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Abstract. Improving bit error rates in optical communication systems is a diffi-
cult and important problem. The error correction must take place at high speed
and be extremely accurate. We show the feasibility of using hardware imple-
mentable machine learning techniques. This may enable some error correction at
the speed required.

1 Introduction

Performance of a fibre-optic communication link is typically affected by a complex
combination of random processes (such as amplified spontaneous emission noise, po-
larization mode dispersion and so on) and deterministic or quasi-deterministic effects
(e.g. nonlinear inter- and intra-channel signal interactions, dispersive signal broaden-
ing, various cross-talks and so on) that result from particular system design and op-
erational regimes. Any installed fibre link has its specific transmission impairments,
its own signature of how the transmitted signal is corrupted and distorted. Therefore,
there is a great potential in the application of an adaptive signal post-processing that
can undo some of the signal distortions, or to separate line-specific distortions from
non-recoverable errors. Signal post-processing in optical data communication can offer
new margins in system performance in addition to other enabling techniques. A vari-
ety of post-processing techniques have been already used to improve overall system
performance, e.g. tunable dispersion compensation, electronic equalization and others
(see e.g. [1-4] and references therein). Note that post-processing can be applied both
in the optical and electrical domain (after conversion of the optical field into electrical
current). Application of electronic signal processing for compensation of transmission
impairments is an attractive technique that became quite popular thanks to recent ad-
vances in high-speed electronics.

In this work we apply standard machine learning techniques to adaptive signal post-
processing in optical communication systems. To the best of our knowledge this is
the first time that such techniques have been applied in this area. One key feature of
this problem domain is that the trainable classifier must perform at an extreme speed,



optical communication systems typically operate at bit rates of around 40 GHz. We
demonstrate a feasibility of bit-error-rate improvement by adaptive post-processing of
received electrical signal.

2 Background

At the receiver (typically after filtering) the optical signal is converted by a photodiode
into the electrical current. Detection of the digital signal requires discrimination of the
logical 1s and 0s using some threshold decision. This can be done in different ways
(e.g. by considering currents at a certain optimized sample point within the bit time
slots or by analyzing current integrated over some time interval) and is determined
by a specific design of the receiver. Here without loss of generality we assume that
discrimination is made using current integrated over the whole time slot. Note that the
approach proposed in this paper and described in detail below is very generic and can
easily be adapted to any particular receiver design. To improve system performance
and minimize the bit-error-rate, we propose here to use a method to adjust the receiver
by sending test patterns to transmission impairments specific for a given line. This is
achieved by applying learning algorithms based on analysis of sampled currents within
bit time slots and adaptive correction of the decisions taking into account accumulated
information gained from analysis of the signal waveforms.

3 Description of the Data

The data represents the received signal taken in the electrical domain after conversion
of the optical signal into an electrical current. The data consists of a large number
of received bits with the waveforms represented by 32 real numbers corresponding to
values of electrical current at each of 32 equally spaced sample points within a bit time
slot. A sequence of 5 consecutive bits is shown in Figure 1. As already explained the
pulse can be classified according to the current integrated over the width of a single bit.
For each of time slots in our data we have the original bit that it represents. Therefore
the data consists of 32-ary vectors each with a corresponding binary label.

In all we have a stream of 65536 bits to classify. As already explained categorising
the vast majority of these bits is straightforward. In fact with an optimally set electrical
current integrated over the whole time slot (energy threshold) we can correctly classify
all but 1842 bits correctly. We can therefore correctly classify 97.19% of the data, an
error rate of 2.81%. This is however an error rate significantly too high. The target error
rate is less than one bit in a thousand, or 0.1%. Figure 2 (a) gives an example of a
misclassification. The middle bit of the sequence is a 0 but is identified from its energy
as a 1. This is due to the presence of two 1′s on either side and to distortion of the
transmitted signal. It would be difficult for any classifier to rectify this error.

