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Abstract. This paper aims at learning and evolution in artificial neural 
networks. Here is presented a system evolving populations of neural nets that 
are fully connected multilayer feedforward networks with fixed architecture 
solving given tasks. The system is compared with gradient descent weight 
training (like backpropagation) and with hybrid neural network adaptation. All 
neural networks have the same architecture and solve the same problems to be 
able to be compared mutually. In order to test the efficiency of described 
algorithms, we applied them to the Fisher's Iris data set [1] that is the bench 
test database from the area of machine learning. 

1 Learning in Artificial Neural Networks 

Learning in artificial neural networks is typically accomplished using examples. This 
is also called training in artificial neural networks because the learning is achieved by 
adjusting the connection weights in artificial neural networks iteratively so that 
trained (or learned) artificial neural networks can perform certain tasks. The essence 
of a learning algorithm is the learning rule, i.e. a weight-updating rule, which 
determines how connection weights are changed. Examples of popular learning rules 
include the delta rule, the Hebbian rule, the anti-Hebbian rule, and the competitive 
learning rule, etc. More detailed discussion of artificial neural networks can be found 
in [2]. Learning in artificial neural networks can roughly be divided into supervised, 
unsupervised, and reinforcement learning. Without commonness, we are going to 
target multilayer feedforward neural networks that are adapted with backpropagation 
algorithm. 

Supervised learning is based on direct comparison between the actual output of an 
artificial neural network and the desired correct output, also known as the target 
output. It is often formulated as the minimization of an error function such as the total 
mean square error between the actual output and the desired output summed over all 
available data. A gradient descent-based optimization algorithm such as 
backpropagation [2] can then be used to adjust connection weights in the artificial 
neural network iteratively in order to minimize the error. There have been some 
successful applications of backpropagation in various areas [3]–[5], but 
backpropagation has drawbacks due to its use of gradient descent. It often gets 
trapped in a local minimum of the error function and is incapable of finding a global 
minimum if the error function is multimodal and/or nondifferentiable.  



2 NeuroEvolutionary Learning in Artificial Neural Networks 

Evolutionary algorithms refer to a class of population-based stochastic search 
algorithms that are developed from ideas and principles of natural evolution. They 
include evolution strategies, evolutionary programming, genetic algorithms etc. [6]. 
One important feature of all these algorithms is their population based search strategy. 
Individuals in a population compete and exchange information with each other in 
order to perform certain tasks. Evolutionary algorithms are particularly useful for 
dealing with large complex problems, which generate many local optima. They are 
less likely to be trapped in local minima than traditional gradient-based search 
algorithms. They do not depend on gradient information and thus are quite suitable 
for problems where such information is unavailable or very costly to obtain or 
estimate. They can even deal with problems where no explicit and/or exact objective 
function is available. These features make them much more robust than many other 
search algorithms. There is a good introduction to various evolutionary algorithms for 
optimization in [6]. 

Evolution has been introduced into artificial neural networks at roughly three 
different levels [7]: connection weights; architectures; and learning rules. The 
evolution of connection weights introduces an adaptive and global approach to 
training, especially in the reinforcement learning and recurrent network-learning 
paradigm where gradient-based training algorithms often experience great difficulties. 
The evolution of architectures enables artificial neural networks to adapt their 
topologies to different tasks without human intervention and thus provides an 
approach to automatic artificial neural network design as both connection weights and 
structures can be evolved. The evolution of learning rules can be regarded as a 
process of learning to learn in artificial neural networks where the adaptation of 
learning rules is achieved through evolution. It can also be regarded as an adaptive 
process of automatic discovery of novel learning rules. 

The evolutionary approach to weight training in artificial neural networks consists 
of two major phases. The first phase is to decide the representation of connection 
weights, i.e., whether in the form of binary strings or real strings. The second one is 
the evolutionary process simulated by an evolutionary algorithm, in which search 
operators such as crossover and mutation have to be decided in conjunction with the 
representation scheme. Different representations and search operators can lead to 
quite different training performance. In a binary representation scheme, each 
connection weight is represented by a number of bits with certain length. An artificial 
neural network is encoded by concatenation of all the connection weights of the 
network in the chromosome. The advantages of the binary representation lie in its 
simplicity and generality. It is straightforward to apply classical crossover (such as 
one-point or uniform crossover) and mutation to binary strings [6]. Real numbers 
have been proposed to represent connection weights directly, i.e. one real number per 
connection weight [6]. As connection weights are represented by real numbers, each 
individual in an evolving population is then a real vector. Traditional binary crossover 
and mutation can no longer be used directly. Special search operators have to be 
designed. Montana and Davis [8] defined a large number of tailored genetic operators, 
which incorporated many heuristics about training artificial neural networks. The idea 
was to retain useful feature detectors formed around hidden nodes during evolution.  

