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Abstract: Here we present the position control system of a swimming inspection robot for large under-ground con-
crete pipes that are partially filled with wastewater. The system consists of a laser-based measurement sub-
system for position determination and a mechanical rudder to move the robot laterally within the pipe. The 
required software components are implemented as services following a CORBA-based architecture. To 
automatically adapt the position control system to different environment conditions, a self-tuning controller 
is used. The controller has hybrid requirements regarding latency and interarrival times of computed posi-
tion values. In this contribution, we describe the architectural support for this application as well as how the 
system deals with excessive latencies due to transient overload. 

1 INTRODUCTION 

The Emschergenossenschaft based in Germany is 
currently planning the Emscher sewer system, ar-
guably the largest residential water management 
project in Europe in years to come. The new em-
scher sewer will show a total length of 51 km and 
diameters between 1.4 and 2.8 m in depths up to 40 
m under surface. The Emschergenossenschaft en-
gaged the Fraunhofer Institute for Factory Operation 
and Automation (IFF) in Magdeburg, Germany, as 
the general contractor to develop automatic inspec-
tion and cleaning systems to meet the requirements 
imposed by legal guidelines. 

Large under-ground concrete pipes that are par-
tially filled with wastewater are a hazardous envi-
ronment for man. Nevertheless, inspection of such 
pipes must be performed on a regular basis. Many of 
today’s remote controlled inspection systems for 
underground sewer pipes consist of a single TV-
camera and are designed for pipe diameters below 
one meter. The recent development of automatic 
inspection systems (Elkmann et al., 2005) equipped 
with advanced sensors makes it possible for an op-
erator to perform this task from an outside position 
even for pipes with a diameter between 1.4 to 2.8 
meters. The cable-guided damage surveying system 
(SEK) (see Fig. 1) was developed to be a versatile 

and easy-to-use tool to detect various kinds of dam-
ages above and underneath the water-line with high 
accuracy.  

The inspection process is largely automated 
(Elkmann et al., 2006) and supervised by an operator 
from within a service-vehicle outside of the sewer. 
To ensure an optimal inspection result the system 
must acquire data from a centered position. 

 
Figure 1: The cable-guided damage surveying system 
within a sewer pipe. 

For this reason, it is our goal to keep the robot near 
the center of the pipe during the data acquisition 
phase. We must also deal with different environment 
conditions. These include water level, flow velocity 
and pipe diameter. A traditional controller with fixed 
parameter set was unable to maintain a stable posi-
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tion depending on the current conditions. To tackle 
this problem the position control system of the robot 
was fitted with a self-tuning controller that is able to 
identify model based control parameters prior to data 
acquisition.  

The main part of the controller was implemented 
using a software programmable logic controller 
(PLC). The input to the controller is the current lat-
eral position relative to the pipe axis. An iterative 
algorithm using data from various sensors, mainly 
three banks of laser distance sensors, determines the 
position. The PC-based implementation of this algo-
rithm has an unknown worst-case execution time 
(WCET). The actual execution time is depending on 
the internal state of the software as well as on the 
current input data. Further delay stems from the 
transmission of data over the Ethernet network be-
tween PLC and PC as well as from the scheduling 
scheme of the calculation task. While the actual con-
troller is robust against certain latency and jitter of 
the arrival of position data, we must consider cases 
when position data does not arrive in time. This may 
happen due to unusual long execution time of the 
position determination algorithm or due to transient 
overload of the communication channel.  

Another challenge is the second part of the self-
tuning controller, which performs the identification 
of the system’s behavior and which derives an ade-
quate control parameter set. The algorithm used here 
is very sensitive to jitter of the interarrival times of 
position measurements and to missing samples.  

An architectural approach for solving both prob-
lems is described in section 3. In section 4, the ac-
tual controller is presented in more detail. Section 5 
briefly discusses the dynamic quality of service ap-
proach used to avoid failure in case of transient 
overload.  

2 RELATED WORK 

Realizing time critical applications using complex 
distributed systems is a challenging task. On one 
hand, considerable work has been done to introduce 
time constraints or timely predictable behavior. On 
the other hand, a number of approaches have been 
published to relax time constraints of certain appli-
cations by introducing fault tolerance mechanisms. 

In the field of communication middleware, the 
Object Management Group (OMG) has released 
extensions to the known CORBA-specification to 
extend it with real-time features (Wolfe et al., 1997). 
The primary focus here is on the introduction of 
priorities when executing method calls, which re-

quires appropriate system software support. Soft-
ware libraries implementing this standard were also 
made available (Schmidt et al., 1998). 

