 0.8 is the only indicator able to 
provide correct feedback of complexity ratio to T-DTS. However, ZISC requires 
optimization of the initializing internal parameters and moreover, ZISC estimation 
complexity procedure is time-costly in comprising to the others. 
Concerning the quality side of the obtained results for real-world problems (Tic-tac-
toe and DNA classification problem) we can conclude the following: 
• for Tic-tac-toe endgame problem, T-DTS can reach 84% of generalization rate 

for the Mahalanobis and Bhattacharyya criteria’s. With ZISC complexity esti-
mator we can achieve maximum of 82% generalization rate. Those results are 
average in comparison to IBL family algorithms (Instanced Based Learning) 
[15]. However some of IBL algorithms (as the IB3-CI algorithm) lead to better 
results, they are specially adjusted for this problem. 

25



• for DNA, we have obtained maximal generalization rate of 80% using ZISC es-
timator and this is the best among all other criteria’s. This result corresponds to 
the results gained in the work [3]. 
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Fig. 6. DNA Sequences problem. M=1900. Learning DB size - 20%. DU - CN. PU – MLP. 

Finally, one can remark that the generalization rate of 82%, reached by ZISC based 
T-DTS for Tic-Tac-Toe end problem, is very close to 84% (obtained by Mahalanobis 
and Bhattacharyya based T-DTS). So it presents quite high generalization rates. For 
DNA sequence classification, ZISC based T-DTS, overcome all other complexity 
based T-DTS. In these last two cases, the representation space has a high dimension. 
One can conclude that ZISC based T-DST is an appealing candidate for solving high 
dimension problems. We are conducting other experiments in order to check this 
hypothesis. 

5 Conclusions 

Incorporating a new complexity estimator, based on ZISC neuro-computer, the goal 
was to check the performance of T-DTS regarding other various complexity estima-
tion modules, already implemented in T-DTS framework. We have used the T-DTS 
framework to solve three classification problems. The proposed complexity estima-
tion criterion has been evaluated using as well benchmark as real-world problems. 
We have shown that the ZISC based complexity estimator allows the T-DTS based 
classifier to reach better learning and generalization rates. We have also illustrated 
that this indicator is matchless for classification tasks relating problems with high 
dimension feature space. In this case, statistical based complexity indicators fail to 
work. However, the ZISC based complexity estimator requires sufficient amount of 
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training data which is a general operation condition (requirement) for all artificial 
learning based techniques. 
The main future perspective of this work is related to T-DTS automatic optimization 
of and to the extension of database decomposition methods. 
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Abstract. This paper reports on non-linear principal component analysis for 
fault detection on an internal combustion (IC) engine. An auto-associative 
neural network (AANN) model is built from transient engine data collected 
under varying atmospheric conditions. The experimental data used for 
modelling was collected for two different drive cycles, the Identification Cycle 
and the New European Drive Cycle. The key issue here is to decide which data 
should be used for training the neural network to produce good fault detection 
generalisation under different atmospheric conditions and with a different drive 
cycle. This is achieved successfully, with the Q monitoring statistic indicating 
an absence of unwanted false alarms under fault-free operation, along with 
successful detection of air leaks of varying magnitude in the inlet manifold. 

1 Introduction 

The specific provisions of more general emissions legislation relating to the detection 
of faults within an internal combustion engine is commonly known as On-Board 
Diagnostics (OBD). This details both the component parts of the engine to be tested 
and at what frequency. This monitoring entails the diagnosis of any fault, which could 
cause the tailpipe emissions of carbon monoxide (CO), unburned hydrocarbons (HC) 
and oxides of nitrogen (NOx) to rise above legislated values.  

The automotive industry currently employs a combination of signal and model-
based diagnostic techniques for OBD, the latter being based mainly on physical 
models of the system.  However, as the emissions thresholds have reduced in response 
to increasingly stringent regulation demands, the OBD fault detection thresholds have 
tightened accordingly, thereby increasing the challenge in engine modelling and 
monitoring (Stobart, 2003) with over 50% of engine control unit software being 
currently devoted to OBD. The complexity of physical models will have to increase 
dramatically if the smaller variations in emissions, constituting a fault under future 
OBD regulations are to be successfully detected. Further, such models will require 
extensive on-line validation for each engine and vehicle derivative. Consequently, the 
cost of developing and validating physical models will increase exponentially. Over 



 

the last decade the mathematical complexity and computational intensity of physical 
model-based OBD has stimulated research on alternative fault detection and diagnosis 
approaches suitable for automotive engines (Nyberg, 1999; Grimaldi et al., 2001; 
Crossman et al., 2003; Kimmich et al., 2005.)  

Some work has also been done on statistical methods, including principal 
component analysis (PCA) where a reduced set of statistically independent score 
variables are generated for process monitoring. Unfortunately, while PCA in its 
original form is only applicable to linear data, a nonlinear extension in the form of an 
auto-associative neural network (AANN) (Kramer, 1992) is now available, where the 
scores are produced in the network bottleneck layer. Because of its conceptual 
simplicity and close relation to linear PCA, our previous work on diesel engines used 
an AANN for monitoring during steady-state operation (Antory et al., 2005), 
including increased sensitivity in detecting minor faults (Wang et al., 2008a) by 
incorporating additional analysis in the form of the statistical Local Approach.  

Nonlinear PCA (NLPCA) has also proved to be effective when applied to 
experimental data recorded from the air intake system of a gasoline engine during 
transient operation (Wang et al., 2008b). Here the AANN was trained on a modified 
identification (MI) cycle, specially designed to ensure that the engine speed and 
throttle position covered the complete operating map at rates similar to those 
experienced during normal operation. Importantly, the resulting model proved 
suitable for more general use with the New European Drive Cycle (NEDC), a 
standardised test for all new model types representing a mixture of urban and 
motorway driving. In this work also, rather than using the same operational cycle for 
AANN training and testing, two completely different engine drive cycles will be 
employed, as detailed later.  

The major limitation in all the previous work is the absence of any consideration of 
the effects of atmospheric changes on the ability of the model-based fault detection to 
generalise in terms of avoiding false alarms while correctly identifying fault 
conditions. Thus, the experimental data used for validating the AANN model and the 
faulty data sets were all recorded under similar atmospheric temperature and pressure 
conditions to those for the training data. Moreover, none of the measured engine 
variables previously included in the monitoring model was in fact significantly 
affected by such atmospheric changes. Any AANN model derived for IC engine 
monitoring under laboratory conditions, should also be capable of being generalised 
to a wider range of driving conditions. The aim of the present paper is to address this 
important deficiency. The practical significance of the results reported later is that the 
experimental data sets available for neural modelling not only covered two different 
operational cycles, as required for dynamic monitoring, but were also recorded under 
different temperature conditions. 

Some work on the effect of changes in atmospheric pressure and temperature on 
the performance of an engine has been reported in the literature, but from the 
perspective of engine design (Sher, 1984). Here computer code was developed to 
simulate the engine cycle for the purpose of evaluating an optimal engine design 
giving the best performance at high altitude conditions. The focus of this paper is data 
modelling of a modern automotive petrol engine, based on which its fault monitoring 
under different driving conditions can be achieved. This further significantly extends 
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the generalisation abilities of the AANN IC engine model described in our previous 
work. 

The paper is organised as follows. An introduction to the experimental petrol IC 
engine facility, the engine drive cycles and the data collection regime is given next in 
Section 2. Following a brief review of NLPCA, Section 3 then presents the 
experimental condition monitoring results. The paper ends with a brief discussion, 
some conclusions and suggestions for future research. 

2 Automotive Engine Tests 

This section briefly describes the experimental engine test-bed, followed by detailed 
explanations of the data collection regime under both normal and faulty operating 
conditions. 

2.1 Engine Test Cell 

The target application was a four-cylinder 1.8 litre spark ignition engine, 
manufactured by Nissan. This engine represents current technology with devices such 
as variable valve timing, inlet swirl plates, exhaust gas recirculation and a close-
coupled catalyst. The engine installation can be seen in . 

The engine was installed in a state-of-the-art test facility at Queen's University 
Belfast. An AC dynamometer with a Ricardo S3000 controller was used to control the 
engine throughout the simulated transient drive cycles. Sensor signals were recorded 
using the testcell data acquisition hardware – a Ricardo TaskMaster 500/2000 system, 
capable of recording up to 32 analogue input channels simultaneously.  

 

 
Fig. 1. View of engine test-bed and dynamometer. 

The intake subsystem of this engine was investigated. In order to simplify the air 
intake modelling, the exhaust gas recirculation (EGR) function was disabled. The 
following five variables were used to analyse this subsystem: crankshaft rotational 
speed (rev/min), pedal position (%), mass air flow (kg/h), inlet manifold pressure 
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(bar) and inlet manifold temperature (ºC). Rotational speed and pedal position formed 
the engine inputs, while the other variables represented the dynamic behaviour of the 
intake system. Importantly, these variables are all available from current sensors fitted 
to the standard vehicle and so the modelling and fault detection system for OBD 
outlined in this paper requires no additional hardware. 

In contrast to our previous work on this IC engine where atmospheric conditions 
were not considered, it will be seen that including the inlet manifold temperature in 
the data modelling allows atmospheric temperature changes to be incorporated, as 
shown later in subsection 2.3. 

2.2 Atmospheric Changes 

The atmospheric temperature and pressure both affect the dynamic performance of an 
IC engine and so must be accounted for in any model-based OBD scheme. This study 
is confined to consideration of the variation in atmospheric temperature, since 
atmospheric pressure control in the engine test cell was not available.  

The experimental engine data sets were collected at two different temperature 
conditions. Normal room temperature (RM) was around 20-25ºC and required no 
manual intervention. The elevated temperature (ET) condition was controlled at 30-35 
ºC by electrical heating of the combustion air. The engine’s performance under these 
two temperature conditions is analysed below, after the two drive cycles have been 
introduced. 

2.3 Drive Cycles 

The New European Drive Cycle (NEDC) is used for emissions certification of light 
duty vehicles in Europe. It is composed of various sections which simulate both urban 
and motorway driving conditions. The measurement of the resulting exhaust 
emissions forms one component of the Type Approval test, which is compulsory for 
any new vehicle model entering the European market. Alternative drive cycles 
include the FTP 75 used in the USA and the 10-15 Mode Cycle adopted by Japan. 

The variation in the engine speed and pedal position inputs produced by the NEDC 
for a sampling rate of 10Hz are shown in the top two plots of Fig. 2. Note that Fig. 2 
shows two experimental data sets, corresponding to the RM (black) and ET (red) 
temperature conditions respectively. In addition to the five engine variables, the figure 
also includes the atmospheric temperature. The reason for including the atmospheric 
temperature is to help visualise the impact of its change on the engine performance. 
This variable is not to be included in the subsequent engine modelling.  

It is clear from Fig. 2 that the NEDC is a highly transient cycle which includes 
periods of rapidly varying engine speed and pedal position inputs as gear changes are 
simulated. During vehicle deceleration, when the pedal position is zero, the engine 
speed is often higher than idle speed. Here the engine is motored through the 
transmission which contributes to the vehicle’s braking requirement. These phases of 
the NEDC were simulated during testing by supplying a torque input from the 
motoring dynamometer to maintain the commanded engine speed. 
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In the example shown in Figure 2, the temperature of the air drawn into the intake 
manifold in the RM case is increased slightly above the atmospheric temperature due 
to heat transfer from the warm engine.  The average inlet manifold temperature is 
therefore around 26oC. Conversely, in the ET case, the temperature of the air supplied 
to the engine is higher than that of surrounding environment and so some heat is lost 
by convection from the intake manifold, reducing its temperature to around 32oC on 
average.  Assuming the volumetric efficiency of the engine remains the same for a 
given combination of inputs, the increase in temperature between the RM and ET 
cases reduces the density of the air, and hence the mass air flow rate, entering the 
engine by around 2%.  The intake manifold pressure was unaffected by the change in 
atmospheric temperature. 
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Fig. 2. Engine variables for the NEDC (10Hz sampling) with RM (black) and ET (red) 
atmospheric temperatures. 

While the NEDC is indeed a highly dynamic cycle, and is purported to be 
representative of typical vehicle use, Fig. 4 shows that the engine control inputs do not 
cover the whole operational map. For example, engine speed does not exceed 
3500rpm while the throttle pedal position is less than 15% for most of the cycle, 
briefly reaching a maximum of around 28% at 3500rpm during the motorway driving 
phase.  This represents only 55% of the peak torque available at that engine speed. 
This analysis implies that data from the NEDC would be unsuitable for training an 
AANN model. Inaccurate predictions would be produced and false alarms generated, 
when the IC engine is operated outside the regions of the map accessed during 
training. 

An alternative drive cycle, the Kimmich identification cycle (KI cycle), was also 
considered to provide better coverage of the operating region (Kimmich et al., 2005). 
However, although this cycle indeed produces a broader range of engine speeds and 
throttle positions, the rate at which these variables change is very significantly lower 
than that experienced in real driving. The NEDC by contrast is more dynamic in 
nature and does produce more realistic transients. A modified identification (MI) 
cycle was therefore designed to generate suitable data for transient modelling. This 

32



 

was developed by examining the sections of the NEDC where the engine speed was 
undergoing the greatest transients, which occurs during accelerations in 1st gear.  The 
timescale of the KI cycle was then reduced by a factor of 5.7 such that the rate of 
change of engine speed matched that of the most transient section of the NEDC. The 
resulting MI drive cycle therefore combines the benefits of both the KI one and the 
NEDC as it produces good coverage of the engine operating map, while also 
simulating realistic dynamics. The engine inputs for the MI cycle and corresponding 
outputs for the same two cell temperature conditions as before are shown in Figure 3. 
The same observation can be made as for the NEDC responses in Fig. 2 viz. that only 
the inlet manifold temperature has been affected by the atmospheric temperature 
change. 

Comparing the operating maps of the MI and NEDC cycles in Fig. 4, it is clear that 
any model built on engine data from the former cycle will better represent a much 
wider range of IC engine operation, as required.  
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Fig. 3. Engine variables for the modified identification (MI) cycle with RM (black) and ET 
(red) atmospheric temperatures. 
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Fig. 4. Comparison of engine operating maps for the NEDC (circles) and MI (crosses) drive 
cycles. 
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2.4 Data Collection 

The MI cycle last about 8 minutes, providing 4785 data points. This cycle was 
repeated three times for both RM and ET conditions without introducing any engine 
fault. This generates two sets of engine data for model building, the third being 
reserved to validate the model. A further single set of NEDC data was recorded 
during normal ‘fault-free’ operation under both RM and ET conditions, in order to 
assess the generalisation capability of the trained AANN model on unseen data. 

2.5 Air Leak Fault 

In this investigation, the faulty conditions took the form of air leaks of varying sizes 
in the intake manifold. This is indicative of a process, rather than sensor fault, and is 
representative of a leakage past a gasket or fitting between the throttle plate and the 
intake valve. A minor air leak potentially may not be noticeable to the driver. 
Nevertheless, when a fault of this type occurs, the driver would adjust the throttle 
pedal until the desired torque is achieved. Thus, in this fault scenario it is imperative 
to preserve the values of the engine speed and pedal position between the fault-free 
and faulty conditions. The fault was introduced by drilling a hole into a bolt which 
was then screwed into the inlet manifold of the engine downstream of the throttle 
plate. A total of four such bolts were used: a solid one to produce the fault-free 
condition, and three others with 2mm, 4mm, and 6mm diameter holes to introduce 
faults of differing magnitude. Data representing all three faulty conditions were 
collected for both the MI cycle and the NEDC.  

3 Nonlinear PCA 

The AANN shown in Fig. 5 is a special neural network architecture with 3 hidden 
layers, referred to as the mapping, bottle-neck, and demapping layers respectively.  

 
Fig. 5. Auto associative neural network architecture for nonlinear PCA. 

The AANN represents an identity mapping for a given set of n variables, such that 
the network inputs and outputs are identical. A hyperbolic tangent function was used 
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as the activation function in the mapping and de-mapping layers, while the other two 
layers contained linear activation functions. Note also the presence of direct links 
from the inputs to the bottleneck layer and from the bottleneck layer to the outputs.  

This network is regarded as a nonlinear version of PCA because of its similarity in 
producing ‘scores’, normally fewer in number than the original variables from a given 
process. The scores generated by linear PCA are based on the linear relationships 
among the physical variables, and can effectively represent the variance in these 
variables. The scores can then be used for reconstructing the original variables or for 
monitoring any unknown data from the same process. In the case of NLPCA, the 

ni <  nodes in the bottleneck layer represent the nonlinear scores, itt ,,1 . They 
are obtained by capturing the nonlinear relationship between the engine variables in 
the input layer. The scores are then able to reconstruct the original variables by 
passing them through the de-mapping layer to the output layer. If only linear 
relationships exist between the engine variables, the scores from such a NLPCA 
model should in theory be the same as those from a PCA one.  

The mathematical description of the identity mapping can be described in two 
parts. The scores are produced in Figure 5 by the mapping layer that constitutes a 
nonlinear transformation on the inputs. Thus, for the kth score: 

 
)(xt kk G=  (1) 

 
 

The variables at the output layer x′  can then be obtained using: 
 

( )Tijj tttHx 21=′  (2) 
 
The AANN network parameters are trained by minimising the cost function: 
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When the NLPCA has been trained from fault-free data, a Q statistic can be 

calculated based on the model prediction error as 
 

eeTQ =  (4) 
 
Here e  refers to the difference between the model prediction vector and its 

measured value for one sample. Q follows a central 2χ  distribution and appropriate 
confidence limits can be estimated as discussed in Jackson, 1991. The values of the Q 
statistic from the training data were used to calculate 95% and 99% confidence limits, 
which are subsequently used as benchmarks for monitoring unknown data from the 
engine. 
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4 Results 

Choosing the best training set from the fault-free MI cycle data sets to use for AANN 
training required careful consideration. Three data sets had been generated for each of 
the two atmospheric temperature conditions. Moreover, the atmospheric temperature 
varied by 2 or 3 degrees during the three repetitions of the MI drive cycle. Although 
minor, this variation will have an impact on the generalisation of any engine model. 
The principle used in selecting training data here was to choose the fault-free data 
with the widest possible range of temperature conditions, while leaving adequate 
fault-free data for validation. Closer inspection showed that data sets one and three, 
under either RM or ET temperature conditions, provided a much wider range of 
temperature coverage than any alternative pairing. The training data used in this work 
therefore consisted of four MI cycles corresponding to data sets one and three under 
each of RM and ET temperature conditions. The second data sets, collected under 
both RM and ET temperature conditions were then employed for validation purposes.  

