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Abstract:  In this paper, a neural Pseudoderivative control (PDF) is applied to a nonlinear mathematical model of the 
Dinorwig pumped - storage hydroelectric power station. The response of the system with this auto-tuning 
controller is compared with that of a classic controller, currently implemented on the system. The results 
show how the application of PDF control to a hydroelectric pumped-storage station improves the dynamic 
response of the power plant, even when multivariable effects are taken into account. 

1  INTRODUCTION 

Dinorwig is a large pumped storage hydroelectric 
scheme located in North Wales that is operated by 
the First Hydro Company. The station has six 300 
MW rated turbines, driving synchronous generators 
which feed power into the national grid. Dinorwig 
provides rapid response frequency control when 
peak demands occur. This hydroelectric station has a 
single tunnel, drawing water from an upper reservoir 
into a manifold, which splits the main flow into six 
penstocks. Each penstock feeds a turbine to generate 
power using a guide vane to regulate the flow. The 
electrical power generated is controlled by 
individual feedback loops on each unit. The 
reference input to the power loop is the grid 
frequency deviation from its 50 Hz set point, thus 
forming an outer frequency control loop. Mansoor et 
al, have derived a multivariable nonlinear simulation 
model of this plant, which has provided an improved 
understanding of its characteristics (Mansoor, Jones, 
Bradley, & Aris, Stability of a pumped storage 
hydropower station connected to a power system, 
1999) (Mansoor, Jones, Bradley, Aris, & Jones, 
2000). Its main features are non-minimum-phase 

dynamics, poorly damped poles (associated with 
water-hammer in the supply tunnel and electrical 
synchronization) and a nonlinear relationship 
between flow and power. It is also known (Kundur, 
1994) (Working group on prime mover energy 
supply, 1992) that there is a significant hydraulic 
coupling between the turbines because of the 
common supply. This makes the plant a good 
candidate for the application of auto-tuning control. 

The paper begins with a brief discussion of the 
nonlinear mathematical model of the power plant. 
Then a few concepts of neural network theory are 
reviewed, followed by a description of the 
application of neural Pseudoderivative control (PDF) 
to the model of Dinorwig (Kang, Lee, Kim, Kwon, 
& Choi, 1991). Finally, results are presented which 
show the improved response provided by neural 
PDF. 
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2 HYDROELECTRIC PLANT 
MODEL 

The hydroelectric plant model can be divided into 
three subsystems: guide vane, nonlinear hydraulics 
and turbine/generator (figure 1). Mansoor et al 
developed a multivariable non-linear model that 
includes a rate limit and saturation in the guide vane 
dynamics, as shown in figure 2 (Mansoor, Jones, 
Bradley, Aris, & Jones, 2000). 
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Figure 1: MIMO model of the hydroelectric plant with two 
penstocks. 
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Figure 2: Guide vane subsystem. 

In this study a nonlinear model that takes into 
account the effects of the water column, including 
water compressibility and pipe wall elasticity, was 
employed (Working group on prime mover energy 
supply, 1992). Figure 3 shows the nonlinear elastic 
model of a single penstock. The coupling effect 
between the units is included in the model (main 
tunnel block).  
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Figure 3: Hydraulic subsystem. 

The turbine gain value of At depends directly on the 
turbine MW rating and inversely on the Generator 
MVA rating. fp is the head loss coefficient for the 
penstock. Z0 is the surge impedance of the conduit. 
Te is the wave travel time; it is defined as the time 
taken for the pressure wave to travel the length of 
the penstock (l) to the open surface. v is the velocity 
of sound in water. 

v
lTe =                                    (1) 

e

W

T
T

Z =0                                 (2) 