However other cases can be readily identified by the human eye and therefore could
be amenable to automatic identification. Figure 2 (b) shows an example where the bit
pattern is obvious to the eye but where a misclassification actually occurs. The central
bit is a 1 but is misclassified as a 0 from its energy alone.
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Fig. 1. An example of the electrical signal for a stream of 5 bits - 1 0 1 0 1.

Fig. 2. (a) An example of a difficult error to identify. The middle bit is meant to be a 0, but
jitter has rendered it very hard to see; (b) The central bit has been dragged down by the two 0s
surrounding it and is classified as a 0 from its energy. However to the human eye the presence of
a 1 is obvious.

3.1 Representation of the Data

Different datasets can be produced depending on how the original electrical current is
represented. As well as representing a single bit as a 32-ary vector (called the Waveform-
1 dataset), it can also be represented as a single energy value (the sum of the 32 values,
Energy-1).

As described above of the 65536 bits, all but 1842 are correctly identified by an
energy threshold. There are 32 distinct streams of 5 bits and 9 of these are represented
in the misclassified class with a high frequency from 5.86% to 21.17% among the 1842
misclassified cases. These nine sequences are shown in Table 1.
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Table 1. Nine sequences for which difficulties are most likely to occur.

0 0 1 0 0
0 0 1 0 1
0 1 0 1 0
0 1 0 1 1
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 1 0 1 0
1 1 0 1 1

As can be seen the majority of these involve a 1 0 1 or 0 1 0 sequence around
the middle bit, and these are the patterns for which difficulties are most likely to occur.
Therefore we may also want to take advantage of any information that may be present
in adjacent bits. To this end we can form windowed inputs, in which the 3 vectors rep-
resenting 3 contiguous bits are concatenated together with the label of the central bit
being the target output (Waveform-3). It is also possible that using adjacent bit infor-
mation by simply taking 3 energy values instead of the full waveform (Energy-3), or
using information from a window of 3 bits, with 1 either side of the target bit (Energy-
Waveform-Energy). Table 2 gives a summary of all the different datasets.

Table 2. The different datasets used in the first experiment.

Name Arity Description
Energy-1 1 The energy of the target bit
Energy-3 3 The energy of the target bit and one bit either side
Waveform-1 32 The waveform of the target bit

Waveform-3 96 The waveform of the target bit and the waveforms of the
bits on either side

Energy-Waveform-Energy
(E-W-E)

34 The waveform of the target bit and the energy of one bit
either side of the target bit

4 Approaches Used

4.1 Easy and Hard Cases

One difficulty for the trainable classifier is that in this dataset the vast majority of ex-
amples are straightforward to classify. The hard cases are very sparsely represented, so
that, in an unusual sense, the data is imbalanced. Figure 3 is a diagram of error rates
of 0 and 1 as a function of the energy threshold. It shows that if the energy threshold
is set to roughly 2.5, then those bits with energy less than this threshold are correctly
classified into the 0 class; on the other hand, if the energy threshold is set to about 11,
then those bits with energy greater than this are correctly classified into the 1 class. The
optimal energy threshold to separate two classes is 5.01, in which case, 1842 of 65532
are incorrectly classified - a bit error rate of 2.81%. Using this threshold we divide the
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data into easy and hard cases, that is, those classified correctly by the method are easy
ones, otherwise they are hard cases.

Fig. 3. A diagram of error rates of 0 and 1 as a function of an energy threshold.

4.2 Visualisation using PCA

Before classifying bits into two classes, we first look at the underlying data distribution
by means of Classical principal component analysis PCA [5], which linearly projects
data into a two-dimensional space, where it can be visualised.

We visualise the easy cases using PCA, then project the hard cases into the same
PCA projection space. The result is shown in Figure 4 (a). It shows that unsurprisingly
the easy 0 and 1 classes are linearly separable. Interestingly, the hard 0 and 1 classes
are for the most part also linearly separable. However, the hard 1s have almost complete
overlap with the easy 0s, and the hard 0s have almost complete overlap with the easy
1s.