To relax time constraints, approaches that try to 
balance quality of service and required computation 
time were considered. This includes the classical 
“anytime” (Dean, Boddy, 1988) or “flexible” 
(Hendler, 1989) algorithms, where quality of service 
can be dynamically traded against shorter computa-
tion times. This scheme can be used to ensure the 
timeliness of computations. The authors of (Nett et 
al., 1998) have also dealt with meeting task dead-
lines. They use a dynamic task scheduling scheme 
with detection and handling of timing faults. Faults 
are handled via a task-pair strategy with invocation 
of an alternative exception task in case of a timing 
fault. 

3 DATA ACQUISITION AND 
PROCESSING 

3.1 Modeling Data Flow using Services 

We developed a service oriented CORBA-based 
software architecture focusing on data flow and dis-
tributed processing. In our system, an application is 
constructed by combining software modules that 
provide functionality to other modules via a generic 
interface. The modules may be arbitrarily distributed 
over a number of computers in a network. The inter-
face of the services is data centric. It allows services 
to offer data via named buffers to other services or 
clients. Each buffer represents a time series of spe-
cific data objects (see Fig. 2). A service can repre-
sent a data source (e.g. a sensor), a processing mod-
ule or a data consumer (e.g. an actuator, a database, 
or a GUI). Services that represent sensors or sensor 
systems may provide data that represents a single 
measurement, a time series of measurements, a vec-
tor, an image, or any other types of data that are 
generated by the sensor system. Other services may 
not provide sensor data but processing results. 

By connecting the services via the pub-
lish/subscribe paradigm the data flow of the applica-
tion is modeled. In this communication model, the 
services play different roles. The module providing 
data is called the service provider. The data con-
sumer is called the service client. Please note that in 
our system a client does not subscribe to specific 
data elements but to notifications on when such ele-
ments become available. 
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Figure 2: A service provider offers data buffers to clients 
via a generic interface. 

The data objects that are being exchanged between 
services satisfy a given scheme. They consist of bi-
nary data and metadata in XML syntax. The most 
important element of the metadata is the timestamp, 
which indicates the recording time of the original 
data. The timestamp acts as a key for the data object 
within the given data buffer. The binary data can 
contain information in any format. A client can re-
quest individual data elements or arbitrary blocks of 
data elements from a buffer. This is achieved by 
sending structured queries with a simple syntax to 
the accordant service. The client can then process 
these data items and/or eventually offer the results to 
further clients. The foundation of the used time-
stamps is the Newtonian time model. Timestamps 
are generated based on synchronized local clocks. A 
simple clock synchronization is carried out via the 
network by a dedicated service. The accuracy of 
synchronization between time-server and any client 
is better than 100 µs. This is well below the shortest 
interarrival times of data elements in our application. 
It was achieved using common PC-hardware, Giga-
bit-Ethernet, and a Windows NT-based operating 
system. Accuracy may be improved by using more 
sophisticated clock synchronization algorithms.  

3.2 Implementation of Position 
Determination 

Determining the position of the robot is of great im-
portance. Knowledge of the position is not only re-
quired for position control, but also to process and 

interpret other sensors’ data. This includes the regis-
tration of images from a high-resolution photo-
graphic camera system, the analysis of data from an 
ultrasonic underwater scanner, the determination of 
the magnitude of corrosion and incrustations, or the 
precise measurement of possible deviation of the 
position of individual pipe segments. These tasks 
cannot be performed without knowledge of the pose 
of each sensor during data acquisition.  

The heart of the position determination subsys-
tem is an algorithm that was specifically developed 
for this purpose. It is implemented as a service (the 
position determination service; PDS). It is based on 
the measurements of a number of laser ranging sen-
sors plus an inclination sensor. A discussion of the 
exact procedure can be found in (Elkmann et al., 
2006).  

Measurements from the laser sensors are ac-
quired by the onboard PLC. The PLC is imple-
mented in software on an embedded PC and tightly 
coupled with an interface service (IS). The IS has 
access to the PLC’s memory and is configured to 
insert time-stamped measurements into a buffer 
queue at a rate of 100 Hz. This rate is consistent 
with sensor capabilities and sufficient for our appli-
cation.  