Tw is the water starting time of the main tunnel and 
the penstocks. Kundur defines the water starting 
time as the time required for a head to accelerate the 
water in the penstock from standstill to a specific 
velocity (Kundur, 1994). Its value depends directly 
on the constructional dimensions of main tunnel and 
penstocks. 
In this model G is the per unit gate opening, P mech 
is the mechanical power produced by a single 
turbine. The value of Te depends on the length of the 
penstock and inversely on the wave velocity 
(equation 1). Zo depends directly on the flow rate, 
inversely on the head of water and on the 
acceleration due to gravity (equation 2). The value 
of At depends directly on the turbine MW rating and 
inversely on the Generator MVA rating (Mansoor, 
2000). The models are expressed in the per-unit 
system, normalized to 300 MW and 50 Hz. The 
electrical subsystem is based on the ‘swing’ 
equations (Kundur, 1994) and includes the effect of 
synchronizing torque. For noise reduction a first 
order filter is included in the feedback loop (fig. 4). 
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Figure 4: Electrical subsystem. 

3  NEURAL NETWORKS 

3.1 Basic Theory 

Since the early 1980s, there has been a dramatic 
increase in research on the computational properties 
of highly interconnected networks of simple 
processing units called artificial neural networks. 
These networks are loosely patterned after the 
structure of biological nervous systems. However, 
the use of these artificial neural networks (NN) to 
improve the behavior of several real systems in 
engineering applications has recently been 
increased. One of the engineering disciplines that 
have been enriched with the properties of the NN is 
the adaptive control theory, because they offer the 
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possibility to adjust the parameters of the regulator 
in order to reduce the difference between the set-
point and the output of the process. 
There are several types of NN can be found in 
literature (Narendra & Mukhopadhyay, 1996) but in 
adaptive control, back propagation is used most 
frequently, because its calculation speed is fast and 
easy to implement. A back - propagation artificial 
neural network is a linear combination of nodes 
interconnected to form several layers of nodes that 
may or may not have interactions between them, 
figure 5. 
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Figure 5: Generic structure for three layer neural network. 

The number of layers used in the network plays an 
important factor during the design stage. Two layers 
NN have its own limitation but it has a good 
performance (Minsky & Papert, 1988). Multilayer 
NN have a wide spectrum of applications and they 
can deal with problems that are “impossible” to NN 
with two layers. As was discussed by Rumelhart et 
al (Rumelhart, McClelland, & group, 1986), the 
addition of internal layers will allow the back 
propagation algorithm to develop an internal 
representation of system dynamics; that feature 
could be crucial to find a solution. Linear models as 
the ARX result on internal models of two layers NN 
with back-propagation. 

3.2 Neural PDF 

One of the main reasons for using NN in control 
system is the ability to adjust any non-linear system.  
A prior knowledge about the structure of the system 
being controlled is very important to tune and 
improve the performance of PDF controller. 
 
There are several approaches to define a fast and 
efficient control strategy to calculate and adjust the 
parameters of discrete PID control systems 
(Narendra & Mukhopadhyay, 1996) (Garcez & 
Garcez, 1995). For this work a similar strategy was 
used to tune a discrete PDF. 
 
Narendra and Mukhopadhyay (Narendra & 
Mukhopadhyay, 1996) provided a good alternative 

to make identification on-line of the coefficients 
using a model on the system. In this situation, the 
non-linear part of the model is approximated to a 
linear system. The coefficients of the process are fed 
back to re-calculate the K’s parameters of the PID 
applied. 
 
There have been several works where the NN have 
been applied to hydroelectric systems. Garcez 
applied a PI neural to a linear simulator of a 20 MW 
hydroelectric power plant (Garcez & Garcez, 1995). 
Djukanovic, validated an adaptive-network based on 
fuzzy inference system to control a low head 
hydropower system (Djukanovic, Calovic, Vesovic, 
& Sobajic, 1997). Yin-Song, presented a self-
learning control system using a PID Fuzzy NN, 
which was applied it to hydraulic turbine governor 
system (Yin-Song, Guo-Cai, & Ong-Xiang, 2000). 
Recently, Shu-Qing, compared a PID controller with 
a hybridized controller based on genetic algorithms 
and fuzzy NN for governors of a hydroelectric 
power plant model (Shu-Qing, Zhao-Hui, Zhi-Huai, 
& Zi-Peng, 2005). 
 