Subsection 4.1 provides details of how the model was trained, along with its 
validation on the MI cycle. The generalisation capability of the resulting engine 
model is assessed in section 4.2, while its ability to detect air leak faults with the 
engine operating under both the MI and NEDC cycles is presented in subsections 4.3 
and 4.4 respectively. 

4.1 Training and Validation 

The NLPCA built on the training data had a 5-10-4-10-5 structure, with 10 nodes in 
the mapping and de-mapping layers and 4 in the bottle-neck layer.  Having trained the 
model it was subsequently validated using a new set of data recorded during a fault-
free MI cycle. The performance of the model during this training and validation 
process is illustrated by the variation in the Q statistic shown in Figure 6.  
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Fig. 6. Q statistic variation on fault-free MI cycle data collected under two atmospheric 
temperature conditions for model validation. 
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Here the upper limit represents the 99% confidence level, whereas the lower one is 
for a 95% threshold, both of which were derived from the Q statistic of the AANN 
training data. The resulting numbers of violations shown for data recorded under both 
the RM and ET conditions are statistically acceptable, confirming the modelling 
validity of the trained AANN. 

4.2 Generalisation 

When a model is used in practice, the new operational inputs often take a form 
previously unseen by the model during its training. This is particularly the case with 
automotive IC engines, which impose a stringent requirement for generalisation if the 
results are to be of practical significance. This aspect of the NLPCA model was 
therefore challenged by comparing the measured and predicted values of both mass 
air flow and manifold air pressure produced by the NEDC with the engine operating 
under fault-free conditions. The excellent generalisation capability of the trained 
AANN is supported by Fig. 7, which shows the low numbers of violations of the 
confidence limits by the Q statistic under both temperature conditions. This reveals 
that there is little difference between the measured engine data and the corresponding 
predictions. This is an important finding as the NEDC engine inputs of speed and 
pedal position vary at rates ranging from steady-state up to the highly transient 
conditions found during 1st gear accelerations and motored deceleration phases. 
Moreover, the atmospheric conditions when these data sets were collected also 
differed from those of the training data. 
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Fig. 7. Q statistic variation on fault-free NEDC and two temperature conditions for model 
generalisation.  

4.3 Fault Detection on MI Data 

This section assesses the AANN model’s ability to detect a fault produced by running 
the MI cycle in the presence of a 2mm, 4mm, and 6mm air leak on the inlet manifold. 
Fig. 8 and Fig. 9 show the variation in the corresponding Q statistics for data recorded 
under RM and ET conditions respectively. It can be seen that in either case the 
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number of violations of the confidence limits naturally grows as the magnitude of the 
fault increases. Since the 2mm air leak does not have a significant impact on the 
engine performance, its Q statistic does not produce as many obvious violations to the 
99% confidence limits as for the larger two air leaks. Even so, this minor fault can 
still be detected by referencing to the 95% confidence limit. 
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Fig. 8. Monitoring 2mm/4mm/6mm air leak faults for the MI cycle at the RM temperature 
condition. 
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Fig. 9. Monitoring 2mm/4mm/6mm air leak faults for the MI cycle at the ET temperature 
condition. 

It should be noted that there are certain regions in the faulty data set where the 
impact of the air leak fault may not be apparent in the monitoring statistic. This is 
expected, as this fault would not affect the engine when it is operating at high throttle 
openings. Under such circumstances, the manifold pressure is close to, or equal to, the 
atmospheric pressure. Consequently, the pressure difference across the leakage orifice 
is small and the flow rate of air through it is therefore negligible.  
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4.4 Fault Detection on NEDC 

The variations in Q statistic for the AANN model shown in Fig. 10 and Fig. 11 cover 
the three fault conditions for the NEDC under both RM and ET temperature 
conditions respectively. Pleasingly, these results confirm successful detection of all 
three air leak faults, despite the model having being trained using the substantially 
different MI identification cycle. 
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Fig. 10. Monitoring 2mm/4mm/6mm air leak faults for the NEDC cycle at the RM temperature 
condition. 
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Fig. 11. Monitoring 2mm/4mm/6mm air leak faults for the NEDC cycle at the ET temperature 
condition. 

5 Conclusions 

This paper showed the capability of an AANN in both modelling and air-leak fault 
detection for an automotive gasoline IC engine. The modelling data was derived for 
two different transient drive cycles under different atmospheric temperature 
conditions. The model trained using MI cycle data sets that were recorded under all 
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available atmospheric temperature conditions produced the best generalisation to 
measurements from the unseen NEDC cycle. There was an absence of unwanted false 
alarms under fault-free conditions, and successful detection of air leaks of varying 
magnitude in the inlet manifold. 
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Abstract. The purpose of this paper is to present a new adaptive solution based
on a feed forward neural network (FNN) in order to improve thetask of select-
ing cutting conditions for milling operations. From a set ofinputs parameters,
such as work material, its mechanical properties, and the type of cutting tool, the
system suggests feed rate and cutting speed values. The fourmain issues related
to the neural network-based techniques, namely, the selection of a proper topol-
ogy of the neural network, the input representation, the training method and the
output format are discussed. The proposed network was trained using a set of in-
puts parameters provided by cutting operations manuals andtool manufacturers
catalogues. Some tests and results show that adaptative solution proposed yields
performance improvements. Finally, future work and potential applications are
outlined.

1 Introduction

Process planning is a function that establishes a set of manufacturing operations and
their sequence, and specifies the appropriate resources (machines, cutting tools, fix-
tures, inspection instruments, etc.) and process parameters in order to convert a blank
to a finished component expressed by an engineering drawing and other technical in-
formation. The use of computer tools to assist the process plan generation was firstly
reported by Niebel [2]. From that work, many other researchers have explored the use of
computer systems to obtain a coherent process plan in an automated manner. Recently,
the term CAPP (computer aided process planning) appears frequently in the technical
literature and can be considered as one of the most active fields of research in manufac-
turing. In computer integrated manufacturing environments, CAPP can be considered
as the link between the CAD phase and CAM. Many researchers have developed so-
lutions to close the gap between the design phase and the generation of manufacturing
instructions and/or machine control code. A primer reference in CAPP is Chang [1],
who classifies CAPP approaches into two categories, i.e. variant and generative. The
variant approach usually incorporates the use of group technology paradigm to recover
the most suitable process plan that corresponds to the most similar workpiece to that is
being planned. This first approach usually lacks in flexibility and does not consider rela-
tionship between features of workpiece. On the other hand, generative process planning
generates in an automated manner, a brand new process plan, only based on experience
and technical knowledge. According to Chang and Chang [3], most generative CAPP



lack in learning ability for environmental changes. Because of that reason, recent re-
searches have being focused on integrating variant and generative CAPP with Expert
Systems-based techniques. A number of approaches have beenreported in literature
to solve the problems occurring in integrating process planning and other computer
aided manufacturing applications. Leung [4] published an extensive literature review
on CAPP. Other significant number of references was reportedby Marri et al. [5]. More
recently, Chang and Chang [3] reported artificial intelligence applications for CAPP
implementations. In an exploratory examination of the CAPPliterature it is easy to
conclude that ANN have been intensively used to solve problems such as tool selection,
cutting conditions definition, sequencing of operations, etc. Unlike the most published
applications of ANN in process planning, where neural networks are used as a means
to create optimization models, the proposed approach involves three key differences:
neural networks are capable of storing knowledge in a distributed manner, neural net-
works are capable of learning to recognize relationships between inputs and outputs,
while such relationships must be explicitly defined in optimization models, and neural
networks are capable of generalizing (i.e., giving a ”closest-fit” answer) when presented
with data not used in deriving the relationships learned. This paper presents a proposal
of artificial neural network for determining cutting parameters for milling operations.
The subsequent content is organized as follows: The second section discusses the pro-
cess of definition of cutting conditions and the use of Artificial Intelligence techniques
for this purpose; the third section presents the suggested approach, specifically it dis-
cusses the structure of the developed networks, the training data sets, and the details of
the training process. Furthermore, some aspects of the obtained output of the developed
networks are presented. Finally, in the last section some conclusions and future works
are drawn.

2 Artificial Intelligence and Determination of Cutting Para meters

A workpiece is composed by a set of surfaces or features. These surfaces are obtained
by a sequence of machining operations, such as turning, milling, boring and so on.
For each one of these features process planners must select adequate tools and optimal
cutting parameters. The choice at this stage may be tentative and has to be governed
by experience, intuition and based on information gatheredin machining handbooks.
Mainly, this step of process planning considers the selection of the following parame-
ters:

– The cutting speed (vc) and the rotational speed of the part orof the tool (N).
– The feed rate (fn) or the feed speed in translation of the machine elements (vf).
– The depth of cut (ap) or engagement determining the width of the material to be

removed.

Despite the fact that such machining parameters are calculated according to practi-
cal values found in handbooks or from experience, they have to be updated or refined to
adapt the values to match a specific situation for extractingthe best performance of the
cutting resources. Influence diagrams have been developed for representing complex
decision problems based on incomplete and uncertain information from a variety of
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sources. Nestler and Shulz [8] presented a simple example ofan influence diagram for
machining optimizations and discussed their use in optimization of cutting conditions
(Fig1).

Data from machining handbooks were separated into different types of machining
process, such as turning, drilling, boring, end milling, etc. and classified according to
the workpiece material. As it is well known, workpiece materials are classified in var-
ious groups covering a wide range of materials according to their hardness: ferrous,
non-ferrous, etc. The machining handbooks provide the machining parameters for dif-
ferent tool-work-piece combinations. A comprehensive review of the information ob-
tained from the literature, and from industry, has indicated that the recommended cut-
ting speeds and feed rates for any machining operation may vary considerably [6]. In
addition to the proper selection of cutting speeds and feed rates, the optimum condition
depends on variables such as part configuration, condition of the machine and fixtur-
ing, tolerances and surface quality. Because the effects ofthese variables on tool life
are not always precisely known, it becomes difficult to recommend optimum conditions
for a machining operation. Therefore, the recommendationspresented in the machining
handbooks are nominal ones and should be adjusted by a certain order of processing
approach [7].
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Fig. 1. An influence diagram for determining machining parameters.

Among the applications to determine cutting conditions using an intelligent ap-
proach, one must distinguish the systems that perform the task in an off-line mode
and the systems that operate in an on-line mode. Off-line calculation of cutting condi-
tions consists in defining all the necessary parameters for execute a workpiece before
the process is initiated. According Nestler and Shulz [8], at present, neural networks
are especially used to solve sophisticated problems such asdetermining and modeling
correlations between input and output parameters. Hashmi et al. [7] points to other di-
rection to use AI tools for defining cutting conditions, the use of fuzzy logic models for
representing knowledge extracted from catalogues or handbooks. According Hashmi
et al. [7] fuzzy logic strategy can simulate an operator’s ‘experience and expertise’ in
decision-making process to facilitate the operator to select drilling parameters from ex-
pert database which can be incorporated in computerized automated systems. On the
other hand, the on-line approach corresponds to an automated attempt to adapt and op-
timize the machining parameters based on sensor information on machining responses
in real time. One of the main differences between off-line and on-line determination
of cutting conditions is the need of information of temperature and acoustic emissions.
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Table 1.Subset of training data.

Operation Work Mat Hardness Mill Vc Vf
type Code HB type m/min mm/min

1 30,22 90 1 1000 1910,8
2 30,22 90 1 1100 4904,4
3 30,22 90 1 1250 26871,0
4 30,22 90 1 130 4968,1
1 1,10 125 1 155 288,0
2 1,10 125 1 200 891,7
3 1,10 125 1 375 8061,3
4 1,10 125 1 690 26369,4
1 1,10 125 3 145 450,2
2 1,10 125 3 160 1452,2
1 1,20 150 1 135 257,0
1 7,10 150 1 135 257,9

Fig. 2.Types of operations considered in the experiment.

Hence any on-line intelligent system has to be integrated with a sensing device sys-
tem for extracting in real time conditions of cutting processes. AI techniques allows
modeling the information coming from the sensors systems and optimizing machining
parameters by learning from machining events such as tool wear, machine breakdowns
and other failures.

3 Neural Network Model

Several papers recommend that feed forward multilayer backpropagation nets with one
or two hidden layers with 10 to 30 neurons each are appropriate for handling cutting
data selection problems [8]. The approach suggested here isto use two neural networks
one for the selection of cutting speed and the second one for the selection of the feed
speed. Both networks use the same set of inputs. Therefore, the same training and test-
ing sets were used for each one of the nets. There is just one difference between the
two training sets: the second network uses the set of training data plus the correspon-
dent cutting speed values. Thus, the propose here is to link both networks to work in
an integrated manner to produce cutting parameters from thesame set of input data,
namely, workpiece material and type of milling operation and cutter. Most of the in-
formation used in the preparation of learning and testing data was extracted from a
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Table 2.Alternative Configurations tested and their performance indicators.

ID of Num.of Num. of Num. of Num. of MAD GF
ANN cfg. hidden layers layer 1 layer 2 layer 3 (mm/min) %

1 3 10 10 10 31,0 100,00
5 2 7 7 0 18,5 90,91
2 3 11 11 11 11,3 85,46
4 3 6 7 8 13,0 83,64
3 2 8 8 0 1,3 83,64

16 2 10 10 0 23,5 80,00
6 2 9 10 0 30,1 78,18

13 2 6 6 0 47,4 74,55
7 2 7 8 0 31,8 74,55
9 3 6 6 6 95,4 72,73

19 2 11 11 0 15,3 72,73
14 3 7 7 7 14,2 72,73
10 3 9 10 11 25,3 69,09
11 3 8 9 10 10,8 69,09
12 3 9 9 9 8,1 69,09
17 2 6 7 0 46,1 67,27
20 2 9 9 0 47,2 65,46
15 2 8 9 0 3,2 63,64
8 3 7 8 9 5,0 60,00

18 3 8 8 8 34,5 58,18

Table 3.Configuration parameters selected for each network.

Network Output Num. of Num. of Num. of Num. of Num. of
ID parameter Inputs Hidden Layers Neurons Lay.1 Neurons Lay.2 Neurons Lay.3
1 Vc 4 3 7 sig 7 sig 7 lin
2 Vf 5 2 8 sig 8 sig -

Sandvik Coromant Catalog. The collected information is in the form of tables, which
show the recommended cutting conditions for different types and geometries of cutters
and materials of workpieces depending on factors affectingmachinability. As the orig-
inal information on cutting conditions is given in the form of intervals representations,
the midpoints of such intervals were used as the representative values to construct the
training and testing data sets. In addition, two machining specialists refined these data.
The specialist adapted the data sets assuming a potentiallyreal situation and a given and
known machine tool. By doing so, it will be feasible to incorporate empirical knowledge
to the training process. It was considered for this experiment four types of operations,
as shown in (Fig.2).

The selected input parameters were: milling operation type, workpiece material,
workpiece material hardness and type of mill. Table 1 shows asubset of the used train-
ing data. As can be noticed in table 2, the desired output dataare distributed in a wide
interval. This is due to the large number of different types of workpiece materials. This
situation may be seen as a rather complex problem to be handled by any neural net-
work. This situation leads the authors to choose the strategy of two networks, the first
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Table 4.Percent error according to the operation type.

Operation network 1 network 2
type % %

1 1,44 15,11
2 3,27 24,76
3 2,06 1,91
4 0,44 35,34

Table 5.Percent error according to the workpiece material.

Material network 1 network 2
type (%) (%)

High Alloy Steel 1,37 8,38
Hardened Steel 3,09 18,26
Titanium alloys 0,91 24,11

Aluminium alloys 0,25 1,92

with a single output to estimate the cutting speed and the second one to estimate the
feed speed. The first column represents the operations type,namely, the relation be-
tween the depth of cut (ap) and cutting width (ae), as shown inFigure 2. The second
and the third columns in table 1 represent workpiece material and its Brinell hardness.
Different workpieces materials were represented using theCoromant Material Code. In
a similar way, the type of mill was represented as an integer that regards the material
and geometrical configuration of the milling tool. In the experiment four types of com-
mercial end mills were considered. As it was commented previously, network designers
have to test several configurations, including different numbers of hidden layers and
different number of neurons in each one of the hidden layers.There can be any number
of hidden layers in a neural network. In common use most neural networks will have
only one hidden layer. It is very rare for a neural network to have more than two hidden
layers. The number of neurons for the hidden layer(s) depends on the complexity of
the problem and should be set empirically. With too few neurons the network may not
converge in training, whilst with too many hidden-layer neurons the network starts to
lose generalization ability [9]. In this work, we compare the performance of networks
with two and three hidden layers and the number of neurons in each layer ranging from
5 to 15. Designer selects the network configuration that presents the minimum error and
the fastest rate of convergence. A series of alternative configurations have been tested
to determine the proper configuration of both networks. Several tests were conducted
varying the number of hidden layers, different numbers of neurons for each layer and
different transitions functions. The learning algorithm adopted in all these tests was
the backpropagation algorithm with momentum. As it is usualin the approaches using
this kind of networks, the set of data was divided into two subsets: the first used as
the training data set contains 138 patterns and the second, used as a validation set to
evaluate the responses of the net to unseen information, contains 55 patterns. Through
the use of these two sets, networks parameters can be adjusted and the generalization
ability can be evaluated. To select the most appropriate configuration two traditional
performance indicators were used. We refer to the medium absolute deviation (MAD),
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which was computed in two phases, during the training process and the testing process.
The deviations were calculated as the difference between the actual speed and the es-
timated speed, both for the training and testing sets. The second performance indicator
that was used to evaluate the generalization capacity of thetested configurations is the
Generalization Factor (GF), defined by Eq. (1).