11



One of the problems faced by evolutionary training of artificial neural networks is 
the permutation problem [7] also known as the competing convention problem. It is 
caused by the many-to-one mapping from the representation (genotype) to the actual 
artificial neural network (phenotype) since two artificial neural networks that order 
their hidden nodes differently in their chromosomes will still be equivalent 
functionally. In general, any permutation of the hidden nodes will produce 
functionally equivalent artificial neural networks with different chromosome 
representations. The permutation problem makes crossover operator very inefficient 
and ineffective in producing good offspring. The role of crossover has been 
controversial in neuroevolution as well as among the evolutionary computation 
community in general. However, there have been successful applications using 
crossover operations to evolve neural networks [9]. Compared with the mutation only 
system, the performance of the system using crossover operations is in general better 
and that it also helps to compress the overall size of search space faster. 

3 Comparison between Evolutionary Training and  
Gradient-based Training 

The evolutionary training approach is attractive because it can handle the global 
search problem better in a vast, complex, multimodal, and nondifferentiable surface. 
It does not depend on gradient information of the error (or fitness) function and thus is 
particularly appealing when this information is unavailable or very costly to obtain or 
estimate. For example, the same evolutionary algorithms can be used to train many 
different networks: recurrent artificial neural networks [10], higher order artificial 
neural networks [11], and fuzzy artificial neural networks [12]. The general 
applicability of the evolutionary approach saves a lot of human efforts in developing 
different training algorithms for different types of artificial neural networks. The 
evolutionary approach also makes it easier to generate artificial neural networks with 
some special characteristics. For example, the artificial neural networks complexity 
can be decreased and its generalization increased by including a complexity 
(regularization) term in the fitness function. Unlike the case in gradient-based 
training, this term does not need to be differentiable or even continuous. Weight 
sharing and weight decay can also be incorporated into the fitness function easily.  

However, evolutionary algorithms are generally much less sensitive to initial 
conditions of training. They always search for a globally optimal solution, while a 
gradient descent algorithm can only find a local optimum in a neighbourhood of the 
initial solution.  

4 Hybrid Training 

Most evolutionary algorithms are rather inefficient in fine-tuned local search although 
they are good at global search. This is especially true for genetic algorithms. The 
efficiency of evolutionary training can be improved significantly by incorporating 
a local search procedure into the evolution, i.e. combining evolutionary algorithm’s 
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global search ability with local search’s ability to fine tune. Evolutionary algorithms 
can be used to locate a good region in the space and then a local search procedure is 
used to find a near-optimal solution in this region. The local search algorithm could 
be backpropagation [2] or other random search algorithms. Hybrid training has been 
used successfully in many application areas: Lee [13] and many others used genetic 
algorithms to search for a near-optimal set of initial connection weights and then used 
backpropagation to perform local search from these initial weights. Their results 
showed that the hybrid algorithm approach was more efficient than either the genetic 
algorithm or backpropagation algorithm used alone. If we consider that 
backpropagation often has to run several times in practice in order to find good 
connection weights due to its sensitivity to initial conditions, the hybrid training 
algorithm will be quite competitive. Similar work on the evolution of initial weights 
has also been done on competitive learning neural networks [14] and Kohonen 
networks [15]. 

It is interesting to consider finding good initial weights as locating a good region in 
the weight space. Defining that basin of attraction of a local minimum as being 
composed of all the points, sets of weights in this case, which can converge to the 
local minimum through a local search algorithm, then a global minimum can easily be 
found by the local search algorithm if an evolutionary algorithm can locate a point, 
i.e. a set of initial weights, in the basin of attraction of the global minimum. Fig. 1 
illustrates a simple case where there is only one connection weight in the artificial 
neural networks. If an evolutionary algorithm can find an initial weight such as wI2, it 
would be easy for a local search algorithm to arrive at the globally optimal weight wB 
even though wI2 itself is not as good as wI1. 

 
Fig. 1. An illustration of using an evolutionary algorithm to find good initial weights such that 
a local search algorithm can find the globally optimal weights easily. wI2 in this figure is an 
optimal initial weight because it can lead to the global optimum wB using a local search 
algorithm. 
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5 Experiments 

In order to test the efficiency of described algorithms, we applied it to the Iris flower 
data set or Fisher's Iris data set is a multivariate data set introduced by Sir Ronald 
Aylmer Fisher as an example of discriminated analysis [1]. It is sometimes called 
Anderson's Iris data set because Edgar Anderson collected the data to quantify the 
geographic variation of Iris flowers in the Gaspe Peninsula. The dataset consists of 50 
samples from each of three species of Iris flowers (Iris setosa, Iris virginica and Iris 
versicolor). Four features were measured from each sample, they are the length and 
the width of sepal and petal. Based on the combination of the four features, Fisher 
developed a linear discriminated model to determine which species they are (see 
Table 1). There are three-layer feedforward neural networks with architecture 
is 4 - 4 - 3 (e.g. four units in the input layer, four units in the hidden layer, and three 
units in the output layer) in all experimental works, because the Fisher's Iris data set 
[1] is not linearly separable and therefore we cannot use neural network without 
hidden units. All nets are fully connected. The input values of the training set from the 
Table 1 are transformed into interval <0; 1> to be use backpropagation algorithms for 
adaptation. 