In this paper a back-propagation strategy has been 
used to adjust the parameters of a discrete PDF 
regulator. This technique was introduced by Aguado 
(Aguado Behar, 2000). Figure 6 shows the scheme 
of Neural-PDF. The regulation can be calculated by: 
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Figure 6: Neural PDF. 
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4 SIMULINK MODEL AND 
PROGRAM 

A Simulink model was developed to facilitate 
studies of the power plant under different governors. 
Libraries of special functions (blocks) and the power 
plant models were constructed by connecting these 
functions to the standard Simulink functions. Using 
a dialog box, the parameters of a specific block can 
be adjusted, for example, the operating point of 
linear models may be changed. These models can 
represent the power plant as SISO or MIMO system 
and linear or nonlinear behaviour may be selected. 
Figure 7 shows a schematic of the Simulink power 
plant model. 
 
The full hydroelectric station model is constructed 
combining the four sub-systems: Guide vane 
dynamics, hydraulic subsystem, turbine/generator 
and sensor filters. Each block is part of the Simulink 
library developed for this study; they can be selected 
to represent a diversity of modes of operation. For 
example there are three models available to simulate 
the hydraulic subsystem: Linear, nonlinear 
nonelastic and nonlinear elastic. The guide vane 
dynamics can be selected with or without rate 
limitation and saturation. The sensor filters block is 
a fixed block. The grid model can be adjusted to 
represent different conditions of the national grid. 
Through the governor block classic and advanced 
controls can be selected. 

 

Figure 7: Simulink power plant model. 

Simulink S-functions for the neural PDF algorithms 
were developed. These functions are connected to 
Simulink plant models. The neural PDF block 
accepts η (learning parameters) and sample time. 
The input signals to the PDF block consist of the 
reference and the output signals of the plant and its 
output is the plant control signal. The versatility of 
Simulink is very important to change easily the plant 
model or even modify the algorithm and quickly see 
the new results. The neural algorithm calculates the 
optimal values of the control parameters. The 

current optimal criterion programmed is quadratic 
error, where the error is the output deviation from 
the set-point; however the criterion of optimization 
can be changed. The algorithm takes some time to 
find the “best” range of parameter values (training 
time) when these ranges have been reached the 
parameters stay constant until the set-point or the 
plant model change. 

5 RESULT OF SIMULATION 

The role of a hydroelectric station in frequency 
control mode is to provide timely and accurate 
supply of its target power contribution to the power 
system. The actual form of the power demand is 
related to Grid frequency variation but, for testing, it 
can be specified in terms of step, ramp and random 
input signals. Jones et al have proposed a step and 
ramp response for single unit operation (Jones, 
Mansoor, Aris, Jones, Bradley, & King, 2004). This 
step response specification for single unit operation 
is expressed in Figure 8 and Table 1 (these are not 
valid for commercial purposes). The most important 
criterion is usually Test P1 for the primary response, 
which requires that the station, under defined 
conditions, achieves at least 90% of the demanded 
step power change within 10s of initiation. Table 1 
also shows that the over-shoot P2 must not exceed 
5% and the initial negative excursion P6 
(undershoot), associated with the non-minimum 
phase response, must not exceed 2%. 

Table 1: Specification of step response for advanced 
control design at Dinorwig. 

Test Specification for single 
unit operation. 

Single unit response 
with current governor.