GF =
k

n
∗ 100 (1)

Where n is the number of patterns that compose the validationset and k is the
number of such patterns estimated with an error less than 2 % (this value having been
fixed as a threshold level). Table 2 summarizes the results obtained from an alternative
configuration of neural networks for estimating feed speed (network number two). It is
quite evident that the configuration number 1 (with three hidden layers) showed better
generalization performance since GF is 100%. However, the MAD seemed to be a little
high from the operational point of view. If one considers an error of 31 mm/min in the
estimated feed speed, this may lead to undesirable or inappropriate time estimations
and tool life expectations significantly overestimated. Thus the selected configuration
was number 3, in Table 2 (with two hidden layers), which MAD is1,3 mm/min, con-
sidered as acceptable from the operational point of view. Moreover, the generalization
factor of near 85% seems to be adequate, if one consider that the training set takes into
account a wide variety of types of milling tools and workpiece materials. The same type
of analysis was conducted to obtain the architecture of the first ANN that performs the
estimation of the cutting speed. Table 3 shows the selected configuration parameters for
both networks. Figure 3 (left) shows the net output and expected cutting speed values
obtained after the network was entirely trained and a comparison between the original
testing data and the parameters estimated by the neural network (Fig.3 right). For the
selection of feed speed a single layer network with one hidden layer was trained using
the same training data set used for training the network thatselects the cutting speed.
Figure 4 (left) shows the convergence of the output mean error for the network that
was trained for selecting the cutting speed, where it can be noticed the low number of
epochs needed for attain the minimum required error. Figure4 (right) shows the con-
vergence of the output mean error for the network during the training process of the
network for selecting the cutting speed. Again, the low number of epochs needed for
attain the minimum required error can be noticed. Figure 5 (left) shows the net out-
put and expected feed speed values obtained after the network was entirely trained and
on the right side of the Figure 5 a comparison between the original testing data and
the parameters estimated by the neural network is shown. To evaluate the performance
of the two developed networks, an additional test set was prepared for simulation and
comparisons ends. The results of the simulation tests were classified according differ-
ent criteria. Table 4 shows the performance in terms of percent error of the two both
networks according to the operation type (refer Figure 1). Table 5 presents the results
of the test grouped according to the material workpiece. Finally, table 6 presents the re-
sults obtained by the two networks according the hardness ofthe workpiece. As can be
appreciated, from table 5 and 6, network 1 presented the bestresults with errors within
the 3%. As it can be observed in the tables shown above, the approach presents different
performance between network 1 and network 2, i.e. network 1 performs better estima-
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Fig. 3.Comparison between the train data set and the output produced by the trained network(left)
and between by the test data set and the output of the trained network (right).

Fig. 4. Convergence during the process of training the first network(left) and during the process
of training of the second network (right).

tion of the cutting speed than the estimations performed by the network 2 for the feed
speed. This is caused, we believe, by the great variability of the recommended values
of feed speed among different materials and operations types. The values used in the
test set present a mean value of 6000 mm/min approximately with a standard deviation
of 9000 mm/min. However, and it can be observed in tables 5 and6, there are some
applications where the networks presented acceptable results (under 10 % of error), i.e.
operation type 3 and milling of High alloy steel and aluminumsteel materials.

Table 6.Percent error according to the workpiece material hardness.

Material network 1 network 2
Hardness % %
350 HB 0,76 18,02
350 HB 2,37 13,70
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Fig. 5. Comparison between the training data and the data obtained by the trained network for
estimating Vf (left) and between test data and the networks output (right side).

4 Conclusions

This paper presented a neural network-based automated approach for cutting conditions
selection in milling operations. Two prototype networks were developed. The first net-
work is for selecting cutting speed and the second one for selecting feed speed, both
using almost the same set of input parameters. Both neural networks are interrelated,
since the output produced by the first network is used as an input in the second one. The
developed approach aims at selecting cutting parameters inoff-line mode. The main
difficulty found in the reported experiments was the fact that the training data set con-
siders a great variety of workpiece materials. That situation leads to a wide interval of
cutting conditions affecting convergence mechanism during the training process and the
generalization capabilities during the utilization phase. In spite of this fact, the obtained
results show that the developed networks have an acceptableperformance in simulating
cutting conditions selection process, with a generalization performance of about to 85
approximately. Future research points to develop and test new architectures of neural
networks to enhance the selection process performance, especially in estimation of feed
speed. Also, this work should be extended to other process planning functions such as
machine selection, tool and fixture selection and sequence of manufacturing operations.
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Abstract. In this paper we present results obtained with learning structures 
more “human likely” than the very effective and widely used hidden Markov 
model. Good results were obtained with simple artificial neural networks like 
the multilayer perceptron or the Kohonen maps. Hybrid structures have proven 
also their efficiency, the neuro-statistical hybrid applied enhancing the digit 
recognition rate of the initial HMM. Also fuzzy variants of the MLP and HMM 
gave good results in the tested tasks of vowel recognition. 

1 Introduction 

To make a first step on the way to bring near to HSR (Human Speech Recognition) 
the ASRU (Automatic Speech Recognition and Understanding) performance, it could 
be important to compare how speech recognition, as the receiving part of the verbal 
communication, is realised by machines and by humans [8]. Even though the process 
of verbal communication is a very natural one and thus seems to be a fairly easy for 
humans, there are several underlying operations that need to be carried out before the 
communication can be considered successful. The operations designed for ASR try to 
model what we know about speech and language, or what we assume about it. The 
models are often much simpler than the reality, and thus are imperfect. 

In Fig. 1, a schematic overview of both speech recognition processes, the HSR 
and ASRU is shown [6]. The first operation in human communication comprises the 
hearing of the message. We first have to realise that somebody is talking to us and 
then we have to listen to what he is saying. In ASR, an equivalent process is done, by 
recording the message with a microphone. 

Both systems, human and automatic, need to have some knowledge about the 
sounds that are used. If one of the talkers uses sounds the other talker does not know, 
they cannot understand each other. For this we need a vocabulary that is a set of 
words. 

When humans process the message, they extract the meaning out of what was 
said. They can do so by inferring the meaning from the actual sequence of words that 
they recognised, because they can directly associate meanings to words and more 
important to word sequences. 

 



The system however, searches for the word or word sequence that was most likely 
spoken, given acoustic signal. Even if this was successful, it is still far away from 
understanding what the meaning of this sequence of words is. Of course, approaches 
already exist that try to extract the meaning out of recognised word sequences.  

Although the procedures in the human and the automatic systems seem to be very 
likely, the results are very different, the differences being pointed by Lippmann in his 
well–known study [11]. For complicated tasks, involving sentence recognition, the 
performance difference is not so surprising and can mainly be explained by the ad-
vantage constituted by the natural context use of humans [3]. For simple tasks, like 
vowel recognition for instance when the context is not advantaging humans, they are 
indeed better than the machine and that remains surprising [4]. 

Because of the good human performance in the speech recognition task, it could be 
interesting to mimic the most important human action in this process, namely the 
learning and to do it also in a more “human likely” maner by involving neuronal and 
fuzzy techniques. 

 
Fig. 1. Overview of a HSR system (right side) and an ASRU system (left side). 

The paper has the following structure. Section 2 will describe the basic learning 
structures applied to build acoustical models. There are investigated classical neural 
strategies, like the multilayer perceptron (MLP) and the Kohonen maps (KM) but also 
hybrid strategies like a neuro-statistic model or fuzzy variants of a neural structure, 
namely the MLP and of a statistical structure, namely the HMM. The Section 3 pre-
sents a large variety of conditions into which can be carried out the basic experiments 
with our Automatic Speech Recognition System for Romanian Language (ASRS_RL) 
in tasks for vowel recognition and digit recognition. Section 4 concludes the paper. 
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2 Learning Strategies 

Learning is the basic process for humans in acquiring knowledge and was success-
fully mimicked in technical systems. Artificial Neural Networks generating the neural 
strategies are a good example. They lead to good recognition performance and can 
also improve through hybridization the performance of the statistical method based 
on HMM. 

2.1 Neural Strategies 

The neural strategies can model very well an important characteristic in human learn-
ing, namely associativity: all inputs of the ANN concur to obtain the resulting output, 
and therefore the recognition performance is high. Due to the fixed number of inputs 
their flexibility in accommodating time sequences is to low for more complicated 
recognition tasks, like continuous speech recognition, but appropriate to recognize 
vowels or digits. Further we will discuss two fundamental artificial networks, namely 
the MLP and the KM. 

Multilayer Perceptron (MLP) 
MLP is the most common ANN architecture used for speech recognition. Typically, 
MLPs have a layered feed–forward architecture, with an input layer, one or more 
intermediate (hidden) layers, and one output layer. The structure without hidden layer 
is called Boolean network and is a simple perceptron [13]. 

Each layer computes a set of linear discriminative functions, followed by a non-
linear function, which is often a sigmoid function. 

The numbers of neurons in the hidden layer was experimentally determined, trying 
to achieve an optimum between the following two opposite requirements: (a) lower 
computing volume and more rapid process of convergence in the learning period; (b) 
better performances from the correct classification of input patterns percentage. 

In the learning phase are determined the optimum values [14] for weights connect-
ing the pairs of neurons from the adjoint layers in the input–output direction using the 
Back-Propagation algorithm. 

Kohonen Maps 
Kohonen maps are competitive neural networks with topological character. The set-
ting up of the winner neurons at output is done with keeping the topological relations 
between the input vectors. 

That is the reason for which this neural network is successfully used in pattern rec-
ognition [9]. In the learning phase the structures are trained and the weights of the 
networks are established in two steps: (a) the determination of the winner neurons; 
(b) the adaptation of the weights for the winner neurons and for the neurons existing 
in a certain neighborhood. In this step important are: (a) the neighborhood dimension 
r(t) decreasing during the learning; (b) the learning rate η(t) following in our experi-
ments one of the laws [5]:  

1)( −= ttη  or 2/1)( −= ttη  (1) 
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2.2 Hybrid Strategies 

Hybrid strategies can improve the performance of the emerging ones. In order to 
make they more “human likely”, we have applied a neuro-statistical hybrid, adding to 
a HMM a MLP as a posteriori probability estimator and realizing fuzzy variants of a 
MLP and a HMM. 
 
Neuro-statistic Hybrid (HMM –MLP) 
The HMM-based speech recognition methods make use of a probability estimator, in 
order to approximate emission probabilities p(xn/qk), where xn represents the observed 
data feature, and qk is the hypothesized HMM state. These probabilities are used by 
the basic HMM equations, and because the HMM is based on a strict formalism, 
when the HMM is modified, there is a great risk of losing the theoretical foundations 
or the efficiency of the training and recognition algorithms. Fortunately, a proper use 
of the MLPs can lead to obtain probabilities that are related with the HMM emission 
probabilities [10]. 

In particular, MLPs can be trained to produce the a posteriori probability p(xn/qk), 
that is, the a posteriori probability of the HMM state given the acoustic data, when 
each MLP output is associated with a specific HMM state. Many authors have shown 
that the outputs of an ANN used as described above can be interpreted as estimates of 
a posteriori probabilities of output classes conditioned by the input, so we will not 
insist on this matter, but we will mention an important condition, useful for finding an 
acceptable connectionist probability estimator: the system must contain enough pa-
rameters to be trained to a good approximation of the mapping function between the 
input and the output classes [14]. 

Thus, the a posteriori probabilities that are estimated by MLPs can be converted 
in emission probabilities by applying Bayes' rule (2) to the MLP outputs: 

)(
)/(

)(
)/(

k
nk

n
kn

qp
xqp

xp
qxp

=  (2) 

That is, the emission probabilities are obtained by dividing the a posteriori esti-
mations from the MLP outputs by estimations of the frequencies of each class, while 
the scaling factor p(xn) is considered a constant for all classes, and will not modify the 
classification. 

This was the idea that leads to hybrid neuro-statistical methods, that is, hybrid 
MLP-HMM methods, applied for solving the speech recognition problem. 
 
Fuzzy Variants 
Human judgement is rarely a binary one, and therefore binary logic even if very sim-
ple, is not the best solution to model human acting in speech classification tasks. It 
seems that fuzzy logic, able to a nuanced, shaded processing is much more suitable 
and indicated to be used in machine performing such tasks. In this subsection of our 
paper we will introduce fuzzy logic on two ways: realizing a fuzzification of the input 
parameters, like in the fuzzy – MLP, or introducing instead the probabilistic similarity 
measure applied in the usual HMM the fuzzy similarity measure, like in the fuzzy 
(generalized) HMM. 
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Fuzzy-MLP 
Introducing a fuzzy processing of the input features of the MLP is a solution to im-
prove the MLP performances [16]. 

First, the input values are described through a combination of 3 membership val-
ues in the linguistic property sets: low, medium and high. For doing this the π  mem-
bership function is used: 

⎪
⎪
⎩
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⎨

⎧
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≤−≤−−

=
otherwise

crforcr
crforcr
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where: λ>0 is the radius of the π function with c as the central point, || . || denotes 
the Euclidian norm. 

For each component jiF  of the input vector jF  the parameters of the π member-
ship function for each linguistic property: low (l), medium (m) and high (h) are com-
puted using the relations: 

2/)( minmax)( jijiFijm FF −=λ  
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(4) 

where minmax , jiji FF  denote the upper and lower bounds of the observed range of 

feature and jiF and ddf  is a parameter controlling the extent of overlapping. 
After this, the structure of the fuzzy neural network, like the classical one, is com-

posed from a hidden layer and an output layer. 
The output vector is defined as the fuzzy class membership values. The member-

ship value of the training t
iniii FFFF )...( 21= to class kC  is computed using: 

cfdikik fzF ))/1/(1)( +=μ  (5) 
where: cd ff ,  are constants controlling the amount of fuzziness in the class-
membership set, ikz  is the weighted distance between the input vector iF  and the 

mean t
kkkk OOOO )...( 111= of  the k-th class, defined as: 

∑
=

−=
1

2]/)[(
j

kjkjjiik vOFz  (6) 

where: kjv  is  the standard deviation of  the j-th vectors' component from the 

kC class. 
In the training stage, the Back-Propagation algorithm is used to determine the 

weights which minimized the mean square error (mse) between the real output jd and  
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the desired one jy : 

∑ ∑
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=
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During training, the learning rate is gradually decreased in discrete steps {1, 0.5, 
0.3, 0.1, 0.05, 0.03, 0.01}, until the network converges to a minimum error solution. 
 
Fuzzy-HMM 
The generalized model ),,( πλ BA=  can be characterized by the same parameters [7] 
like the classical, well known model. The major difference in the fuzzy variant, is the 
interpretation of the probability densities for the classical HMM, as fuzzy densities. 
On this way the probabilistic similarity measure applied in the classical HMM is 
replaced by a more suitable fuzzy similarity measure.  

The succession of parameter vectors, called the observation sequence, O, pro-
duces the state sequence S of the model, and, visiting for example at the moment t+1 
the state jt Sq =+1 , the symbol bj is generated. The corresponding symbol fuzzy 

density )( tj Ob  measures the grade of certainty of the statement that we observed tO  

given that we are visiting state jS .To perform classification tasks, the fuzzy similar-
ity measure must be calculated. Based on the fuzzy forward and backward variables, 
a fuzzy Viterbi algorithm is proposed in [12] for the case of the Choquet integral with 
respect to a fuzzy measure and multiplication as intersection operator. 

The fuzzy formulation of the forward variable α, bring an important relaxation in 
the assumption of statistical independence.  

The joint measure { } { }( )jt yOOy ×Ω ...,,1α  can be written as a combination of two 

measures defined on tOOO ...,,, 21  and on the states respectively, no assumption 
about the decomposition of this measure being necessary, where { }NyyyY ...,,, 21=  
represent the states at time t+1 (Ω is the space of observation vectors). 

For the standard HMM, the joint measure ),...,,,( 121 jtt SqOOOP =+  can be 

written as the product )()...,,,( 121 jtt SqPOOOP =⋅ + , so that two assumptions of 

statistical independence must be made: the observation at time t+1, 1+tO , is inde-
pendent of the previous observations tOOO ...,,, 21  and the states at time t+1 are 
independent of the same observations, tOOO ...,,, 21 . 

These conditions find a poor match in case of speech signals and therefore we 
hope in improvements due to the relaxation permitted by the fuzzy measure. 
Training of the generalized model can be performed with the re-estimation formulas 
also done in [12] for the Choquet integral. For each model we have trained with the 
reestimation formulas the corresponding generalized models, GHMMs, with 3-5 
states, analog to the classical case. 

After the training, we have calculated the fuzzy measure ( )λ/OP , with the fuzzy 
Viterby algorithm and made the decisions for recognition in the same manner like for 
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the classical HMM: the correct decision corresponds to the model for which the  
calculated measure has a maximum. 

3 Experimental Results 

The experiment results are made by ASRS_RL, with multiple options for a large 
variety of speech recognition experiments [1].  

In the next two sub-sections are applied the learning strategies presented in Sec-
tion 2 for vowel and digit recognition and the obtained performance is evaluated. 

The used databases (for vowel and digit) are sampled by 16 kHz, quantified with 
16 bits, and recorded in a laboratory environment. 

Vowel Recognition 
The learning strategies applied in our recognition experiments are: the Kohonen 
maps, the MLP, the fuzzy-MLP and the fuzzy-HMM.  
 
In the First Experiment, the vowel recognition rate using the VDRL database 
(Vowel Database for Romanian Language) and the MFCC coefficients (in form of 12 
mel-frequency cepstral coefficients) was determined; the results obtained with MLP 
and HMM as learning strategies are comparatively presented in Table 1.  

Table 1. Vowel recognition rate in the case of training with MS and testing with MS and FS. 

MLP HMM Vowel 
MS FS MS FS 

a 100.00% 80.71% 100.00% 82.28% 
e 85.81% 43.25% 94.82% 50.67% 
i 85.71% 85.71% 95.15% 92.41% 
o 90.90% 51.33% 97.00% 52.78% 
u 88.88% 71.42% 94.83% 77.85% 

Mean 91.26% 66.48% 96.36% 71.20% 
 

The database VDRL contained speech data from 19 speakers (9 males and 10 fe-
males) each reading the same 5 vowels (a, e, i, o, u). The database was organized as 
follows: one database for male speakers (MS), one database for female speakers (FS). 
In booth cases one male speaker (MS) and one female speaker (FS) was excluded 
from the training database and used their data for the testing.  

The experimented MLP is a two-layer perceptron trained with Back-Propagation 
algorithm, having in the output layer 5 nodes corresponding to the 5 vowels to be 
classified and 100 nodes in the hidden layer (experimentally chosen).  

The number of the input nodes is equal to the number of features (12 MFCC). 
The HMMs chosen for comparison are Bakis (or left-right) structures with five 

states and for each vowel one model is created [15]. 
In Table 1, are displayed only the results in the case of training MS and testing 

with MS and FS. Similarly results were obtained for the training with FS [2]. 

57



In the Second Experiment, the vowels were described by three formant frequencies 
and the error rates obtained with different learning strategies are given in Table 2. 

The database for formants contains 500 formant vectors, 100 for each vowel for 
the training and 250 formant vectors, 50 for each vowel for the testing. 

The learning structures applied [5], [14] for these investigations are: 
(1) KM with the input layer with 3 neurons, corresponding to the three formant 
frequencies and three variants for the output layer: unidimensional with 25 neu-
rons, bidimensional with 5×5 neurons, and toroidal with 25 neurons. 
(2) MLP with 3 layers organized as it follows: (a) the input layer with 3 neurons, 
corresponding to the three formant frequencies; (b) the hidden layer with 0 (Boo-
lean network)  or 4 neurons, (c) the output layer with 5 neurons corresponding 
each to a processed class (in our case the vowels a, e, i, o, u).  
(3) Fuzzy-MLP. 

Table 2. Error rates (%) in for different learning strategies for the case of format. 