The PDS is notified of the arrival of new data 
elements in the IS’s buffer. Its goal is to process all 
data elements that are produced by the IS. To do this 
the PDS uses the following strategy of data access: 
Upon notification of a new data element, it asks the 
IS for all elements that succeed the last element the 
PDS has already processed. This is done via a single 
“get”-operation. By using this technique, it is possi-
ble for the PDS to catch up in case of a previous 
transient overload. For each received data element, 
the system’s position is calculated and eventually 
made available for further processing by other cli-
ents.  

4 SELF-TUNING CONTROLLER 

4.1 Controller Design 

One challenge in the context of stable data acquisi-
tion between real time and non-real time systems 
(hybrid systems) is the implementation of non-linear 
controllers. This chapter describes the motivation of 
using a non-linear controller in this area. In addition, 
it gives a short introduction of calculating them. 

When travelling through a partially filled sewer, 
the position of the SEK is controlled by a rudder arm 
mounted on top of the robot. The rudder can be 
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turned relative to the longitudinal axis of the pipe. In 
turn, buoyancy forces the SEK to change its posi-
tion. Due to disturbances, a controller has to be inte-
grated for closed-loop navigation. Self-tuning con-
trollers belong to the denomination of adaptive con-
trollers. They are used to fit the plant on a variable 
environment. In fact, the flow velocity of the waste-
water, the water level, and the pipe diameter may 
change depending on the actual sewer and on current 
conditions like the time of day or the weather situa-
tion. This motivates to use adaptive controllers for 
the robot. The benefit of adaptive controllers com-
pared to fixed structure designs is the broad field of 
applications. Here we will focus on the self-tuning 
controller as a substitute of indirect adaptive control-
lers.  

Intermediate instances are required for the calcu-
lation of the controller parameters (see Fig. 3).  

 
Figure 3: Schematic diagram of a self-tuning controller. 

The calculation of a self-tuning controller contains 
the following steps: 

 Recursive estimation of process parameters 
(system identification) 

 Suitable determination of a control law with ad-
justable parameters  

 Calculation of controller parameters based on 
the desired closed-loop system 

 Update the parameters using the IS 
The advantage of this method comprises the possi-
bility to secure each step of calculation before the 
controller parameters are used. In addition, the 
closed loop can be pushed to a desired behavior 
while the parameters of the plant are changing. 

The plant is depicted by a discrete autoregressive 
moving average with an extra input model 
(ARMAX-Model) of fourth-order. The advantage of 
ARMAX-Models compared to simpler models is the 
adequate freedom in describing the properties of the 
disturbance term.  

That gives the model: 
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where y(t) is the plant output, u(t) is the control in-
put and e(t) the prediction error. In this case, the 
least–squares criterion: 
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is being used to identify the transmission behavior of 
the process. The parameters are time varying in a 
small range during operation. Hence, it is desirable 
to base the identification on the most recent data 
rather than on the older data. This can be achieved 
by exponential discounting (λ) of old data. Then, it 
can be shown (Lennard Ljung, 1999) that the ex-
tended recursive least square scheme (ERLS) be-
comes: 
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Using ERLS it is advisable to consider the persistent 
excitation in view of convergence of the parameter 
estimation. In this step, the indirect method permits 
to prove the estimated process parameters on sepa-
rate recorded test series. If the verification is suc-
cessful, the calculation of the controller parameter is 
performed. 

Fig. 4 depicts exemplary the change of positions 
predicted by a calculated model towards measured 
data. The rudder angle as input to the ERLS was 
oscillating between minus five and five degrees. The 
calculated model is afterwards the starting point for 
the controller design. 

The idea regarding the controller design is to 
compensate the plant with the inverse system and a 
desired transmission behavior. 
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Figure 4: Measured and predicted positions of the SEK. 

Assuming that the desired close loop behavior as 
shown in equation 5 where z-1 is backward shift 
operator. 
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The actual closed loop is:  
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with the controller:  
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and the plant behavior: 
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The suitable controller law is then given by equation 
9 without solving a Diophantine equation.  

 )(zB)A(z  )D(z -1-1-1 )
=

 ))(zB-)(zA)(B(z  )C(z -1-1-1-1 ))
=  (9) 

In terms of the causality of the controller law, we get 
the following conditions for the implementation: 

 The transmission behavior of the plant has to be 
stable, respect to the inverse implementation 
in the controller law. 

 The polynomial of the decoupled model 
)(zB-)(zA -1-1 ))

 should only have zeros within 
the unit circle. 

 The estimated plant model should not include a 
minimum phase system or must be corrected 
because of the stability of the open loop. 