Figure 4 (b) is the eigenwave of the first component in the PCA analysis, which
accounts for 86.5% of the total variance.

4.3 Single Layer Neural Network

As already described the classifiers need to be operationally very fast. Therefore the
main classifier we use is a simple single layer neural network (SLN) [5]. Once trained
(this is done off-line in advance) an SLN can be built in hardware and function with
great speed. For comparison purposes a classifier that uses just an optimal energy
threshold is implemented, where the threshold is the one giving the maximum accu-
racy rate (97.19%).
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Fig. 4. (a)Projection of the easy set using PCA, where the hard patterns are also projected into the
easy ones’ first two principal components space; (b) Eigenwave of the first principal component.

4.4 Identifying Difficult Cases using the Energy

As mentioned in Section 4.2, once the hard cases have been separated from the easy
cases, it is possible to linearly separate the 1s and 0s for even the hard cases. Therefore,
the question is how to distinguish between easy and hard cases. One way to tackle the
problem is to use an energy threshold band. So we can set two thresholds, Emin and
Emax, with Emin ≤ Emax, such that if the energy of a bit is less than Emin then that
bit is definitely a 0, and if is greater thanEmax then it is a 1. For those bits whose energy
lies between Emin and Emax, they can be considered as difficult cases. Experiment 2
describes how an energy threshold band can be used to select difficult cases which are
subsequently used as training data to an SLN.

4.5 Gaussian Mixture Model (GMM)

Another approach we applied in this work is to use a Gaussian mixture model [5].
Distinguish between easy and hard cases can be performed by modelling the class-

conditional probability p(x|ci) for each easy and hard class first, then by calculating
corresponding posterior probabilities using Bayes’ theorem.

Since it is usually insufficient to model the conditional density by a single Gaussian
distribution, we apply a Gaussian mixture model for each class-conditional probability
density. In a Gaussian mixture model, the probability density function of each class
is independently modelled as a linear combination of Gaussian basis functions. The
number of basis functions, their position and variance and their mixing coefficients are
all parameters of the model.

In a Gaussian mixture model, p(x|ci) is of a linear combination of component den-
sities p(x|j, ci), and be written as follows:

p(x|ci) =
M∑
j

p(x|j, ci)P (j) , (1)
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where for each component j, we have a Gaussian distribution function

p(x|j, ci) =
1√

(2π)D|Σj |
× exp

{
−1

2
(x− µj)

T Σ−1
j (x− µj)

}
, (2)

in which case µj and Σj are mean and covariance matrix of each component j respec-
tively. P (j) in equation (1) satisfies

M∑
j=1

P (j) = 1, 0 ≤ P (j) ≤ 1, (3)

which guarantee that p(x|ci) is a valid density function.
The error function is defined as the negative log-likelihood for the dataset given by

E = − lnL = −
N∑

n=1

ln p(xn|ci) = −
N∑

n=1

ln


M∑
j

p(xn|j, ci)P (j)

 . (4)

The expectation-maximisation (EM) algorithm [6] is used to estimate parameters P (j),
µj , and Σj of a mixture model for an optimal fit to the training data.

In our experiment, we first estimated parameters of each class-condition density
from the training dataset, where the data has been divided into an easy and hard subset
using the optimal energy threshold. Then we reassign the class membership for each
case using Bayes’ theorem, that is

P (ci|x) =
P (ci)p(x|ci)∑C
i=1 P (ci)p(x|ci)

. (5)

Finally two SLNs were trained on these two reassigned classes. For a new test case,
it is given either an easy or difficult class label using eq.(5), then it is forwarded to
the corresponding trained SLN network based on its class membership to give the final
discrimination.

5 Experiments

5.1 The First Experiment

We segment the data into 10-fold cross-training/validation sets and one independent
test set. Each distinct segment has 5096 easy cases and 148 hard ones. Therefore, each
training set includes 47196 cases and each validation set has 5244 cases in total; the
independent test set has 12730 easy ones and 362 hard ones. The results reported here
are therefore evaluations on the independent test set and averages over the 10 different
validation sets. The main results are given in Table 3.