Vowel KM 1-dim KM 2-dim KM toroidal Boolean MLP Fuzzy MLP 
a 2.60% 1.20% 2.00% 4.00% 0.00% 1.50% 
e 3.20% 2.40% 2.40% 6.00% 2.50% 1.00% 
i 2.20% 1.60% 1.20% 4.00% 1.00% 0.50% 
o 1.80% 1.20% 1.20% 10.00% 1.00% 1.00% 
u 2.20% 2.10% 1.80% 10.00% 1.00% 0.00% 

Mean 2.40% 1.70% 1.72% 6.80% 1.10% 0.80% 
 
In the Third Experiment the parameterization is realized with the mel-cepstral coef-
ficients and the first and second order differences of these coefficients deduced from 
homomorfic filtering. The error rates obtained in the vowel recognition tests are given 
in Table 3, comparatively for the generalized HMM (fuzzy-HMM) and the classical 
HMM. 

Table 3. Error rates (%) for generalized and for classical HMMs. 

Vowel Fuzzy - HMM Classical HMM 
a 5.10% 6.90% 
e 2.40% 4.80% 
i 3.80% 7.30% 
o 2.50% 5.90% 
u 0.70% 3.90% 

Mean 2.90% 5.78% 
 

Digit Recognition 
In the second sub-section the performances obtained in digit recognition are evaluate 
with the hybrid strategies (HMM– MLP) for unenrolled and enrolled speaker. 

The DDRL database (Digit Database for Romanian Language) contained speech 
data from 9 speakers (6 males and 3 females) each speakers reading 9 digits (unu, doi, 
trei, patru, cinci, şase, şapte, opt, nouă). We excluded two MS and one FS from the 
database and used them for the testing. 
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The digit parameters were extracted by cepstral analysis, in form of 12 mel-
frequency cepstral coefficients (MFCC). The hybrid system (HMM-MLP) consists of 
9 hybrid models corresponding to 9 digits. Each hybrid model is made of 5 states, 
each state being associated with one output node of the MLP. The MLP has one hid-
den layer (100 nodes experimentally chossen), and the input layer consisting of 12 
nodes. 

We compare the two kinds of tests (using DDRL database): first, with enrolled 
speakers, which mean that the speakers were involved both in training and testing, 
and second, with unenrolled speakers were the testing speakers are not involved in 
the training. 

The results obtained for hybrid strategies are compared with other learning strate-
gies (hidden Markov models, Support Vector Machine) and the performance being 
appreciated by their recognition rate and by their generalization capacity [5]. The 
word recognition rate (WRR) is reported in Table 4. 

Table 4. The WRR (%) for different learning strategies. 

Learning strategies Enrolled speakers Unrolled speakers 
HMM-MLP 98.50% 98.30% 

HMM 98.00% 97.50% 
SVM 97.70% 91.70% 

4 Conclusions 

This paper reports a study focussed on the learning strategies applied in speech rec-
ognition for vowel and digit recognition.  

(1) For vowel recognition in Romanian language the following conclusion can be 
reported: 
a) The recognition rates in the case of MLP are higher than in the case of HMM. 
A possible explanation can be the fact that the model training is discriminative, 
while in the case of HMM the training is not discriminative, which represents a 
disadvantage of HMM utilization. 
b) The KM 2-dimensional structures and the toroidal have the same perform-
ance, weaker is the performance of the 1-dimensional structure. The best bal-
anced situation corresponds to the 2-dimensional map 5x5, in which all neurons 
are associated to a vowel to be recognized.  
The performance obtained in the case of the Boolean network is unacceptable, 
but the MLP acts well. 
Using fuzzy-MLP structure it is an improvement with a mean value of 0.30% 
comparative with the non-fuzzy structure.  
c) A mean decreasing of nearly 3% is realized in the error rate by adopting the 
fuzzy-HMM instead of the probabilistic one. 

(2) For digit recognition in Romanian language using our database (DDRL) the fol-
lowing observation can be reported:  
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a) Chosen this approach, which combine the HMM with MLP into a hybrid sys-
tem is a very goad solution because the results are higher the results obtained for 
HMM and SVM. 
b) It is to seen that SVM performances are slightly after that of the HMM, but is 
really promising, taking into account that the HMM has the benefit of a so long 
refinement time. 
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Abstract. By improving Internet traffic forecasting, more efficient TCP/IP traf-
fic control and anomaly detection tools can be developed, leading to economic
gains due to better resource management. In this paper, Neural Networks (NNs)
are used to predict TCP/IP traffic for 39 links of the UK education and research
network, under univariate and multivariate strategies. The former uses only past
values of the forecasted link, while the latter also uses thetraffic from neigh-
bor links of the network topology. Several experiments wereheld by considering
hourly real-world data. The Holt-Winters method was also tested in the com-
parison. Overall, the univariate NN approach produces the best forecasts for the
backbone links, while a Dijkstra based NN multivariate strategy is the best option
for the core to subnetwork links.

1 Introduction

Internet traffic prediction is a key issue for understandingcommunication networks and
optimizing resources (e.g. adaptive congestion control and proactive network manage-
ment), allowing a better quality of service [1–3]. Moreover, traffic forecasting can help
to detect anomalies (e.g. security attacks, viruses or an irregular amount of SPAM) by
comparing the real traffic with the forecasts [4, 5].

TCP/IP traffic prediction is often done intuitively by network administrators, with
the help of marketing information (e.g. future number of costumers) [1]. Yet, this may
not be suited for serious day-to-day network administration and the alternative is to
use Operational Research and Computer Science methods. In particular, the field of
Time Series Forecasting (TSF), deals with the prediction ofa chronologically ordered
variable, where the goal is to model a complex system as a black-box, predicting its
behavior based in historical data [6]. The TSF approaches can be divided into univariate
and multivariate, depending if one or more variables are used. Multivariate methods are
likely to produce better results, provided that the variables are correlated [7].



Several TSF methods have been proposed, such as the Holt-Winters [6] and Neural
Networks (NN) [8, 3]. Holt-Winters was developed for serieswith trended and seasonal
factors and more recently a double seasonal version has beenproposed [9]. In contrast
with the conventional TSF methods (e.g. Holt-Winters), NNscan predict nonlinear se-
ries. In the past, several studies have proved the predictability of network traffic by using
similar methods. For instance, the Holt-Winters was used in[4, 10] and NNs have also
been proposed [11, 5, 3]. However, these studies only considered univariate (or single
link) data, thus not making use of the topology network. By using data from more than
one link, there is a potential for better predictions.

This study will use recent hourly data from the United Kingdom Education and
Research Network (UKERNA) network. The network includes a backbone made up of
8 core routers that transport data through 21 regional subnetworks. In this paper, we
will explore NNs and two multivariate approaches for data selection: using all direct
neighbor links and selecting the most probable neighbor that is expected to influence
the predicted link. The latter strategy is based in a novel heuristic that uses the Open
Shortest Path First (OSPF) [12] protocol and Dijkstra algorithm. These approaches will
be compared with the NN univariate case and also the classic Holt-Winters method.
Furthermore, we will predict all UKERNA core to core and coreto subnetwork links,
in a total of 39 connections.

2 Internet Traffic Data

This work will analyze traffic data (in Mbit/s) from the UK academic network backbone
(UKERNA)4, which includes eight core routers and 21 subregional networks. Figure 1
plots the respective direct graph, wherebdd, sdd andcdd denote the links within the
backbone core routers, core tosubnetwork and subnetwork tocore, respectively (d is
a digit number). The data collection was based in the Simple Network Management
Protocol (SNMP), which quantifies the traffic passing through every network interface
with reasonable accuracy [13]. SNMP is widely deployed by every Internet Service
Provider/network and the collection of this data does not induce any extra traffic on the
network. In this work, we will adopt an hourly scale, denoting a short-term forecasting
that is often used to for optimal control or detection of abnormal situations [14]. The
data was recorded from 12 AM of 14th June 2006 to 12 AM of 23th July 2006. In total,
there are 936 hourly observations for each link.

The OSPF is the the most commonly used intra-domain routing protocol [12]. Under
this protocol, every link contains a weight that is assignedby the network administrator.
The Dijkstra algorithm is used to find the shortest paths between any two nodes of
the network and these paths are then used by the routers to direct traffic. Most of the
UKERNA OSPF weights are set to 10 and the few exceptions are listed in Figure 1. For
instance, the OSPF weight between the core routers of Glasgow and Edinburgh is 100
(links b09 and b18); and the shortest path between Warrington and Edinburgh includes
the links b07 and b18.

4 http://www.ja.net
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Fig. 1. The schematic of the UK academic Internet network.

As an example, the traffic of two neighbor links, Warrington-Glasgow (b07) and
Glasgow-Clydenet (s05), is plotted in Figure 2. In both graphs, there are influences of
two seasonal components due to the the intraday and intraweek cycles.

weekly cycle
daily cycle

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500  600  700  800  900

T
ra

ff
ic

 (
M

b
it
s
/s

)

Time (hours)

daily cycle

weekly cycle

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  100  200  300  400  500  600  700  800  900

T
ra

ff
ic

 (
M

b
it
s
/s

)

Time (hours)

Fig. 2.The IP traffic for b07 (Warrington-Glasgow, left) and s03 (Glasgow-Clydenet, right) links.
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3 Forecasting Methods

A Time Series Forecasting (TSF) model assumes that past patterns will occur in the
future. Letyt = (y1t, . . . , ykt) denote a multivariate series, whereyij is thejth chrono-
logical observation on variablei andk is the number of distinct time variables (k = 1

when a univariate setting is used). Then [7]:

ŷpt = F (y1t−1, . . . , y1t−n, . . . , ykt−1, . . . , ykt−n)

ept = ypt − ŷpt
(1)

whereŷpt denotes the estimated value for thepth variable and timet; F the underlying
function of the forecasting model; andept is the error (or residual).

The overall performance of a model is evaluated by a global accuracy measure,
namely the Root Mean Squared Error (RMSE) and Relative RMSE (RRMSE), given in
the form [15]:

RMSEp =

√∑P+N

i=P+1
e2pi/N

RRMSEp = RMSEp/RMSEypt
× 100 (%)

(2)

whereP is the present time;N is the number of forecasts; andRMSEypt
is theRMSE

given by the simple mean prediction. The last metric (RRMSE) will be adopted in this
work, since it has the advantage of being scale independent,where 100% denotes an
error similar to the mean predictor (ypt).

Due to the temporal nature of this domain, a sequential holdout will be adopted for
the forecasting evaluation. Hence, the firstTR = 2/3 of the series will be used to fit
(train) the forecasting models and the remaining last1/3 to evaluate (test) the forecast-
ing accuracies. Also, an internal holdout procedure will beused for model selection,
where the training data will be further divided into training (2/3 of TR) and validation
sets (1/3 ofTR). The former will be used to fit the candidate models, while the latter
will be used to select the models with the lowest error (RMSE). After this selection
phase, the final model is readjusted using all training data.

3.1 Neural Networks

Neural Networks (NNs) are innate candidates for forecasting due to their nonlinear and
noise tolerance capabilities. Indeed, the use of NNs for TSFbegan in the late eighties
with encouraging results and the field has been growing since[8, 14, 11, 3].

The multilayer perceptron is the most popular NN used withinthe forecasting do-
main [8, 11]. When adopting this architecture, TSF is achieved by using a sliding time
window5. A sliding window is defined by the set of time lags used to build a forecast.
For instance, given the univariate time series 1,2,3,4,5,6and sliding window{1, 2, 4},
the following training examples can be built:1, 3, 4 → 5 and2, 4, 5 → 6. In a multi-
variate setting,k sliding windows are used:{L11, . . . , L1W1

}, . . . , {Lk1, . . . , LkWk
},

whereLij denotes a time lag for theith variable.
In this work, a fully connected multilayer network with one hidden layer ofH

hidden nodes and bias connections will be adopted (Figure 3). The logistic activation

5 This combination is also named Time Lagged Feedforward Network (TLFN) in the literature.
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function is applied on the hidden nodes and the output node uses a linear function [16].
In past work [3], this architecture outperformed conventional univariate methods such
as Holt-Winters and ARMA models. The overall model is given in the form:

ŷpt = wo,0 +
∑I+H

i=I+1
f(

∑k

s=1

∑Ws

r=1
yst−Lsr

wi,j) (3)

wherewd,s is the weight from nodes to d; (if d = 0 then it is a bias connection);j ∈
{1, . . . , I} is an input node;o is the output node; andf the logistic function ( 1

1+e−x ).
Before training, all variables are scaled with a zero mean and one standard devia-

tion. Then, the initial NN weights are randomly set within[−0.7,+0.7] [17]. Next, the
training algorithm is applied and stopped when the error slope approaches zero or after
a maximum ofE epochs. Since the NN cost function is nonconvex (with multiple min-
ima),NR runs are applied to each neural setup, being selected the NN with the lowest
mean error [16]. After training, the NN outputs are rescaledto the original domain.

Under this setting, the NN performance will depend on the number of hidden nodes
(H), the selection of thek variables used in the multivariate model and the time window
used for each variable. All these parameters can have a crucial effect in the forecasting
performance. Feeding a NN with uncorrelated variables or time lags may affect the
learning process due to the increase of noise. A NN with 0 hidden neurons can only
learn linear relationships and it is equivalent to the classic Auto-Regressive (AR) model.
By increasing the number of hidden neurons, more complex nonlinear functions can be
learned but also it increases the probability of overfittingto the data and thus loosing the
generalization capability. Since the search space for these parameters is high, heuristic
procedures will be used during the model selection step.

Three strategies are proposed for the variable selection:

– Single-Link NN (SLNN), the simple univariate model where the predictions are
based on the past values of the current link (p);

– All Direct Neighbor Link NN (ADNN) , based onp plus the previous traffic ob-
served in all direct neighbor links that influencep; and

– Dijkstra-Assisted NN (DANN), based onp plus the neighbor that is expected to
influence more the predicted link under the OSPF protocol. First, the Dijkstra algo-
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rithm is used to compute the shortest OSPF paths between all nodes of the network.
Then, the subset with all paths that includep as an internal or end link is selected.
Finally, the heuristic selects the most common6 direct preceeding neighbor ofp in
the subset.

Regarding the multivariate methods, DANN selects onlyk = 2 variables, while ADNN
uses a higher number of links (from 3 to 7). For instance, whenforecasting the Reading-
TVN (p=s18) traffic, the ADNN variable set is{s18,b05,b01}7 (Figure 1). There are 16
OSPF paths ending at TVN that include b05 and only 11 paths that go through b01.
Hence, DANN will select the former (i.e.{s18, b05}).

Based on previous univariate IP traffic forecasting work [3], a small range of hidden
nodes will be tested, withH ∈ {0, 2, 4, 6}. Also, three sliding windows, based on the
daily (K1 = 24) and weekly (K2 = 168) cycles, will be considered:w1 = {1, 24, 25},
w2 = {1, 168, 169} andw3 = {1, 24, 25, 168, 169}. In [3], this sliding window setup
obtained high quality results. When a multivariate model isused, then the same window
is applied to all links.

3.2 Holt-Winters Methods

The Holt-Winters (HW) [6] is a popular univariate forecasting technique from the fam-
ily of Exponential Smoothing methods. The predictive modelis based on some under-
lying patterns such as a trend or a seasonal cycle (K1), which are distinguished from
random noise by averaging the historical values. Its popularity is due to advantages
such as the simplicity of use, the reduced computational demand and the accuracy of
the forecasts, specially with seasonal series.

The general model is defined by:

Level St = α
yt

Dt−K1

+ (1 − α)(St−1 + Tt−1)

Trend Tt = β(St − St−1) + (1− β)Tt−1

SeasonalityDt = γ
yt

St
+ (1− γ)Dt−K1

ŷpt = (St−1 + Tt−1)×Dt−K1

(4)

whereSt, Tt andDt stand for the level, trend and seasonal estimates,K1 for the sea-
sonal period, andα, β and γ for the model parameters. When there is no seasonal
component, theγ is discarded and theDt−K1

factor in the last equation is replaced
by the unity. More recently, this method has been extended toencompass two seasonal
cycles (K1 andK2) [9]. In this work, four HW variants will be tested in the model
selection phase:n – non seasonal (K1 = 1); d – daily seasonal (K1 = 24); w – weekly
seasonal (K1 = 168); andD – double seasonal (K1 = 24 andK2 = 168).

4 Experiments and Results

The experiments were conducted off-line (i.e. after the data was collected) using the
RMiner [18], an open source library for theR statistical environment [19]. In particular,

6 In case of a draw (which rarely occurs), the heuristic simplyselects one of the contenders.
7 The link c18 is not considered, since its origin (TVN) matches the link destination.
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theRMiner uses thennet package [17] to implement the NNs. The NNs were trained
with E = 100 epochs of the BFGS algorithm [20], from the family of quasi-Newton
methods and the number of runs was set toNR = 10. The HW initial values (e.g. level
estimate) were set by averaging the early observations [9] and the internal parameters
(e.g.α) were optimized using a 0.05 grid search for the best training error (RMSE).

Since the intention is to compared univariate and multivariate approaches, only the
links with preceding neighbors will be predicted, i.e., allsdd andbdd, in a total of 39
connections. The selected forecasting models for each method are shown in Table 1.
For the HW, the weekly cycle is the most common model (w) and the double seasonal
variant is never used. The weekly effect (w2) is also the most common case for strategy
ADNN. In contrast, the majority of the SLNN and DANN methods use the double
seasonal model (w3). Regarding the NN architectures, in general only linear models
are selected. The 15 nonlinear exceptions (H > 0) are listed in the table. These results
confirm the notion that short term IP traffic can be modeled by small networks.

The forecasts with the selected models were performed on thetest sets (with 312
elements) for all links shown in Table 1. Thirty runs were applied for the NNs and the
results are shown as the meanRRMSE with the respective 95% t-student confidence
intervals. The range of the bestRRMSE values is high, showing that some links are
much harder to predict than others (e.g. 14.1% for b10 versus82.5% for s02). Overall,
the HW is the worst strategy, since it is the best method for only 2 links (b05 and b14).
Regarding the backbone links, the univariate approach (SLNN) is the best NN choice
in 10 cases, followed by the ADNN (best in 7 links), while the DANN outperforms the
other methods for only one link (b17). This scenario changeswhen considering the core
to subnetwork links (sdd), where the DANN is the best method (with 12 wins), while
both SLNN and ADNN achieve statistically significant lowesterrors in 4 cases.