 The controller law has to be causal. 
The calculated controller is therefore less sensitive 
to noise compared to other designs like the pole 
placement variant, which is described by (Aström, 
Wittenmark, 1992).   

4.2 Implementation 

The self-tuning controller was implemented in the 
form of two main modules. The first module is the 
actual controller. It runs as a real-time task within 
the onboard PLC. Position-data is fed into it by the 
IS as described in section 3.2. The IS acts also as a 
client similar to the PDS but with a different strategy 
of data access: The controller doesn’t want to proc-
ess all data elements that are produced by the PDS, 
but needs the most recent one. For this reason the IS 
upon notification of new data requests the most re-
cent data element from the PDS and feeds it into the 
PLC.  

 
Figure 5: Structure and data flow of controller implemen-
tation. 

The second module is a service, which computes the 
control parameter set (system identification service; 
SIS). It needs two kinds of data elements as input: 
(1) all sampled rudder arm angles during the system 
identification process and (2) the corresponding sys-
tem position. The arrival of these data is not time 
critical but it is necessary that all samples are being 
processed. It therefore uses a similar data access 
strategy as the PDS to gather all data elements that 
describe the rudder movement from the IS. Further-
more, it requests for each such element the two clos-
est system positions from the PDS and interpolates 
between them to get the corresponding system posi-
tion. Requesting closest elements given a certain 
timestamp is another feature of the data-access 
mechanism of our architecture. After the SIS has 
collected enough data, it can compute the control 
parameters and send them to the main control mod-
ule via the IS. The described data flow is shown in 
Fig. 5. 
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5 DYNAMIC QUALITY OF 
SERVICE 

Even though we have successfully implemented the 
system identification part of the controller as a non-
real-time service while guarantying the required data 
quality, the actual controller may still suffer from 
excessive latencies in the arrival of position data 
from the PDS. This is because of (1) the iterative 
algorithm used in the PDS and (2) because of large 
latencies in the communication between the distrib-
uted services due to transient overload of the com-
munication channel.  

To avoid system failure in such cases we inte-
grated a dynamic quality of service approach that 
uses the timestamps of the position data available to 
the controller implemented in the PLC to determine 
the age of that data. If a certain age is exceeded, the 
controller uses an alternative position that it com-
putes by a simple prediction mechanism based on 
the last known positions. This fall back mechanism 
is triggered if the position data available to the PLC 
becomes older then 90 ms. While this is a crude 
method and could easily be improved by using a 
more accurate model based approach, it is sufficient 
to deal with short disruptions of communication. If 
however the position data becomes older then 900 
ms, the controller is put into a safe state. In this 
state, the rudder is moved into centered position, 
which is the state that most unlikely causes a colli-
sion with the wall. The controller resumes as soon as 
position data not older then 90 ms becomes available 
again. 

We performed experiments with a prototypic im-
plementation of the system under operating condi-
tions. To determine the actual interarrival times of 
data produced by the PDS, we used a test-client that 
was consuming position data in the same way as the 
IS. In Fig. 6, the interarrival times recorded by the 
test-service are shown. Well under 5 percent of the 
position values arrived slightly later then usual. Less 
then 1 percent of that were delayed more than 90 ms. 
When that happened, approximately 50 percent were 
delayed more than 900 ms.  

 
Figure 6: Interarrival times of position data at Test-
Service. 

When observing the behavior of the robot during the 
experiment, no significant deviation from the ideal 
position could be noticed. The system maintained 
position near the center of the pipe when missing the 
90 ms deadline. This was also the case when briefly 
missing the 900 ms deadline. This can be attributed 
to the fact that we only had small turbulences that 
required only slight corrections by the position con-
trol system. However, we expect that missing the 
900 ms deadline may have a significant effect in 
case of more severe turbulences. 

6 CONCLUSIONS 

Here we presented an application of a distributed 
control system for position control of a boat-like 
inspection robot for partially filled sewer pipes. We 
discussed the hybrid requirements of an advanced 
self-tuning controller regarding timeliness and inter-
arrival times of its input data. We presented a 
scheme for detecting and handling excessive time 
delays to prevent system failure by using dynami-
cally reduced quality of the position controller. It 
was also discussed, how the controller was inte-
grated into a non-real-time service oriented software 
system. We conclude that in case of our application 
it is feasible to use soft- or non-real-time compo-
nents in the control loop. Prerequisites are (1) a de-
terministic data acquisition with time stamping and 
(2) a hard-real-time controller core with fault toler-
ance mechanisms. 
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