Weight Evolution in Artificial Neural Networks: the initial population contains 
30 individuals (weight representations of three-layer neural networks). There are 
connection weights represented by real numbers in each chromosome. We use the 
genetic algorithm with the following parameters: probability of mutation is 0,01 and 
probability of crossover is 0,5. Adaptation of each neural network starts with 
randomly generated weight values in the initial population.  

The Gradient Descent adaptation deals through backpropagation with the 
following parameters: learning rate is 0.4, momentum is 0. 

The Hybrid Training combines parameters from genetic algorithms and 
backpropagation. It makes one backpropagation epoch with probability 0,5 in each 
generation.  

6 Conclusions 

History of error functions is shown in the Figure 2. There are shown average values of 
error functions in the given population. The “gradient descent adaptation” represents 
an adaptation with the backpropagation. There are shown average values of error 
functions, because the adaptation with backpropagation algorithm was applied 10 
times for each calculation.  

All networks solve Fisher's Iris data set [1] in our experiment. Now we can 
compare results from all experiments, e.g. weight evolution, gradient descent 
adaptation, and hybrid training. Other numerical simulations give very similar results. 
If we can see from Figure 2, the hybrid training shows the best results from all of 
them. In general, hybrid algorithms tend to perform better than others for a large 
number of problems, because they combine evolutionary algorithm’s global search 
ability with local search’s ability to fine tune 
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Table 1. The set of patterns (the Fisher's Iris Data training set), where Se means setosa, 
Vi means virginica, and Ve means versicolor. 
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5,1 3,5 1,4 0,2 Se 6,3 3,3 6 2,5 Vi 7 3,2 4,7 1,4 Ve 
4,9 3 1,4 0,2 Se 5,8 2,7 5,1 1,9 Vi 6,4 3,2 4,5 1,5 Ve  
4,7 3,2 1,3 0,2 Se 7,1 3 5,9 2,1 Vi 6,9 3,1 4,9 1,5 Ve 
4,6 3,1 1,5 0,2 Se 6,3 2,9 5,6 1,8 Vi 5,5 2,3 4 1,3 Ve  
5 3,6 1,4 0,2 Se 6,5 3 5,8 2,2 Vi 6,5 2,8 4,6 1,5 Ve 

5,4 3,9 1,7 0,4 Se 7,6 3 6,6 2,1 Vi 5,7 2,8 4,5 1,3 Ve  
4,6 3,4 1,4 0,3 Se 4,9 2,5 4,5 1,7 Vi 6,3 3,3 4,7 1,6 Ve 
5 3,4 1,5 0,2 Se 7,3 2,9 6,3 1,8 Vi 4,9 2,4 3,3 1 Ve  