For demonstrative purposes, the left of Figure 4 presents the average DANN traffic
forecasts for the first 60 hours of the s03 series. In this case, a high quality fit is achieved,
since the two curves are close. The observed (x-axis) versusthe predicted values for
a given run (y-axis) is also shown. In the figure, the forecasts (points) are near the
diagonal line, which denotes the perfect forecast. Anotherrelevant issue is related with
the computational complexity. The proposed solution is very fast and can be used in
real-time. For the example, with a Pentium Dual Core 3GHz processor, the DANN
model selection phase took 12 seconds, while the 30 runs of the final NN training and
testing required only 2.2 seconds.

5 Conclusions

This work analyses the efficiency of several Neural Network (NN) approaches when
applied to predict hourly TCP/IP traffic, collected from theUnited Kingdom Education
and Research Network (UKERNA). In particular, three strategies were tested: SLNN –
univariate approach based on past patterns from the currentlink; ADNN – which also
includes the past values from all direct neighbors; and DANN– a novel approach that
includes only one link neighbor, whose selection is based onthe Dijkstra algorithm and
OSPF protocol. Also, a comparison was made with the Holt-Winters (HW) method,
which is popular for seasonal series.
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Table 1.The forecastingRRMSE errors and selected models (in brackets).

Link SLNN ADNN DANN HW
b01 24.8±0.0 (w3) 23.9±0.0 (w2) 25.0±0.0 (w3) 25.2 (w)
b02 63.2±0.0 (w1) 89.5±0.0 (w2) 63.4±0.0 (w1) 68.7 (n)
b03 22.1±0.0 (w3) 22.1±0.0 (w2) 22.2±0.0 (w3) 27.8 (d)
b04 21.3±0.0 (w3) 21.5±0.0 (w2) 22.2±0.0 (w2) 25.2 (w)
b05 34.1±0.0 (w3) 34.7±0.0 (w2) 35.7±0.0 (w2) 34.0(w)
b06 86.6±2.7 (w1, H=4) 58.1±0.0 (w1) 58.4±0.0 (w3) 69.0 (w)
b07 19.7±0.0 (w3) 30.6±0.0 (w3) 20.3±0.0 (w3) 25.1 (w)
b08 40.7±0.0 (w2) 40.7±0.0 (w2) 41.2±0.0 (w2) 44.3 (w)
b09 56.5±0.0 (w2) 57.2±0.0 (w2) 57.5±0.0 (w2) 67.5 (w)
b10 14.1±0.0 (w3) 17.7±0.0 (w2) 15.4±0.0 (w3) 15.0 (w)
b11 54.1±0.0 (w3) 57.3±0.9 (w3, H=2) 54.3±0.0 (w2) 58.0 (n)
b12 62.7±5.9 (w2, H=2) 36.1±0.0 (w1) 74.6±0.0 (w3) 45.4 (w)
b13 30.5±0.0 (w3) 31.2±0.0 (w2) 30.6±0.0 (w3) 31.7 (w)
b14 19.5±0.0 (w3) 19.4±0.0 (w3) 19.5±0.0 (w3) 19.0(w)
b15 79.9±0.0 (w3) 78.7±0.0 (w2) 80.4±0.0 (w3) 87.0 (n)
b16 48.0±1.0 (w2, H=4) 37.5±0.0 (w2) 38.7±0.0 (w3) 39.4 (w)
b17 31.5±0.8 (w3, H=2) 57.5±3.1 (w1) 28.3±0.0 (w3) 30.1 (w)
b18 57.3±0.0 (w3) 59.2±0.0 (w2, H=6) 58.4±0.0 (w3) 80.8 (w)
s01 42.3±0.4 (w2, H=2) 47.5±2.7 (w2, H=2) 41.8±0.0 (w2) 45.1 (w)
s02 82.8±0.0 (w3) 85.2±0.0 (w2) 82.5±0.0 (w3) 91.9 (w)
s03 33.6±0.0 (w3) 34.6±0.0 (w3) 32.4±0.0 (w3) 37.3 (d)
s04 41.3±0.1 (w2, H=2) 41.4±0.0 (w2) 41.8±0.0 (w2) 48.0 (w)
s05 41.4±0.0 (w3) 41.6±0.0 (w1) 42.0±0.0 (w3) 47.5 (w)
s06 39.6±0.0 (w3) 38.3±0.0 (w2) 38.2±0.0 (w3) 44.1 (w)
s07 45.1±0.0 (w2) 42.8±0.0 (w2) 42.9±0.0 (w2) 51.7 (w)
s08 27.5±0.0 (w3) 28.9±0.0 (w2) 28.3±0.0 (w3) 34.9 (w)
s09 28.6±0.0 (w3) 27.3±0.0 (w2) 28.3±0.0 (w3) 36.5 (w)
s10 35.9±0.5 (w2, H=6) 32.8±0.0 (w3) 38.6±0.0 (w3) 33.2 (w)
s11 68.4±0.0 (w3) 69.6±0.0 (w1) 71.2±1.2 (w2, H=2) 74.5 (n)
s12 71.8±8.3 (w3, H=4) 69.0±0.0 (w2) 56.7±0.0 (w3) 65.4 (w)
s13 48.1±0.0 (w2) 44.7±0.0 (w2) 44.7±0.0 (w2) 47.7 (w)
s14 36.8±0.0 (w3) 43.8±0.0 (w1) 34.0±0.0 (w2) 37.9 (w)
s15 26.5±0.0 (w3) 24.9±0.0 (w2) 23.6±0.0 (w3) 27.2 (w)
s16 33.4±0.0 (w3) 33.8±0.0 (w2) 32.3±0.0 (w3) 36.0 (d)
s17 28.3±0.5 (w2, H=2) 26.7±0.0 (w3) 25.5±0.0 (w3) 32.2 (n)
s18 54.2±0.0 (w2) 53.2±0.0 (w3) 51.9±0.0 (w3) 54.7 (n)
s19 39.8±0.0 (w2) 41.1±0.0 (w3) 40.1±0.0 (w2) 39.9 (w)
s20 64.7±0.2 (w3, H=2) 65.4±0.0 (w2) 61.3±0.0 (w3) 70.7 (d)
s21 34.2±0.3 (w3, H=2) 40.6±0.0 (w3) 32.6±0.0 (w3) 32.9 (w)

bold – statistical significance under a pairwise comparison withother NN methods.
underline– best model.

A large number of experiments was conducted, with a total of 39 forecasted links.
Overall, the NN results are quite competitive, outperforming the HW model in all ex-
cept two cases. Regarding the univariate versus multivariate comparison, the results
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differ according to the link characteristics. Within the backbone links, the SLNN is the
best option in 10 of the 18 series, while DANN only excels other strategies for one con-
nection (b17 of Figure 1). However, for the core to subnetwork links, the multivariate
DANN strategy provides the best forecasts in 12 of 21 cases, while SLNN achieves the
best performance in only 4 links. These results may be explained by the nature of the
network topology. The core to subnetwork links are peripheral funnels, thus they are
more likely to be influenced by one single neighbor. In contrast, the core routers are
large carriers, i.e., they direct traffic from/to a larger number of nodes.

Since small networks were selected, the NNs are very fast andcan be applied in real-
time. Thus, the proposed approach opens room for producing better traffic engineering
tools and methods to detect anomalies in the traffic patterns. This can be achieved with-
out producing any extra traffic in the network and with minimal use of computation
resources, since this work was designed assuming a passive monitoring system.

In future work, the comparison will be extended to other forecasting techniques
(e.g. ARMA models [21]). Moreover, the proposed approach will be applied to traffic
demands of specific Internet applications, such as Voice over Internet Protocol (VoIP).
Another promising direction is to explore incomplete information scenarios. For in-
stance, to see if it is possible to forecast the backbone linktraffic using only the subnet-
work to core connections, i.e., without knowing the past values of the predicted links.
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Abstract. Improving bit error rates in optical communication systems is a diffi-
cult and important problem. The error correction must take place at high speed
and be extremely accurate. We show the feasibility of using hardware imple-
mentable machine learning techniques. This may enable some error correction at
the speed required.

1 Introduction

Performance of a fibre-optic communication link is typically affected by a complex
combination of random processes (such as amplified spontaneous emission noise, po-
larization mode dispersion and so on) and deterministic or quasi-deterministic effects
(e.g. nonlinear inter- and intra-channel signal interactions, dispersive signal broaden-
ing, various cross-talks and so on) that result from particular system design and op-
erational regimes. Any installed fibre link has its specific transmission impairments,
its own signature of how the transmitted signal is corrupted and distorted. Therefore,
there is a great potential in the application of an adaptive signal post-processing that
can undo some of the signal distortions, or to separate line-specific distortions from
non-recoverable errors. Signal post-processing in optical data communication can offer
new margins in system performance in addition to other enabling techniques. A vari-
ety of post-processing techniques have been already used to improve overall system
performance, e.g. tunable dispersion compensation, electronic equalization and others
(see e.g. [1-4] and references therein). Note that post-processing can be applied both
in the optical and electrical domain (after conversion of the optical field into electrical
current). Application of electronic signal processing for compensation of transmission
impairments is an attractive technique that became quite popular thanks to recent ad-
vances in high-speed electronics.

In this work we apply standard machine learning techniques to adaptive signal post-
processing in optical communication systems. To the best of our knowledge this is
the first time that such techniques have been applied in this area. One key feature of
this problem domain is that the trainable classifier must perform at an extreme speed,



optical communication systems typically operate at bit rates of around 40 GHz. We
demonstrate a feasibility of bit-error-rate improvement by adaptive post-processing of
received electrical signal.

2 Background

At the receiver (typically after filtering) the optical signal is converted by a photodiode
into the electrical current. Detection of the digital signal requires discrimination of the
logical 1s and 0s using some threshold decision. This can be done in different ways
(e.g. by considering currents at a certain optimized sample point within the bit time
slots or by analyzing current integrated over some time interval) and is determined
by a specific design of the receiver. Here without loss of generality we assume that
discrimination is made using current integrated over the whole time slot. Note that the
approach proposed in this paper and described in detail below is very generic and can
easily be adapted to any particular receiver design. To improve system performance
and minimize the bit-error-rate, we propose here to use a method to adjust the receiver
by sending test patterns to transmission impairments specific for a given line. This is
achieved by applying learning algorithms based on analysis of sampled currents within
bit time slots and adaptive correction of the decisions taking into account accumulated
information gained from analysis of the signal waveforms.

3 Description of the Data

The data represents the received signal taken in the electrical domain after conversion
of the optical signal into an electrical current. The data consists of a large number
of received bits with the waveforms represented by 32 real numbers corresponding to
values of electrical current at each of 32 equally spaced sample points within a bit time
slot. A sequence of 5 consecutive bits is shown in Figure 1. As already explained the
pulse can be classified according to the current integrated over the width of a single bit.
For each of time slots in our data we have the original bit that it represents. Therefore
the data consists of 32-ary vectors each with a corresponding binary label.

In all we have a stream of 65536 bits to classify. As already explained categorising
the vast majority of these bits is straightforward. In fact with an optimally set electrical
current integrated over the whole time slot (energy threshold) we can correctly classify
all but 1842 bits correctly. We can therefore correctly classify 97.19% of the data, an
error rate of 2.81%. This is however an error rate significantly too high. The target error
rate is less than one bit in a thousand, or 0.1%. Figure 2 (a) gives an example of a
misclassification. The middle bit of the sequence is a 0 but is identified from its energy
as a 1. This is due to the presence of two 1′s on either side and to distortion of the
transmitted signal. It would be difficult for any classifier to rectify this error.

However other cases can be readily identified by the human eye and therefore could
be amenable to automatic identification. Figure 2 (b) shows an example where the bit
pattern is obvious to the eye but where a misclassification actually occurs. The central
bit is a 1 but is misclassified as a 0 from its energy alone.
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Fig. 1. An example of the electrical signal for a stream of 5 bits - 1 0 1 0 1.

Fig. 2. (a) An example of a difficult error to identify. The middle bit is meant to be a 0, but
jitter has rendered it very hard to see; (b) The central bit has been dragged down by the two 0s
surrounding it and is classified as a 0 from its energy. However to the human eye the presence of
a 1 is obvious.

3.1 Representation of the Data

Different datasets can be produced depending on how the original electrical current is
represented. As well as representing a single bit as a 32-ary vector (called the Waveform-
1 dataset), it can also be represented as a single energy value (the sum of the 32 values,
Energy-1).

As described above of the 65536 bits, all but 1842 are correctly identified by an
energy threshold. There are 32 distinct streams of 5 bits and 9 of these are represented
in the misclassified class with a high frequency from 5.86% to 21.17% among the 1842
misclassified cases. These nine sequences are shown in Table 1.
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Table 1. Nine sequences for which difficulties are most likely to occur.

0 0 1 0 0
0 0 1 0 1
0 1 0 1 0
0 1 0 1 1
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 1 0 1 0
1 1 0 1 1

As can be seen the majority of these involve a 1 0 1 or 0 1 0 sequence around
the middle bit, and these are the patterns for which difficulties are most likely to occur.
Therefore we may also want to take advantage of any information that may be present
in adjacent bits. To this end we can form windowed inputs, in which the 3 vectors rep-
resenting 3 contiguous bits are concatenated together with the label of the central bit
being the target output (Waveform-3). It is also possible that using adjacent bit infor-
mation by simply taking 3 energy values instead of the full waveform (Energy-3), or
using information from a window of 3 bits, with 1 either side of the target bit (Energy-
Waveform-Energy). Table 2 gives a summary of all the different datasets.

Table 2. The different datasets used in the first experiment.

Name Arity Description
Energy-1 1 The energy of the target bit
Energy-3 3 The energy of the target bit and one bit either side
Waveform-1 32 The waveform of the target bit

Waveform-3 96 The waveform of the target bit and the waveforms of the
bits on either side

Energy-Waveform-Energy
(E-W-E)

34 The waveform of the target bit and the energy of one bit
either side of the target bit

4 Approaches Used

4.1 Easy and Hard Cases

One difficulty for the trainable classifier is that in this dataset the vast majority of ex-
amples are straightforward to classify. The hard cases are very sparsely represented, so
that, in an unusual sense, the data is imbalanced. Figure 3 is a diagram of error rates
of 0 and 1 as a function of the energy threshold. It shows that if the energy threshold
is set to roughly 2.5, then those bits with energy less than this threshold are correctly
classified into the 0 class; on the other hand, if the energy threshold is set to about 11,
then those bits with energy greater than this are correctly classified into the 1 class. The
optimal energy threshold to separate two classes is 5.01, in which case, 1842 of 65532
are incorrectly classified - a bit error rate of 2.81%. Using this threshold we divide the
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data into easy and hard cases, that is, those classified correctly by the method are easy
ones, otherwise they are hard cases.

Fig. 3. A diagram of error rates of 0 and 1 as a function of an energy threshold.

4.2 Visualisation using PCA

Before classifying bits into two classes, we first look at the underlying data distribution
by means of Classical principal component analysis PCA [5], which linearly projects
data into a two-dimensional space, where it can be visualised.

We visualise the easy cases using PCA, then project the hard cases into the same
PCA projection space. The result is shown in Figure 4 (a). It shows that unsurprisingly
the easy 0 and 1 classes are linearly separable. Interestingly, the hard 0 and 1 classes
are for the most part also linearly separable. However, the hard 1s have almost complete
overlap with the easy 0s, and the hard 0s have almost complete overlap with the easy
1s.

Figure 4 (b) is the eigenwave of the first component in the PCA analysis, which
accounts for 86.5% of the total variance.

4.3 Single Layer Neural Network

As already described the classifiers need to be operationally very fast. Therefore the
main classifier we use is a simple single layer neural network (SLN) [5]. Once trained
(this is done off-line in advance) an SLN can be built in hardware and function with
great speed. For comparison purposes a classifier that uses just an optimal energy
threshold is implemented, where the threshold is the one giving the maximum accu-
racy rate (97.19%).
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Fig. 4. (a)Projection of the easy set using PCA, where the hard patterns are also projected into the
easy ones’ first two principal components space; (b) Eigenwave of the first principal component.

4.4 Identifying Difficult Cases using the Energy

As mentioned in Section 4.2, once the hard cases have been separated from the easy
cases, it is possible to linearly separate the 1s and 0s for even the hard cases. Therefore,
the question is how to distinguish between easy and hard cases. One way to tackle the
problem is to use an energy threshold band. So we can set two thresholds, Emin and
Emax, with Emin ≤ Emax, such that if the energy of a bit is less than Emin then that
bit is definitely a 0, and if is greater thanEmax then it is a 1. For those bits whose energy
lies between Emin and Emax, they can be considered as difficult cases. Experiment 2
describes how an energy threshold band can be used to select difficult cases which are
subsequently used as training data to an SLN.

4.5 Gaussian Mixture Model (GMM)

Another approach we applied in this work is to use a Gaussian mixture model [5].
Distinguish between easy and hard cases can be performed by modelling the class-

conditional probability p(x|ci) for each easy and hard class first, then by calculating
corresponding posterior probabilities using Bayes’ theorem.

Since it is usually insufficient to model the conditional density by a single Gaussian
distribution, we apply a Gaussian mixture model for each class-conditional probability
density. In a Gaussian mixture model, the probability density function of each class
is independently modelled as a linear combination of Gaussian basis functions. The
number of basis functions, their position and variance and their mixing coefficients are
all parameters of the model.

In a Gaussian mixture model, p(x|ci) is of a linear combination of component den-
sities p(x|j, ci), and be written as follows:

p(x|ci) =
M∑
j

p(x|j, ci)P (j) , (1)
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where for each component j, we have a Gaussian distribution function

p(x|j, ci) =
1√

(2π)D|Σj |
× exp

{
−1

2
(x− µj)

T Σ−1
j (x− µj)

}
, (2)

in which case µj and Σj are mean and covariance matrix of each component j respec-
tively. P (j) in equation (1) satisfies

M∑
j=1

P (j) = 1, 0 ≤ P (j) ≤ 1, (3)

which guarantee that p(x|ci) is a valid density function.
The error function is defined as the negative log-likelihood for the dataset given by

E = − lnL = −
N∑

n=1

ln p(xn|ci) = −
N∑

n=1

ln


M∑
j

p(xn|j, ci)P (j)

 . (4)

The expectation-maximisation (EM) algorithm [6] is used to estimate parameters P (j),
µj , and Σj of a mixture model for an optimal fit to the training data.

In our experiment, we first estimated parameters of each class-condition density
from the training dataset, where the data has been divided into an easy and hard subset
using the optimal energy threshold. Then we reassign the class membership for each
case using Bayes’ theorem, that is

P (ci|x) =
P (ci)p(x|ci)∑C
i=1 P (ci)p(x|ci)

. (5)

Finally two SLNs were trained on these two reassigned classes. For a new test case,
it is given either an easy or difficult class label using eq.(5), then it is forwarded to
the corresponding trained SLN network based on its class membership to give the final
discrimination.