P1 P1 ≥ 90% at tp1 = 10s 81% at 10s, 90% at 
13.7s 

P2 P2 ≤ 5% and tp2 ≤ 20s No overshoot 

P3 tp3 = 25s for P3 ≤ 1% 25.9s 

P4 tp4 = 60s for P4 ≤ 0.5% 29.2s 

P5 tp5 = 8s 12.1s 

P6 P6 = 2% 1.75% 

P7 tp7 = 1.5s 0.88s 

 
The neural PDF controller was connected to the 
nonlinear model of the hydroelectric power plant. 
The model is expressed in the per-unit system, 
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normalized to 300 MW and 50 Hz, and assumes a 
Grid system with infinite busbars. A PI controller 
with parameters fixed at K=0.1 and Ti=0.12 (as 
currently implemented in practice) is used as a basis 
of comparison. Figure 9 shows small step responses 
(0.04 p.u.) of hydroelectric plant under PI and neural 
PDF controllers for one unit operational. Figure 10 
shows small step responses (0.04 p.u.) of the power 
station when six units are connected. In both cases, 
the hydroelectric plant shows a better performance 
under neural PDF controller; the response under the 
neural PDF controller is 10% and 30% faster in one 
unit operational and six units operational, 
respectively. The undershoot is also reduced in both 
cases when a PDF controller is driven the process. 
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Figure 8: Specifications for a response to a step change in 
demanded power. 
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Figure 9: Step response of hydro plant under neural PDF 
and PI controllers with one unit operational. 
 
The ramp response specification for single unit 
operation is expressed in Figure 11 and Table 2. 
Again, the most important criterion is usually Test 
Q1 for the primary response (tq1), which requires 
that the station, under defined conditions, achieves at 
least 90% of the demanded power change, ramp 
amplitude (Ar), within 15s of initiation. Table 2 also 

shows that the maximum rate Q2 must not be less 
than 90% of the ramp rate and the steady-state 
accuracy Q3 must not be longer than 30s. Test Q4 
shows the effective under-delivery of power over the 
period of the ramp (Jones, Mansoor, Aris, Jones, 
Bradley, & King, 2004). The ramp response of the 
nonlinear elastic model of Dinorwig is shown in 
Figure 11. 
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Figure 10: Step response of hydro plant under neural PDF 
and PI controllers with six units operational. 

Table 2: Specification of ramp response for advanced 
control design at Dinorwig. 

Test Specification for a 
single unit 
operation 

Single unit 
response with 

current PI control 

Q1 Q1≥90% at tq1=15s 14.7 

Q2 Q2=90% of 6 
MWs-1  

1.8 MWs-1 

Q3 tq3=30s for Q3≤1% 27 

Q4 None specified E(RMS)=3.09 
MW for tq4=50s 
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Figure 11: Specification for a ramp input power target. 

Figure 12 shows large ramp responses (0.3 p.u.) of 
hydroelectric plant under PI and neural PDF 
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controllers for one unit operational. Figure 13 shows 
large ramp responses (0.3 p.u.) of the power station 
when six units are connected. In both cases, the 
hydroelectric plant shows a better performance 
under neural PDF controller; the response under the 
neural PDF controller is 15% and 13% faster in one 
unit operational and six units operational, 
respectively. When a PDF controller is driven the 
plant, the under-shoot is also reduced for both cases. 

 
Figure 12: Large ramp response of hydro plant under 
neural PDF and PI controllers with one unit operational. 

 
Figure 13: Large ramp response of hydro plant under 
neural PDF and PI controllers with six units operational. 

To evaluate the cross coupling interaction a 0.04 
step was applied simultaneously at t=500 to units 2-
6 and the perturbation of unit 1 were observed. 
Figure 14 shows that although the neural PDF 
response has a higher overshoot, the PI response has 
a longer settling time and a higher undershoots. 
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Figure 14: Cross coupling of hydro plant under PI and 
neural PDF controllers. 

6 CONCLUSIONS 

The results have shown how the neural PDF can be 
applied to a hydroelectric pumped-storage station to 
improve its dynamic response. In particular, this 
paper has shown that the step response of the system 
with neural PDF is improved. Multivariable effects 
have been taken into account to represent closely the 
real plant. The close relation between penstocks has 
been included into the nonlinear model. These are 
promising results for the use of neural PDF in this 
application and encourage us to address the issue of 
robustness of the response in future work. 
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