4,4 2,9 1,4 0,2 Se 6,7 2,5 5,8 1,8 Vi 6,6 2,9 4,6 1,3 Ve 
4,9 3,1 1,5 0,1 Se 7,2 3,6 6,1 2,5 Vi 5,2 2,7 3,9 1,4 Ve  
5,4 3,7 1,5 0,2 Se 6,5 3,2 5,1 2 Vi 5 2 3,5 1 Ve 
4,8 3,4 1,6 0,2 Se 6,4 2,7 5,3 1,9 Vi 5,9 3 4,2 1,5 Ve  
4,8 3 1,4 0,1 Se 6,8 3 5,5 2,1 Vi 6 2,2 4 1 Ve 
4,3 3 1,1 0,1 Se 5,7 2,5 5 2 Vi 6,1 2,9 4,7 1,4 Ve  
5,8 4 1,2 0,2 Se 5,8 2,8 5,1 2,4 Vi 6,7 3,1 4,4 1,4 Ve 
5,7 4,4 1,5 0,4 Se 6,4 3,2 5,3 2,3 Vi 5,6 2,9 3,6 1,3 Ve  
5,4 3,9 1,3 0,4 Se 6,5 3 5,5 1,8 Vi 5,6 3 4,5 1,5 Ve 
5,1 3,5 1,4 0,3 Se 7,7 3,8 6,7 2,2 Vi 5,8 2,7 4,1 1 Ve  
5,7 3,8 1,7 0,3 Se 7,7 2,6 6,9 2,3 Vi 5,6 2,5 3,9 1,1 Ve 
5,1 3,8 1,5 0,3 Se 6 2,2 5 1,5 Vi 6,2 2,2 4,5 1,5 Ve  
5,4 3,4 1,7 0,2 Se 6,9 3,2 5,7 2,3 Vi 5,9 3,2 4,8 1,8 Ve 
5,1 3,7 1,5 0,4 Se 5,6 2,8 4,9 2 Vi 6,1 2,8 4 1,3 Ve  
4,6 3,6 1 0,2 Se 7,7 2,8 6,7 2 Vi 6,3 2,5 4,9 1,5 Ve 
5,1 3,3 1,7 0,5 Se 6,3 2,7 4,9 1,8 Vi 6,1 2,8 4,7 1,2 Ve  
4,8 3,4 1,9 0,2 Se 6,7 3,3 5,7 2,1 Vi 6,4 2,9 4,3 1,3 Ve 
5 3 1,6 0,2 Se 7,2 3,2 6 1,8 Vi 6,6 3 4,4 1,4 Ve  
5 3,4 1,6 0,4 Se 6,2 2,8 4,8 1,8 Vi 6,8 2,8 4,8 1,4 Ve 

5,2 3,5 1,5 0,2 Se 6,1 3 4,9 1,8 Vi 6,7 3 5 1,7 Ve  
5,2 3,4 1,4 0,2 Se 6,4 2,8 5,6 2,1 Vi 6 2,9 4,5 1,5 Ve 
4,7 3,2 1,6 0,2 Se 7,2 3 5,8 1,6 Vi 5,7 2,6 3,5 1 Ve  
4,8 3,1 1,6 0,2 Se 7,4 2,8 6,1 1,9 Vi 5,5 2,4 3,8 1,1 Ve 
5,4 3,4 1,5 0,4 Se 7,9 3,8 6,4 2 Vi 5,5 2,4 3,7 1 Ve  
5,2 4,1 1,5 0,1 Se 6,4 2,8 5,6 2,2 Vi 5,8 2,7 3,9 1,2 Ve  
5,5 4,2 1,4 0,2 Se 6,3 2,8 5,1 1,5 Vi 6 2,7 5,1 1,6 Ve 
4,9 3,1 1,5 0,2 Se 6,1 2,6 5,6 1,4 Vi 5,4 3 4,5 1,5 Ve  
5 3,2 1,2 0,2 Se 7,7 3 6,1 2,3 Vi 6 3,4 4,5 1,6 Ve 

5,5 3,5 1,3 0,2 Se 6,3 3,4 5,6 2,4 Vi 6,7 3,1 4,7 1,5 Ve  
4,9 3,6 1,4 0,1 Se 6,4 3,1 5,5 1,8 Vi 6,3 2,3 4,4 1,3 Ve 
4,4 3 1,3 0,2 Se 6 3 4,8 1,8 Vi 5,6 3 4,1 1,3 Ve  
5,1 3,4 1,5 0,2 Se 6,9 3,1 5,4 2,1 Vi 5,5 2,5 4 1,3 Ve 
5 3,5 1,3 0,3 Se 6,7 3,1 5,6 2,4 Vi 5,5 2,6 4,4 1,2 Ve  

4,5 2,3 1,3 0,3 Se 6,9 3,1 5,1 2,3 Vi 6,1 3 4,6 1,4 Ve 
4,4 3,2 1,3 0,2 Se 5,8 2,7 5,1 1,9 Vi 5,8 2,6 4 1,2 Ve  
5 3,5 1,6 0,6 Se 6,8 3,2 5,9 2,3 Vi 5 2,3 3,3 1 Ve 

5,1 3,8 1,9 0,4 Se 6,7 3,3 5,7 2,5 Vi 5,6 2,7 4,2 1,3 Ve  
4,8 3 1,4 0,3 Se 6,7 3 5,2 2,3 Vi 5,7 3 4,2 1,2 Ve 
5,1 3,8 1,6 0,2 Se 6,3 2,5 5 1,9 Vi 5,7 2,9 4,2 1,3 Ve  
4,6 3,2 1,4 0,2 Se 6,5 3 5,2 2 Vi 6,2 2,9 4,3 1,3 Ve  
5,3 3,7 1,5 0,2 Se 6,2 3,4 5,4 2,3 Vi 5,1 2,5 3 1,1 Ve 
5 3,3 1,4 0,2 Se 5,9 3 5,1 1,8 Vi 5,7 2,8 4,1 1,3 Ve  
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Fig. 2. The error function history. 
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