5 Experiments

5.1 The First Experiment

We segment the data into 10-fold cross-training/validation sets and one independent
test set. Each distinct segment has 5096 easy cases and 148 hard ones. Therefore, each
training set includes 47196 cases and each validation set has 5244 cases in total; the
independent test set has 12730 easy ones and 362 hard ones. The results reported here
are therefore evaluations on the independent test set and averages over the 10 different
validation sets. The main results are given in Table 3.

The classifiers do give an improvement over the optimal energy threshold method
(Energy-1), with the SLN using the Waveform-3 dataset giving the best result. Interest-
ingly the very simple classifier of the SLN/Energy-3 combination nearly decreased the
error rate 42% on both validation and test sets when compared to the optimal threshold
method. This classifier is simply a single unit with 3 weighted inputs.

To examine more closely how a threshold band performs on the waveform-3 dataset
Experiment 2 was undertaken.
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Table 3. The results of classifying the different validation and test sets for the different data
representations. We also give the standard deviation for the validation sets.

Dataset Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
Energy-1 0 148 97.180 0 362 97.23

Energy-3 22± 5 64± 7 98.366± 0.164 59 148 98.419

Waveform-1 22± 5 51± 5 98.608± 0.136 45 122 98.724

Waveform-3 22± 5 50± 8 98.633± 0.139 45 116 98.770

E-W-E 21± 6 50± 6 98.642± 0.140 49 123 98.686

5.2 The Second Experiment

Three different energy threshold bands are used to filter out the easy cases as discussed
in Section 4.4. An SLN is then applied to each of the resultant difficult sets of size ap-
proximately 16700, 20600 and 24400, respectively. For the test set, above and below the
threshold band, are classified appropriately, and the rest, the difficult set, are classified
using the SLN. The results are given in Table 4.

Table 4. The results of classifying the different validation and test sets for each of the threshold
bands. We also give the standard deviation for the validation sets.

Band Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
2.5 ≤ x ≤ 10.5 23± 6 47± 5 98.659± 0.117 47 113 98.778

2.0 ≤ x ≤ 11.0 23± 5 48± 5 98.658± 0.122 42 114 98.808

2.0 ≤ x ≤ 12.5 22± 5 48± 5 98.661± 0.132 43 115 98.793

It can be seen that in general there is a classification improvement in the hard set on
both validation and test sets when compared with results in Table 3. Using a band range
from 2.0 to 11.0 give the best result on the independent test set over all our experimental
results.

5.3 The Third Experiment

In this experiment, we divide the dataset into easy and hard subsets using Gaussian
mixture models as discussed in section 4.5. For each class (easy/hard), we used a two-
gaussian mixture with diagonal covariance matrices. The results are shown in Table
5.

It gives the best mean accuracy on the validation sets in all experiments, but not in
the independent test set.
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Table 5. The results of classifying the different validation and test sets. We also give the standard
deviation for validation sets.

Model Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
2 gmms ‘diag’ 21± 4 48± 5 98.675± 0.126 49 119 98.717

6 Discussion

The fast decoding of a stream of data represented as pulses of light is a commercially
important and challenging problem. Computationally the challenge is in the speed of the
classifier and the need for simple processing. We have therefore restricted our classifier
to be, for the most part, an SLN and the data is either a sampled version of the light
waveform or just the energy of the pulse. Experiment 1 showed that an SLN trained
with the 96-ary representation of the waveform gave the best performance, reducing the
bit error rate from 2.8% to 1.23%. This figure is still quite high and we hypothesised
that the explanation was the fact that despite the data set being very large, 65532 items,
the number of difficult examples (those misclassified by the threshold method) was
very small and dominated by the number of straightforward examples. To see if we
could correctly identify a significant number of these infrequent but difficult examples
we undertook experiments 2 and 3 .

Although there was a small improvement obtained by using energy threshold band,
further work is needed to determine if there is an optimal band size. Similar results were
obtained by experiment 3.

This is early work and much of interest is still to be investigated, such as repre-
sentational issues of the waveform, threshold band sizes, and other methods to identify
difficult cases.
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Abstract. Wireless ad hoc networks may be configured as a fixed topology of
sensors or allowed to migrate as mobile nodes. The flexibility of these networks,
therefore, provides opportunities for their deployment in real-time and in adverse
situations as encountered in civil and military applications. These advantages are,
unfortunately, curtailed by the unconstrained nature of these networks in pro-
viding a trusted level of connectivity. The establishment of secret keys and the
authentication of trusted ad hoc group nodes are essential elements for a secure
network. In this paper, we develop an authentication protocol for wireless ad hoc
networks that is derived from a canonical splitting of time- and frequency-space
(channel) over which information propagates under the constraint of a collision-
avoidance protocol.

1 Introduction

The rapid deployment of wireless ad hoc networks even under the most severe condi-
tions, has elevated their prominence in all aspects of homeland security and military
communications. However, these infrastructure-less networks are prone to require ex-
plicit network cooperation, route maintenance in the event of link failure, and informa-
tion losses resulting from data packet collisions. These routing protocols for dynamic
networks have been discussed in [11] and [19]. Furthermore, without data encryption
and trusted node authentication, these networks are vulnerable to malicious attacks that
may be categorized by the following techniques: eavesdropping; man-in-the-middle;
replay; impersonation; session hijacking; reflection; and interleaving attacks.

Intelligent information processing provides network security approaches that has
prompted researchers to propose numerous security protocols for the establishment of
secret keys; and in particular, the authentication of wireless ad hoc network nodes. A
taxonomy and classification of services that rely on authentication are studied by [17,
10]. The use of local time-stamp authentication protocols [14], a hop-by-hop authenti-
cation [26], recommendation and reference protocol that is inspired by human behav-
ior [24], location-limited channels with pre-authentication [20, 1], an end-to-end data
authentication scheme that relies on mutual trust between nodes [23], a threshold se-
cret sharing using an identity-based cryptosystem to provide end-to-end authentication
[6], under loosely time synchronized nodes with one-way chain as a cryptographic key
where each such value is associated with a time interval [25].



In [3], a self-organized public-key management scheme is proposed that maintains
no centralized services, yet, allows each node to generate private-public key pairs; to
issue public key certificates for its neighboring nodes; and to perform authentication
via a chain of public-key certificates regardless of the network partition. Several re-
finements to this proposed scheme are presented in [2] where each certificate is issued
with a limited validity time period that contains its issuing and expiration time. After
expiration of the valid time period, new certificate are issued to its neighboring nodes.
In addition, nodes in alliance with their neighboring nodes form trust groups that com-
municate using the group’s private and public key. The authenticity between nodes is
performed by validating their cached public-key certificates chain. The public keys and
certificates are modeled as a directed graph for which transitive properties can identify
nodes belonging to a trust group.

A major difficulty with the solution specifications for certificate-based authentica-
tion, as described above, is the amorphous structure of wireless ad hoc networks in both
static and dynamic systems. The unconstrained nature of malicious attacks in such net-
works are, therefore, difficult if not impossible to protect against. Geometrically, the use
of public/private-key certificates is a one-dimensional parameterization of the problem
domain. Whether in the form of a certificate-chain or a cluster-key shared with multiple
neighboring nodes, the various approaches are limited by their reliance on artificial so-
lutions that do not embrace the dynamical properties or behavior of these systems. With
this in mind, we argue for a “canonical” reformulation of the authentication problem in
wireless ad hoc networks and derive an alternative solution technique that is described
in a two-dimensional setting.

If security is deemed critical then as in all practical engineering considerations,
tradeoffs must be identified and enforced. To this end, we propose a different approach
to authentication in wireless ad hoc networks that imposes a collision-avoidance policy
on data transmission that has the property of untangling the authentication process such
that certificates are no longer exchanged explicitly.

In the remainder of the paper, we outline the proposed approach, and provide pos-
sible means of implementations.

2 An Authentication Protocol with Embedded Certificates (APEC)

The proposed authentication protocol introduces a sequence of unique, non-overlapping
communication time-slots that are assigned to each authenticated node of the network.
Time-slots are used as an implicit certificate to ensure trust. In addition, we impose on
top of each time-slot a pseudo-randomly corollated frequency channel Fi over which a
data packet must be sent in time-slot Ti. This dependence between time-slots and fre-
quency channels introduces a two-dimensional description of network communication
and thus allows for a clear decomposition of the problem domain.

The protocol is described in terms of a cluster with a single cluster head or admin-
istrator node as follows:

1. Assume that an initial authentication phase has verified the trust of nodes that have
joined the cluster.
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2. The cluster head sends a public key to all nodes in the cluster.
3. The public key is used by every node to select the appropriate addem, multipliers,

etc to construct a common pseudo-random number generator (PRNG) using a hash-
table. Two such PRNGs are constructed RandT() and RandF, that produces the
sequences for Ti and Fi; respectively.

4. From the public key, a random seed is produce and used to seed RandT(). Each Ti
that is generated is in turn used as a seed to generate a corresponding Fi from the
pseudo-random number generator RandF().

5. After each complete communication time period, the order of the sequence of time-
slots are permuted.

At the end of these steps, a sequence of Tm time-slots with their randomly corre-
lated frequency channel, Fm, are created, and forms m-coordinate, 2-tuples (Ti, Fi).
In addition, the details of the PRNG construction are known to each entrusted node in
the network; and therefore, allows a deterministic recreation of all present and future
m-coordinate pairs. This becomes important when a node cannot send data packets to
the cluster head in one hop but instead requires a multi-hop link to reach its destination.

3 A Space-Time Coordinate Basis with Collision-Avoidance

Communication can be parameterized as a space-time, 2-tuple coordinate basis. Time
(time-slot), Ti, is taken as the moment (over the time-slot duration) that a message
is sent or received. Space is the physical channel over which the message is sent or
received. For a wireless network this channel is associated with a particular radio fre-
quency, Fi, over which a message is sent out or received. We characterize this 2-tuple
by (Ti, Fi).

In order to avoid ambiguities, it is important that a collision-avoidance protocol be
adopted for a wireless network so that no two data packets arrive at a given destination
during the same time-slot. This property is reflected in the following definition:

Definition: Two valid communication coordinates (Ti, Fj) and (Tr, Fs) within a wire-
less ad hoc network must necessarily satisfy the condition that Ti 6= Tr; however, it
is not sufficient since some time-slots may be forbidden. (collision-avoidance assump-
tion).

The collision-avoidance assumption restricts a clustered network of wireless nodes
to communicate only over predetermined, non-overlapping send or receive time-slots.
As a consequence, certain types of external attacks can be detected if two or more
distinct data packets arrive during the same time-slot.

The collision-avoidance assumption is examined by Forsmann et al., [8]. The per-
spective of their study is the QoS of unmanned aerial vehicles for autonomous formation
flight. For the sake of this paper, we consider only the cluster formation with a single
cluster head node, and assume that all communication is directed between a cluster
head and each individual node within the cluster. It is, however, possible that the mobil-
ity of each vehicle (node) may require the use of intermediate nodes to form a multi-hop
message-forwarding link if the sending node drifts out of radio range with the cluster
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head. Multi-hop network routing links are addressed using a modified version of the
AODV route-discovery protocol as described by Forsmann et al.

Under the assumptions of a collision-avoidance protocol and the two-dimensional
representation of communication events within a wireless mobile ad hoc network, we
introduce a cryptographic confusion algorithm that replaces the traditional certificate-
based authentication procedures that have been attempted for these infrastructure-less
networks. The following desired set of properties provide the foundation for our ap-
proach:

Property 1: A unique time-slot and frequency channel pair is assigned to only one node
within the network.

Property 2: It is desirable to conceal the selection of the radio frequency channel Fi in
each round of a node’s communication time-slot sequence.

Property 3: For each communication period a new sequence order for a given node’s
time-slots Ti are assigned.

Property 4: The length of a time-slot duration depends upon the time-skewing experi-
ence by each node’s clock. It will be assume that each node is equipped with a GPS
device for time synchronization.

The process for concealing the selection of Ti and Fi is performed using a pair of
orthogonal PRNGs as outline in Frederickson et al., [9]. Their work examined the issue
of reproducibility of Monte Carlo random walk algorithms for parallel execution. The
use of a single PRNG in a parallel processing environment has the effect of reordering
the sequence of pseudo-random numbers that are generated. Although this additional
randomness may seem advantageous, the final result cannot be compared for correct-
ness with the results of the sequential execution that uses the same PRNG. Without this
verification, it is not clear whether or not the parallel program has been implemented
correctly.

Analogously, a wireless ad hoc network represents a collection of parallel process-
ing nodes that can be assured a unique {Ti, Fi} pair for each entrusted node without
incurring inter-node co-channel interference. To ensure this property, each node must
be given a different random number sequence in a deterministic fashion. Figure 1 illus-
trates the orthogonal structure for a pair of PRNG that result in a reproducible random
number scheme.

Below, we summarize some typical PRNGs in use and techniques used in creating
parallel pseudo-random number generators (PPRNG).

4 Pseudo-Random Number Generation

4.1 Types of Generators

The following list are commonly used pseudo-random number generators:

– Additive and subtractive Lagged Fibonacci (LF)
– Generalized Shift Register (GSR)
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Fig. 1. RanT and RanF .

– Multiplicative Linear Congruential (MLC) and
– Combination Generators (CG)

A uniform (double precision) floating-point random number sequence xi in the interval
[0, 1) or (0, 1) are produced by the following recursions:

MLC (a,m = 2l):
Xi = aXi−1mod m; xi = Xi/m, (i = 1, 2, ...)

GSR (r, s,⊕l):
Xi = Xi−r⊕lXi−s; xi = Xi/2l, (i = r, r + 1, ...) (1)

LF (r, s,±m = 2l):
Xi = Xi−r ±Xi−s mod 2l; xi = Xi/2l, (i = r, r + 1, ...)

CG:
Zi = Xi � Yi; (i = r, r + 1, ...)

where � is either the exclusive-or-operator or addition modulo some integer m, and X
and Y are sequences from two independent generators. It is best if the cycle length of
the two generators is relatively prime, for this implies that the cycle length of Z will be
the product of that of the basic generators. One can show that the statistical properties
of Z are no worse than those of X or Y [15]. Good combined generators have been
developed by L’Ecuyer [13], based on the addition of Linear Congruential sequences.

4.2 Parallel Pseudo-Random Number Generation

Historically, the introduction of PPRNG was an attempt to address various efficiency
issues inherent in the parallel execution of scientific applications such as lattice gauge
and Ising model calculations. Within this context, the quality of PPRNGs have been
studied by a number of researchers [4], [5], [16], [18],[21]. More recently, their use in
games and graphics have drawn interest [22], [12].

As a brief overview, we list below several approaches that have been studied and
applied in the design of PPRNGs. The descriptions are only meant to provide a high
level, structural description of several different possible parallel techniques.
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– Leapfrog – The pseudo-random sequence is partitioned in turn among nodes so
that node i gets the sequence ri, ri+m, . . ., where m is the total number of nodes or
time-slots.

– Sequence splitting – The sequence is partitioned by splitting it into non-overlapping
contiguous sections. In particular, if it is known that the cycle length of a pseudo-
random sequence is lc then node i+ 1 gets the sequence r[ilc/m]+1, r[ilc/m]+2, . . .
r(i+1)lc/m.

– Independent sequences – For some generators, the initial seeds can be chosen in
such a way as to produce long period independent subsequences on each processor.

– Cycle parameterization – For PRNGs’ that have more than one distinct cycle, it is
possible to select a seed that begins in one cycle and a different seed that begins
in a different cycle resulting in two sequences that do not overlap. The Lagged
Fibonacci Generator is an example of a generator with this property. By associating
each seed with a cycle number i, parameter i determines the cycle from which the
sequence is drawn.

4.3 Reproducibility and Cycle Lengths

In order to ensure reproducibility, each node must be given a different random number
sequence in a deterministic fashion. This can be accomplished by creating a random
seed unique to each node (e.g., the time-slot) that in turn is used to seed a different
(orthogonal) random number generator that produces a second “independent ” pseudo-
random (frequency channel) sequence. This deterministic approach is reproducible and
requires no inter-node communication, whose costs are typically high. More impor-
tantly, the absence of inter-node communication is extremely desirable from a security
standpoint.

A pseudo-random number generator defines at most 2b different configurations
(states) where b is the number of bits that represent the number of possible states. The
sequence, after generating 2b different configurations, must repeat .

It is desirable, therefore, to use PPRNGs with the longest cycle length to guarantee
the minimal biasing of the results. This, however, does not eliminate the advantages of
a small cycle length as long as the coordinates that are produced are not exactly the
same. Hence even if the random number sequence repeats, if the {Ti, Fi} pair remain
unique, the bias remains low.

As a consequence, it is assumed that the correlation between pairs of pseudo-random
number generators has little effect on network authentication unless the bias results in
(Ti, Fj) cycles.

4.4 Security

Pseudo-random number generation is a process that either provides security or is vul-
nerable to attacks that can compromise the security of a system. The PRNG process
is provocatively attractive to attackers because it is typically a single isolated, hard-
ware/software component whose deterministic output is disguised as random. If an
attacker can substitute pseudo-random bits generated in a way that can be predicted,
security is totally compromised.
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Fig. 2. Direct Mapping Constant Increment δti = τ .

5 Time-Slot Selection

The sequence of time-slots for one complete communication period

{T0, T1, . . . , Tn, . . . , Tm−1, }

A communication period, τ , is defined as the sum over all m time-slots (m ≥ n) in
the closed interval [T0, Tm−1],

τ =
m−1∑
i=0

Ti.

The requirement (m ≥ n) for an n node wireless network is imposed for three reasons.
First, m may be viewed as a cryptographic parameter that introduces a level of confu-
sion, as is shown later. Second, the choice of m introduces idle time-slots over which
no data packets should be sent or received. Third, m provides a slight window (delay)
between the end of one time-slot and the beginning of the next.

After each communication period, a new sequence of unique non-overlapping time-
slots are assigned to each node. This assignment is defined by the following equation:

Tj,i+1 = Tj,i + δti, (2)

for i, j = 0, 1, . . . ,m. In this notation index j is the node number and i is the iteration
or communication period number.

There are several ways of selecting δti. One simple approach is to maintain the
order of time-slots for each node from one iteration to the next. Figure 2 illustrates the
case for δti = τ.

A second and possibly more secure approach is to apply a permutation on the order
of the previous time-slot sequence. The permutation of the sequence is shown in Fig. 3.

For a permutation π, we associate a permutation matrix Pπ and a distance matrix
Dπ whose values represent the number of column swaps from their original position to
their final position in the permutation. For example, if π = {0, 3, 2, 1}, then
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Fig. 3. Permutation Mapping Variable Increment δti.