The classifiers do give an improvement over the optimal energy threshold method
(Energy-1), with the SLN using the Waveform-3 dataset giving the best result. Interest-
ingly the very simple classifier of the SLN/Energy-3 combination nearly decreased the
error rate 42% on both validation and test sets when compared to the optimal threshold
method. This classifier is simply a single unit with 3 weighted inputs.

To examine more closely how a threshold band performs on the waveform-3 dataset
Experiment 2 was undertaken.
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Table 3. The results of classifying the different validation and test sets for the different data
representations. We also give the standard deviation for the validation sets.

Dataset Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
Energy-1 0 148 97.180 0 362 97.23

Energy-3 22± 5 64± 7 98.366± 0.164 59 148 98.419

Waveform-1 22± 5 51± 5 98.608± 0.136 45 122 98.724

Waveform-3 22± 5 50± 8 98.633± 0.139 45 116 98.770

E-W-E 21± 6 50± 6 98.642± 0.140 49 123 98.686

5.2 The Second Experiment

Three different energy threshold bands are used to filter out the easy cases as discussed
in Section 4.4. An SLN is then applied to each of the resultant difficult sets of size ap-
proximately 16700, 20600 and 24400, respectively. For the test set, above and below the
threshold band, are classified appropriately, and the rest, the difficult set, are classified
using the SLN. The results are given in Table 4.

Table 4. The results of classifying the different validation and test sets for each of the threshold
bands. We also give the standard deviation for the validation sets.

Band Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
2.5 ≤ x ≤ 10.5 23± 6 47± 5 98.659± 0.117 47 113 98.778

2.0 ≤ x ≤ 11.0 23± 5 48± 5 98.658± 0.122 42 114 98.808

2.0 ≤ x ≤ 12.5 22± 5 48± 5 98.661± 0.132 43 115 98.793

It can be seen that in general there is a classification improvement in the hard set on
both validation and test sets when compared with results in Table 3. Using a band range
from 2.0 to 11.0 give the best result on the independent test set over all our experimental
results.

5.3 The Third Experiment

In this experiment, we divide the dataset into easy and hard subsets using Gaussian
mixture models as discussed in section 4.5. For each class (easy/hard), we used a two-
gaussian mixture with diagonal covariance matrices. The results are shown in Table
5.

It gives the best mean accuracy on the validation sets in all experiments, but not in
the independent test set.
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Table 5. The results of classifying the different validation and test sets. We also give the standard
deviation for validation sets.

Model Validation Sets The independent test set
mean errors errors

easy set hard set mean accuracy easy set hard set accuracy
2 gmms ‘diag’ 21± 4 48± 5 98.675± 0.126 49 119 98.717

6 Discussion

The fast decoding of a stream of data represented as pulses of light is a commercially
important and challenging problem. Computationally the challenge is in the speed of the
classifier and the need for simple processing. We have therefore restricted our classifier
to be, for the most part, an SLN and the data is either a sampled version of the light
waveform or just the energy of the pulse. Experiment 1 showed that an SLN trained
with the 96-ary representation of the waveform gave the best performance, reducing the
bit error rate from 2.8% to 1.23%. This figure is still quite high and we hypothesised
that the explanation was the fact that despite the data set being very large, 65532 items,
the number of difficult examples (those misclassified by the threshold method) was
very small and dominated by the number of straightforward examples. To see if we
could correctly identify a significant number of these infrequent but difficult examples
we undertook experiments 2 and 3 .

Although there was a small improvement obtained by using energy threshold band,
further work is needed to determine if there is an optimal band size. Similar results were
obtained by experiment 3.

This is early work and much of interest is still to be investigated, such as repre-
sentational issues of the waveform, threshold band sizes, and other methods to identify
difficult cases.
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