Pπ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

∣∣∣∣∣∣∣∣ ,
and

Dπ =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 −2
0 0 −1 0
0 +2 0 0

∣∣∣∣∣∣∣∣ .
The distance matrix can then be used to define a time-slot increment vector δti

given by

δti = τθT + δtDπ · θ, (3)

where

θ =

∣∣∣∣∣∣∣∣∣∣∣∣

1
1
.
.
.
1

∣∣∣∣∣∣∣∣∣∣∣∣
of length m, and

δt = τ/m.

The components of Eqn. 3 are then applied to Eqn. 2.
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5.1 Multi-Hop Authentication

The requirement for pseudo-random reproducibility is most important in the instant
that a network topology has migrated beyond a single-hop radio range to a multi-hop
environment. In such a situation, a routing protocol is employed to initiate route dis-
covery. As part of the data transfer process, the destination node may have need of
the source nodes identity and the chosen route path. To obtain this information any
entrusted node intercepting the packets can recompute the node’s time-slot seed using
the original public-key and compute the appropriate frequency channel for the current
communication period. With this information, the source node and route path can be
identified. The implications of this scenario is that only trusted nodes can determine the
communication route, destination and source nodes in a calculable time frame.

5.2 Security Complexity

APEC is a cryptographic system protocol based on a source of random bits, whose
output is used in creating unique time-slot and frequency channel pairs. APEC employs
two “orthogonal” pseudo-random number generators that cooperate in parallel to assign
node-specific send/receive, time-slots that are in turn used to seed a pseudo-random as-
signment of time-slot, correlated frequency channels. In this construction, the sequence
of frequency channels can be systematically applied in turn to the same time-slot but on
different periods of the communication cycle.

The order of time-slots assigned to each node can remain in the same order or be
reordered to increase cryptographic confusion. In this paper, a reordering of the time-
slot sequence is presented using a simple permutation π.

The security complexity is stated by the following theorem.

Theorem: The brute force complexity for guessing the correct sequence of coordinate
basis pair for a b-bit random sequence and a permutation of the sequence order for m
time-slots is O(22b ×m!).

Proof: A pseudo random number generator is a finite state machine with at most 2b

different states where b is the number of bits that represent the state. The brute force
complexity of guessing the time-slots is O(2b). However, since the frequency channels
are coupled to the seed of a unique time-slot the complexity of the coupled random
number states requires a total of O(22b). If we also apply a permutation to the previous
time-slots sequence for every communication period the brute force complexity for m
time-slots is O(m!). The final complexity is the product of the time-slot, frequency
channel and the permutation operations. 2

6 Conclusions

Geometrically, the use of public/private keys as certificates for authentication in wire-
less ad hoc networks is a one-dimensional solution in a two- or higher-dimensional
problem domain. The novel abstraction taken here is to design an authentication pro-
tocol that embodies the dynamic processes and captures the essential behavior of the

88



system in a “self-certifiable” manner. In this context, we achieve a canonical formula-
tion of the authentication problem in wireless ad hoc networks and as such derive an
alternative solution technique devoid of explicit certificate passing.

The contributions of this paper is the design of a new authentication protocol that
relies on a collision-avoidance protocol to guarantee the detection of unauthorized at-
tempts to compromise a wireless ad hoc network of trusted nodes. The protocol creates
a random, yet deterministic sequence of coupled time-slots and associated frequency
channels that are unique to each node in the network. For each communication period,
the order of the sequence of time-slots may remain unaltered or the order can be re-
arranged deterministically without coordination via inter-node communication. If an
analogy can be made between frequency channels to colors in the visual range, the
communication in an APEC system would appear to be a coordinated light show.
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Abstract. Nowadays the idea of network control systems design considering 
the restriction results from schedulling analysis becomes a challenge based 
upon the persepctive of codesign point view since both analytic tools are 
pursued. A clear strategy is to define in cascade mode the scheduling analysis 
and afterwards the stability analysis of the respective control strategy. However, 
any modification in both structures has an integrated impact which is necessary 
to measure. In that respect the use of time delay impact is a suitable strategy to 
be followed and is explored in this paper. The use of codesign is to pursuit as a 
two objective strategy the definition of a valid metric that represents the effects 
in both, following the idea that stability analysis is affected according to the 
schedullability analysis. In both analysis a relaxation at the local conditions is 
feasible but it will have a global cost giving a non valuable approximation. 

1 Introduction 

Nowadays, the use of multiple tools for complex systems design like Real-Time 
distributed systems need any background in terms of design, for instance, the relation 
between analysis constrains expresed in different metrics like reliability, 
schedullability, safety, stability and so on. The need to relate these measures can be 
pursued in terms of a hollistic design or codesign sctrategy [4]. In order to define this 
kind of strategy it is necessary to determine the effects of each technique over the rest. 
Several approaches can be persued like decision trees, common metrics definitions, 
stochastic processes and others. However, this problem remains open in terms of a 
standard approximation amongst the complexity of the goal. One interesting 
approximation is based upon the codesign way of thinking, by choosing one specific 
aspect from each technique. Therefore, the individual achievemnt of every technique 
considering its effects over the rest should be pursuit. The objective of this paper is to 
review this approximation over a Real-Time Distributed System considering its 
effects over a specific application such as dynamic system. Specifically, this is 
studied by the use of schedulling and control design, where schedulability and 
strability analysis are reviewed to guarantee the feasability of this strategy. 
 



Although this is dependant on the specific strategy to be followed, global 
characteristics such as the respective analysis can be pursued. 
 

Further on, the union of different techniques allows a holistic view of the problem, 
although, the result can be restricted to specific algorithms and the inherent restriction 
of the case study. 
 

Section 2 presents a review of structural codesign based upon the schedulling 
approximation. Section 3 presents control codesign where fuzzy logic control law is 
used in order to incorporate scheduler information onto stability analysis. Section 4 
presents some concluding remarks of thi approximation. 

2 Structural Codesign 

The codesign proposal is based upon the iteration between schedulability and stability 
analysis following online approximation as shown in Fig. 1. 
 

SCHEDULLING 
EVALUATION

Stability
Test

Time Delays
Evaluation

Valid Scheduler

Reconfiguration

Yes

NoYesNo

Scheduler Proposal

External 
Event

 
Fig. 1. Dynamic Reconfiguration in terms of Codesign strategy. 

Any classical scheduller [1] bounds the time behaviour of the tasks in terms of their 
own priority where certain modification amongst them produces important 
differences. For instance, consumption time from tasks named as sensors ( sjt ), 

actuators ( ajt ) and controllers ( cjt ) can be seen as follows: 
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Where the total time spent by the tasks is equal to j
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Index i is the number of tasks involved per structural elements like sensors (M), 
actuators (P) and controllers (N). Index j is the current scenario defined by the 
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scheduller. These time delyas that are the result of priority modification on the 
peripheral elements as individual manner should change the design parameters at the 
control law. At least these time delays provide enough information to perform an 
adecuate control law design. Fig. 2 shows how j

tt should be bounded to Control 
period of time. 
 

sensors

controllers

actuators

Total time Consumed by system 

TimeT

j
tt

 
Fig. 2. Bounded Time Inherent to Control Period of Time. 

Where T is a long enough time window where j
tt should take place. tΔ is the 

variation presented per element [12] during element actuations according to the 
pursued scheduler algorithm such as EDF, RM or FTT [1] [2] [3] [15]. 
 
To guarantee schedulability is necessary an effective performance from the control 
law [4]. This can only be pursued if only if the time delays exist within the bounded 
time delays used to design a suitable control law as a classical gain schedulling 
strategy. When task schedulling is performed, it implies a variation tΔ  giving a 
modification to the control law.  Therefore the classical scehdulability analysis [1] can 
be modified in order to incorporate this kind of uncertainty giving the following result  

1
Δ

1
≤

+
=∑

=

N

i i

ii

P
cc

U      (3) 

Where ci represents the consumption time of each task, Δci is the related uncertainty, 
Pi is the related period, N is the number of tasks and U is the total relation between 
cosumptions and periods. This last value should be less than one in order to guarantee 
schedulability. It is important to deploy that any classical schedulling algorithm 
should fit into this condition as longs as the tasks are periodicals (which is the case 
herein) and the inherent uncertaintes should be fit into the same condition. 
 

In fact, these time delays can be seen like a phase modification within the 
communication period from the involved processes. This scenario presents a complete 
phase modification at the entire system. 
 
The communication network plays a key role in order to define the behaviour of the 
dynamic system in terms of time variance giving a nonlinear behaviour. In order to 
understand such a nonlinear behaviour, time delays are incorporated by the use of 
real-time system theory that allows time delays to be bounded even in the case of 
causal modifications due to external effects. In order to model this behaviour a 
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reconfigurable real time schedulling algorithm is proposed, named Structural 
reconfiguration algorithm (SRA).  
 
This algorithm bounds Time delays through a real-time scheduling algorithm within 
communication network. According to Figure 1, structural reconfiguration takes place 
as a result of Earliest Deadline First (EDF) Schedulling algorithm and the associated 
user request. This reconfiguration causes a control law modification [1] which is the 
actual control law reconfiguration. 
 
Schedulling approach pontentially modifies frequency execution and communication 
of tasks [5] in order to give certain priority to some of them during a bounded time as 
shown in Fig. 3. Furthermore, in this kind of strategy Tasks modifies their priority, it 
does not imply that neither the period nor the consumtion times are modified. 
Therefore the tasks would have a bounded delay within the sampling time wich is 
reflected as changing on the phase. 
 

 
Fig. 3. Task Frequency modification as result of Scheduller. 

Potential modifications onto schedulling approach deploy change in the priorities that 
affects time delays and the respective control law. The delays are measured as tΔ  
[14] and bounded into the inherent control period of time [6] [7].  
 

Now by taking partial results from schedulling algorithm like sjt and the related tΔ , 
the actual time delays are used at the control law for parameters design as shown in 
following section. The involved time delays are depicted as i

jτ and come from this 
scheduling design. Other delays like actuators and control delays are not used in the 
design of the control law, although play an important role.  
 
Therefore schedulling and control analysis merge together when time delays are 
complete bounded even in the case of time variance. The main restriction is in terms 
of predictable time delays. 
 
The approach followed at the control reconfiguration does not take into account 
scheuller decision in a direct manner. It takes the time delyas as bounded values 
already defined and used to design a suitabe control law. Therefore, acording to 
current state plant values, the related fuzzy rule is selected. 
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3 Control Reconfiguration Approach 

The control law is defined as a group of Fuzzy TKS [8] [9] [10] control law related to 
each local linear system. At the beginning the general structure of each fuzzy rule is: 

ir  if 1x  is c
i1A  and 2x  is c

i2A  and … lx  is c
liA   then ( ) ( )txQkf i=        (4) 

 

where { }N,....,1i = , N is the number of fuzzy rules, { }l1 x,....,x  are current states of 

the plant, c
ijA  are the gaussians membership functions like: 
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where: c
ijc  and c

ijσ  are constants to be tuned.  
 
Similar to fuzzy system plant [9], fuzzy control representation is integrated as: 
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Wher iQ  is the related i’th control gain. The configuration of the fuzzy logic control 
(FLC) integrated to the plant, epxressed as well in terms of Fuzzy Takagi Sugeno 
approach is represented in Fig. 4 [11]. The closed loop system is pursued in terms of 
local plant and related control gain per rule. In order to pursue this strategy, plant 
model is shown in terms of its state space representation. 
 

 
Fig. 4. Plant configuration using FLC control. 

 Using the proposed dynamic plant based on state space representation, see [11]: 
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where 1i =ρ  and  ∑
=

=ρ
N

1i
i 1 taking into account that N are the total number of possible 

faults and M are the involved time delays from each fault. Current communication 

time delays are expressed as i
1j−τ  and 

i
jτ  remember that ∑

=

≤τ
M

1j

i
j T  (total period of 

time inherent from control law design) and iB in general terms is integrated as 
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where N1 bb →  are the elements conformed at the input of the plant (such as 

actuators) and 0i is the lost element due to local sensor fault where P
iB  represents only 

one scenario. Remember that the only considered faults are sensor faults. Therefore 
one input signal is measured. This can lose its confidence but not current value [10]. 
Since this approximation current p

iB  considers local sensor faults and related time 
delays of  
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Remember that the related time delays are the result of structural reconfiguration 
(SRA) explained before are calculated according to eqns. 4 and 5.  
 
Back to the controller definition where N is the number of possible scenarios, 
therefore, number of rules. 
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as for the plant integrated to the controller in closed loop, this is expressed as: 
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Then the proposed Lyapunov function is: 
( )( ) ( ) ( )txPtxtxv z

T=      (14) 
 

And its derivative is expressed in eqn 14 as a necessary condition for stability 
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In terms of the plant integrated to the control law this is expressed as follows: 
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where M is the number of time delays per scenario within the control law inherent 
period. 
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Therefore the core of lyapunov function is given as : 
( )xQBAx z

p
z

p
z -=      (17) 

 

Therefore the derivative of the energy as expressed in 15 can be expressed as: 
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Now by expressing the same energy function in terms of an inequality relation in a 
relaxed manner, considering all the possible Pz matrices equals in terms of the same 
matrix ( z
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zz QBAg -= ) for any condition considered along the N fuzzy rules, energy 

function can be expressed as: 
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Therefore, the controller design can be expressed as:   
0-- >++ zii
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Remember that i has a value between 1 to N. Therefore for every given plant and the 
respective controller by decomposing this equation, the Pz matrix should be bounded 
as: 
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Remember that that also j has a value between 1 to N related to the number of rules. 
Therefore in terms of Linear Matrix Inequality [9] is given by 
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This condition is given for every single time delay and local fault appearance. 
Furthermore the stability and the convergence of states should be assured by the 
adequate selection of matrices Pz and the related parameters from both fuzzy systems. 
In this case a recommendable procedure to follow is multi-objective optimization in 
order to define those suitable values [12].  

The whole system considering this codesign strategy, has been implemented in 
several environments such as simulation based [12] using True-Time [16] and real-
life using CANBUS [13]. Although this approximation is out of the scope of the 
paper, these implementations have given enough information in terms of the practical 
experience for current approach. Moreover, related strategies for codesign control 
theory have been reviewed with preliminar succesful results in [6]. 

4 Conclusions 

The use of codesign as a suitable strategy for networked control and scheduling 
analysis is a real possibility as explored in this paper. Although it is restricted to the 
fesability of both techniques, this can be approximated as an iteractive procedure 
where both techniques need to achieve an aggrement. 
In this case time delays are approximated and bounded through a suitable scheulling 
policy which affects the results of current selected controller. The exploration 
followed in here is based upon classical schedulling algorithms and fuzzy takagi 
sugeno approach. The key characteristic of last approach is design of local control law 
considering bounded time delays per valid scenario from schedulling results. 

Several results need to be highlighted such as the convergence of variable time 
delays due to the use of schedulling approximation and the restricted and known 
modification onto control law design. Furthermore, bounded time delays as long as 
they are from the same source, like sensor delays, they modifiy similar control 
paramters, therefore, control structure does not need to be modified on a large scale. 

Future work need to be focus onto strucutral modification from the control law, as 
well as a deeper study from time delays source. For instace, the complex computing 
relationship stablished through the operating system, middleware transactions, 
interprocees communications, communication network protocols, and others. 
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Abstract. This paper investigates different models of leakiness for the soma of 
a simulated spiking neural controller for a robot exhibiting negative photo-
taxis. It also investigates two models of receptor response to stimulus levels. 
The results show that exponential decay of ions across the soma and of a recep-
tor response function where intensity is proportional to intensity is the best 
combination for dark seeking behavior. 

1 Introduction 

In real neural systems it is known that leakiness in individual neurons can be caused 
by a variety of physical processes which can in turn lead to a variety of temporal 
profiles. Moreover the response of receptors to intensity of stimulus could be either 
linear or non linear [7]. Although different mechanisms of leakiness are possible, 
some are easier to implement in a robot than others. It is important to identify which 
mechanisms will require the least computational effort while producing the desired 
behaviour. 

In this paper we investigate the effect of the specific function representing leaki-
ness and receptor response, to the ability of an artificial neural system to respond 
appropriately to stimulus gradients in order to perform negative photo-taxis.  

Photo-taxic robots [6], [4], [5] based on Braitenberg vehicles [3], controlled by ar-
tificial neural networks, have produced both varying results and success [6]. We have 
developed a robot controller using a simplified artificial spiking neuron model, im-
plemented in an event driven simulation [8], [2]. The artificial neuron has a leaky 
soma which links to an axon hillock. The axon hillock initiates spikes in one or more 
collaterals attached to the axon hillock. See Figure 1 for an illustration of the artificial 
spiking neuron. 

Using a modified Braitenberg fear vehicle [3], we simulated the behaviour of 
negative photo-taxis. In the original Braitenberg fear vehicle the output of the left 
light sensor is used to set the power output on the left motor, and a corresponding 
arrangement is made on the right side of the vehicle. In our modified arrangement we 
add sensory neurons, connected to interneurons, which then connect to the motor. 
This gives a potentially wider range of behaviours. However this arrangement was 
only satisfactory when the light intensity difference between the two light sensors was 



large. When the differences were not large, the robot was unable to correctly orientate 
itself towards darkness. 

 

 
Fig. 1. The model of a simplified spiking neuron showing soma, axons, chemical receptor, 
synapse and neurotransmitter (note that the dendritic tree is not modeled). 
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Fig. 2. Membrane potential with different decay functions with a constant rate of voltage addi-
tions generated by the arrival of spike events (designated by Addition points in the graph). 
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Two aspects of the model that could account for this lack of sensitivity were thought 
to be: the nature of the leakiness of the soma and the relationship between light inten-
sity and firing rate of the light receptors. 

In real neurons leakiness is controlled by a variety of mechanisms including volt-
age dependent and independent ion channels, active transport though pumps, ex-
changes and axial currents [7]. 

Subsequently we studied two models for leakiness: linear decay in voltage, which 
simple, and an exponential decay which is more plausible and could be caused by 
ions passing through pores along a concentration gradient, see Figure 2. 

 
Both of these are biologically possible, but the latter system, which does not involve 
the direct use of energy, is more likely in a biological organism where parsimony of 
design is often found. 

The relationship between light intensity and input current to a receptor neuron is 
complex and may lead to a variety of mappings between light intensity and the firing 
rate of a receptor. 

To investigate this, two models for firing rate of a receptor cell, under different 
light intensities, were studied: inter spike time being inversely proportional to light 
intensity, or, inter spike time being proportional to the difference between the maxi-
mum possible intensity and actual intensity. The first of these produces a linear rela-
tionship between light intensity and firing rate and the second produces a hyperbolic 
relationship. Both of these are biologically plausible [7]. The first model would result 
in firing rate being proportional to light intensity and the second method would pro-
duce a non-linear relationship as shown in Figure 3. 
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Fig. 3. Firing rates of the sensory neuron using a linear and hyperbolic relation. Note the poor 
discrimination of the hyperbolic function at low light intensities.). 
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2 Methodology 

The experiment to test which function produced the greatest rotation was carried out 
on a robot, simulated in software. A schematic of the robot is shown in Figure 4. 
 

 
Fig. 4. A schematic of the robot indicating the position of the two light sensors and two in-
terneurons which attach to the motors. Note the connections are excitatory which causes the 
vehicle to perform negative photo-taxis. 

Simulated receptor neurons were attached to light sensors. These sensory neurons 
then connected to interneurons which subsequently attached to the motors with exci-
tatory ipsilateral connections (left receptor connects to left motor). At the start of each 
experiment the robot was placed perpendicular to a linear light gradient, see Figure 5. 

 
0 Distance from black : Proportional to light intensity : Arbitrary units          10000 

Fig. 5. The Robot on the linear light gradient. The robot is placed orthogonally to the gradient 
and is “pinned” in position so that it can only rotate (X marks the vertical axis of rotation). 

The simulation prevented forward motion of the robot, but allowed rotation so that 
the robot would spin on the spot (similar to an insect being tested for pheromone 
orientation in a wind tunnel). The simulation was run for 10 seconds and the total 
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angle of rotation was recorded. The robot was placed at incremental distances from 
the left side of the gradient, providing 9 data samples. Each permutation of decay 
model, receptor firing model and position was repeated 7 times, resulting in a total of 
252 experiments. 

 
The two models for potential decay in the soma of the interneuron are: 
• Linear decay: which is very simple to calculate    

  α−=+ tt cc )1(  

• Exponential decay: biologically more plausible    
  βtt cc =+ )1(  

Where c is the synaptic concentration with constants α and β, where β < 1. 
 
Two models for determining the time between firings of light receptor neurons 
were: 

• Inverse   min
1 T
i

T +∝  

   so iF ∝   
producing a linear relationship between light intensity and neuron firing rate. 

• Linear  ( ) minTikT +−∝  

    so 
ik

F
−

∝
1   

producing a hyperbolic relationship between light intensity and firing rate. 
 

Where k is the maximum stimulus level achievable, i is the intensity of stimulation 
F is the firing rate and Tmin  is a constant which prevents the period being less than 
0.01s (below this value the amount of processing increases significantly). 

3 Results 

The full results for all four experimental conditions are given in Figure 6. This shows 
that significant rotation only occurs under the condition of exponential voltage decay 
and inverse inter spike time and then only in the dark region. 
 
A study of the motor logs for all conditions indicated that at high light levels, both 
motors had been turned on to the maximum level due to very high rates of input fir-
ings. This had occurred because the soma of the interneuron had saturated and had 
prevented the voltage dropping below the threshold value for spiking. 
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Amount of rotation for different light intensities
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Fig. 6. A graph of the amount of rotation achieved. This shows the results for the four condi-
tions: exponential voltage decay and inverse inter spike time, exponential voltage decay and 
linear inter spike time, linear voltage decay and inverse inter spike time, and linear decay and 
linear inter spike time. The exponential voltage decay and inverse inter spike time is the only 
configuration where significant rotation occurred. 

Linear decay of potential performed particularly poorly. In high light intensity the 
decay of voltage in the interneuron was not sufficient to allow the voltage to fall be-
low the firing threshold – the rate of decay in this model is constant and is therefore 
not related to the actual voltage. Moreover at low light intensities the voltage decay 
was too rapid to allow the voltage to ever exceed the firing threshold. Exponential 
decay of potential was much better: in this case the rate of decay is proportional to 
voltage, producing much greater sensitivity at the interneuron.  

As already noted a linear relationship between inter spike times and light intensity 
at the light receptor neurons gives rise to a hyperbolic relationship between intensity 
and firing rate. This gives poor discrimination at low light levels and the results dem-
onstrate the inadequacy of this encoding. 

4 Discussion 

In real neural systems it is known that leakiness in individual neurons can be caused 
by a variety of physical processes, which can lead to a variety of temporal voltage 
profiles. Moreover the response of receptors to intensity of stimulus could be either 
linear or non linear [7]. 

Our results show that for the example of a negatively photo-taxic robot, an expo-
nential decay of membrane potential and an inverse relationship between light inten-
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sity and inter spike time (resulting in a linear relationship between light intensity and 
firing rate) produces the greatest rotation at low light levels. 

At high light levels the rotation is limited due to both motors being stimulated at 
the maximum rate because the interneurons receive levels of stimulus which prevents 
the membrane potential from dropping below threshold. 

Interestingly, the most effective neural model is also the most biologically plausi-
ble. Diffusion of ions through pores would naturally give rise to an exponential decay 
whereas linearization of the decay would require additional voltage dependant mecha-
nisms. 

The modified Braitenberg wiring using interneurons is biologically more realistic 
than the original vehicle because it involves some level of processing by the interneu-
rons, but it is not sophisticated enough to cope with the full range of light levels. We 
are currently investigating models of dynamic normalisation to achieve greater sensi-
tivity to small differences in light intensity. 
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Abstract. The objective of this work is to analyze the behavior of the tradi-
tional control and the fuzzy control, applying them in the flow and temperature 
control to the load of current of a heat exchanger, as well as the analysis of dif-
ferent methods of defuzzification, utilized just as itself this carrying out the 
fuzzy control. Acting on the structure of the fuzzy controller some changes of 
form are carried out such that this tune in to be able to obtain the answer but 
optimum. In the same way proceeds on the traditional controller, and in this 
way comparisons on these two types of controls are established.  Inside the 
changes that are carried out on the fuzzy controller this form of defuzzification 
the information, that is to say the methods are exchanged defuzzification in or-
der then to realize comparisons on the behavior of each one of these. 

1 Introduction 

In many of the sectors of the industry where include itself thermal processes, is im-
portant the presence of a heat exchanger [1] [2]. Said processes do part of the every-
day life of an engineer that has as field of action the control, therefore is considered 
interesting to realize a control to this type of tools. This work in its content studies 
two large aspects: A comparison between the traditional control and the fuzzy con-
trol, and an analysis between some of the different methods of defuzzification that are 
utilized in the fuzzy logic [3], doing an analysis of each one of they taking in consid-
eration contribute them that other authors have done and leaving always in clear, that 
the alone results obtained will be applicable al moment of doing control on an ex-
changer of heat [4]. The system this composed one for two exchangers of heat [5], 
one of concentric pipes and the other of hull and pipes, to which implemented them 
an automatic control of the temperature and the flow to the load of the current of 
heating (Fig. 1). 



 
Fig. 1. Assembly of the system. 

This control is realized through two proportional valves, one to the input of the water, 
that is the responsible for maintaining the value of order of the water and the other 
installed in the line of input of the vapor (source of heat), that is responsible of main-
taining the quantity of necessary vapor to obtain the target temperature. The meas-
urement of the flow [6] is realized by means of a sensor of rotary palette and the 
measurement of the temperature by means of thermocouples [7] [8] [9]. The signals 
supplied by these sensors are acquired by means of the FieldPoint systems of Na-
tional Instruments [10], the same one that takes charge of sending the signal to the 
valves of control, after to be processed the data by the controller [11]. 

2 Software of Fuzzy and Classic Control 

The software of control designed, is formed of two sections, the program of fuzzy 
control, and the program of the PID (Proportional/Integral/ Derivative) control. These 
controllers are elaborate in environment Labwindows/CVI, software of the company 
National Instruments, which permits to realize the pertinent operations with the data 
captured through the modules of FieldPoint, and that, are utilized in the control of the 
system. The fuzzy control interface, is the responsible for taking the data of the sen-
sors, so much of temperature, for the case of the control of temperature, as of the 
sensor of flow, for the control of the same one, to process, and according to an order 
established, to determine an response, which is sent to the actuators. Basically, this 
program is responsible of: to schematize the fuzzy sets, according to established by 
the user, defuzzification of the inputs, to realize the inference of these inputs in the 
rules, to realize the aggregation in the outputs sets, and to execute the process of de-
fuzzification, to determine the response that help to the system to obtain the stable 
state. The program of the classic control PID, is the responsible for taking the data of 
the sensors, so much of temperature, for the case of the control of temperature, as of 
the sensor of flow, for the control of the same one, to process, and according to an 
order established, to determine an response, which is sent to the actuators. Basically, 
this program is entrusted of to execute the three actions of control, proportional, de-
rivative and integral to determine the responses that help to the system to obtain its 
target state. The PID control system general is represented in figure 2, where R(s), is 
the signal target or set point, U(s), is the output of the PID controller that goes toward 
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the plant G(s), and Y(s), is the value taken of the variable to control, which reduces to 
the reference and the error is determined (controller input). 

 

 
Fig. 2. System of Control PID. 

The control of Temperature, have as an objective to obtain that the water that the 
exchanger of heat leaves achieve the value of the target temperature and then to keep 
it in the value even with external disruptions. That is to say, should operate on the 
valve of control who is the one that supplies the quantity of vapor that heats the wa-
ter. The input to this system of control will be the error of temperature, obtained since 
the thermocouple placed on the exit of the exchanger, and the exit will control the 
quantity of necessary current to open or to close the proportional valve (Plant). This 
control is realized through a PID controller. The flow control has as an objective to 
obtain that the mass flow of water that enters to the exchanger of heat, achieve the 
target value, and can to keep it during its operation, and even with disruptions. This 
means that should operate on the valve of control, who is the one that strangles the 
quantity of water that enters to the system. The input of the system will be the error 
obtained through the sensor of flow installed in the input of the system, and the PID 
controller will control the quantity of necessary current to manipulate the proportional 
valve. Both processes begin, calculating the difference between the measured tem-
perature and the temperature target or of the flow measured and the flow desired.  In 
this form, know the error. Then, the values of the parameters of control are taken, and 
the output is calculated that goes toward the plant.  This output, will obtain values 
since 0 to 20 mA, they will represent angles of opening of the proportional valve. 

3 System of Fuzzy Control 

The input to this system of control will be the error of temperature and the gradient, 
obtained since the sensor placed on the way out of the exchanger, and the exit will 
control the quantity of necessary current to open the proportional valve. The rules of 
the system and function of membership are obtained in the table 1 and figure 3, re-
spectively. 

Table 1. Temperature control rules assembly. 

    Error 
Δ Error Negative Zero Positive 

Negative Open Open Not operation 
Zero Open Not operation Close 

Positive Not operation Close Close 
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Functions of membership for 

the current at the outset 

 
Functions of membership for the 
variable derived from the Error 

 
Functions of membership or the 

variable Error 

Fig. 3. Functions of membership temperature control. 

The control of flow has as objective to obtain that the mass flow of water that enters 
to the exchanger of heat, achieve the value of order, and can to keep it during its 
operation, and even before disruptions.  This means that should act on the valve of 
control who is the one that strangles the quantity of water that enters to the system. 
The input of the system, they will be the error obtained through the sensor of flow 
installed to the entrance of the system, and the change of the error in the time, and the 
output will control the quantity of necessary current to manipulate the proportional 
valve. Both processes begin, calculating the difference between the measured tem-
perature and the temperature desired, or of the flow measured and the flow desired. In 
this form know the Error. Then, calculate the gradient, reducing the new error of the 
previous one.  Once known these variables, that constitute the inputs of the fuzzy 
logic controller, proceeds to realize the fuzzification, the inference and the defuzzifi-
cation to obtain the output of the controller.  This output, will obtain values since 0 to 
20 mA, who will represent angles of opening of the proportional valve. The rules of 
the system and function of membership are obtained in the table 2 and figure 4, re-
spectively. 

Table 2. Flow control rules assembly. 

        Error 
Δ Error 

Negative Zero Positive 

Negative Close Close Not operation 
Zero Close Not operation Open 

Positive Not operation Open Open 
 
 

 
 Functions of membership for the 

variable Error 

 
Functions of membership for the 
variable derived from the Error 

 
Functions of membership for 

the current at the outset 

Fig. 4. Functions of membership flow control. 
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3.1 Comparative Results between the Methods of Defuzzification  
Implemented 

The methods of defuzzification chosen were five; these are know in the area of the 
control by the names, central gravity weighted by the height, central gravity weighted 
by the area, average of centers, points of maximum criterion weighted by the height 
and points of maximum criterion weighted by the area. When refers to the control of 
a system, the main term on which refers is to the stability that this can offer, for this is 
necessary to take into consideration, the time that delayed the system in being stabi-
lized, the margin of error between the value desired, (Vc), and the values of stabiliza-
tion, (Ve) of the system and the influence of the inertia of the system. For the tests of 
temperature and flow control, is defined a set point of 25 [Lts / min] and 40 [ºC]. The 
parameters and equations used are observed in the table 3 and the table 4 the different 
responses are shown in each one of the methods, according to the parameters estab-
lished in the table 3. 

Table 3. Methods and models of defuzzification. 

METHODS EQUATIONS 

1. Central gravity weighted 
by the height 
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Where, w is the center gravity of the 
resultant assembly after realized the 
fuzzy operation chosen, and h is the 
height of the same assembly. 

2. Central gravity weighted 
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Where, w is the center gravity of the 
resultant assembly after realized the 
fuzzy operation chosen and s is the 
area of the same assembly. 
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Where, G is the point of maximum 
criterion of the resultant set after to 
realize the fuzzy4 operation chosen 
and s is the area of the same set. 
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Where, G is the point of maximum 
criterion of the resultant set after to 
realize the fuzzy operation chosen and 
h is height of the same set. 
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Table 4. Response in each one of the methods established. 
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Table 4. Response in each one of the methods established (continued). 

TEMPERATURE CONTROL 
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A summary of the results obtained in the different methods is shown in the table 5 for 
the control of flow and the table 6 for the control of temperature. 
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Table 5. Response of the methods of defuzzification in the control of flow. 

Defuzzification 
Method 

Time of 
stability 

[sec] 

Margin of error 
(Vc - Ve) 

Influence of the inertial of 
system 

Central gravity 
weighted by the 
height 

105 0.8% above of the set point 
2% underneath of the set point 

0.8% above of the set point 
8.4% underneath of the set 

point 
Central gravity 
weighted by the 
area 

125 0.8% above of the set point 
2% underneath of the set point 

7.2% above of the set point 
5.2% underneath of the set 

point 

Average of 
centers 85 0.8% above of the set point 

2% underneath of the set point 

4% above of the set point 
5.2% underneath of the set 

point 
Points of maxi-
mum criterion 
weighted by the 
height 

230 2% underneath of the set point 0.8% above of the set point 5.2% 
underneath of the set point 

Points of maxi-
mum criterion 
weighted by the 
area 

 
120 

0.8% above of the set point 
2%  underneath of the set point 

0.8% above of the set point 
2% underneath of the set point 

Table 6. Response of the methods of defuzzification in the control of temperature. 

Defuzzification 
Method 

Time of 
stability 

[sec] 

Margin of error 
(Vc - Ve) 

Influence of the inertial of 
system 

Central gravity 
weighted by the 
height 

670 0.75% underneath of the  
set point 

40.895% above of the set point 
11.575% underneath of the  

set point 

Central gravity 
weighted by the area 

Not stabi-
lized Not stabilized 

11.25% above of the set point 
14.5325% underneath of the  

set point 

Average of  centers 710 1% underneath of the 
 set point 

10.215% above of the set point 
12.5% underneath of the set point 

Points of maximum 
criterion weighted 
by the height 

745 0.75% underneath of the 
 set point 

10.525% above of the set point 
3.795% underneath of the  

set point 

Points of maximum 
criterion weighted 
by the area 

735 1.38% underneath of the  
set point 

14.805% above of the set point 
10.4075% underneath of the  

set point 

3.2 Comparative Analysis between the Classic Controller and Fuzzy  
Controller 

To be able to realize this analysis should make use of concepts that be fundamental at 
the moment of to evaluate the efficiency of a controller. The concepts to take into 
consideration in this case are, the time that delayed the system in being stabilized, 
margin of error between the value of order, (Vc), and the values of stabilization (Ve), 
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of the system and the Influence of the inertia of the system. For the comparative 
analysis between the fuzzy controller and the PID controller in the control of flow 
made use of the tests realized to each one of these controllers, with a set point of 25 
[Lts / min] and 40 [ºC]. The results obtained are shown in the table 7. 

Table 7. Response of the controllers. 
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A summary of the results obtained in the different methods is shown in the table 8 for 
the control of flow and the table 9 for the control of temperature. 

Table 8. Response of the methods of defuzzification in the control of flow. 

Controller 
Time of 
stability 

[sec] 

Margin of error 
(Vc - Ve) 

Influence of the inertial  
of system 

FUZZY 
CONTROL 85 0.8% underneath of the set point 

2% above of the set point 
4% underneath of the set point - 

5.2% above of the set point 

PID CONTROL 115 0.8% underneath of the set point 
2% above of the set point 

22.8% underneath of the set 
point 2% above of the set point 

Table 9. Response of the methods of defuzzification in the control of temperature. 

Controller 
Time of 
stability 

[sec] 

Margin of error 
(Vc - Ve) 

Influence of the inertial of system 

FUZZY 
CONTROL 710 1% underneath of the set 

point 
10.215% above of the set point 

12.5% underneath of the set point 

PID CONTROL 505 2.75% underneath of the 
set point 

4.455% above of the set point 
2.75% underneath of the set point 
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4 Conclusions  

The results obtained in this work show the technical viability of the utilization of the 
fuzzy logic in the control of flow and temperature to the warming-up current input of 
an exchanger of heat.  With respect to the control of flow and temperature implement-
ing fuzzy logic, can tell that possesses the advantages of need not a mathematical 
model of precision of the control system. As disadvantage can tell itself, that the de-
sign should be realized generally with the method of test and error. Is possible to 
control through fuzzy techniques industrial process, with the greater facility and with 
the minimum of errors, suffices with knowing its general behavior to structure a se-
ries of fuzzy sets and its respective rules. The tuning of the fuzzy controller, besides 
depending on the rules matrix, also, depends on the size of the sets of the variable, 
already itself of input or output.  This depends on the same behavior of the system. 
For the implementation of a fuzzy control, is necessary, the establishment of the 
methods and alternatives utilized in each one of the blocks that conform it.  In this 
form, can be obtained best results, at the moment of the tuning of the system. The 
answer of the fuzzy controller does not depend on the method of defuzzification util-
ized, if not of the adequate utilization of the functions of membership, and of the 
numbers of linguistic variables utilized for each one of the variables of input and 
output of the system. Also, depends on the type and of the size of the sets utilized.  
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