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Abstract: H∞ controller synthesis is a well known design method for which efficient dedicated methods have been 
developed. However, such methods compute a full order controller which has often to be reduced to be 
implemented. Indeed, the reduced order H∞ synthesis is a non convex optimization problem due to rank 
constraints. In this paper, a particle swarm optimization method is used to solve such a problem. Numerical 
results show that the computed controller has a lower H∞ norm than the controller computed from a classical 
Hankel reduction of the full order H∞ controller. 

1 INTRODUCTION 

H∞ synthesis is an efficient tool, which aims to 
compute controllers in a closed loop framework, 
achieving high and various performances. Two 
principal solution methods have been developed for 
this purpose, based on Linear Matrix Inequalities 
(Gahinet and Apkarian, 1994), or on Riccatti 
equation solutions (Glover and Doyle, 1988). The 
main drawback of such approaches is the controller 
order: H∞ synthesis provides a controller whose 
order is the same as the synthesis model. A classical 
way to get low order controllers is to reduce the full 
controller, for example with a Hankel decomposition 
method. However, this approach may lead to a high 
H∞ norm of the closed loop system and a high 
sensitivity to high frequency noises. To avoid high 
order controllers, the H∞ optimization problem can 
be solved, adding some order constraints. However, 
this kind of constraints is expressed with rank 
constraints and the reduced-order synthesis problem 
appears to be a non convex optimization problem, 
and classical algorithms may fail in the solution. 

In this paper, a new approach is proposed, using 
Particle Swarm Optimization (PSO). With such a 
method, the optimality of the computed solution can 
never be guaranteed, but the structure of costs and 
constraints is not an essential point. The 
mathematical descriptions of the full and reduced 
order H∞ synthesis are called up in section 2. PSO is 
presented in section 3. The proposed algorithm is 

used for the multivariable control of a pendulum in 
the cart. Results are given in section 4. Finally 
conclusions are drawn in section 5. 

2 REDUCED-ORDER H∞ 
SYNTHESIS 

2.1 Full-Order H∞ Synthesis 

Consider the closed loop of figure 1, with s  the 
Laplace variable. The transfer matrix is: 
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Figure 1: Classical closed loop system. 

The H∞ synthesis problem is defined as follows. 
Find a stabilizing controller )(sK  such that: 

∞
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It can be reformulated into a convex problem and 
solved with Riccati equations or LMI formulations. 
This solution is called “full order” synthesis, as the 
solution of problem (2) is a controller )( sK  whose 
order is equal to the order of )(sG . Some design 
filters are added to the synthesis model to tune the 
performances (figure 2). The new system is: 
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Figure 2: Synthesis model. 

Finally, solving the H∞ problem for this system 
induces frequency dependent constraints for each 
transfer of matrix (1).  

2.2 Reduced-Order H∞ Synthesis 

The reduced-order H∞ problem refers to the solution 
of the following optimization problem: 

r
sK

nsKsTγ =∂°= ∞ )(.s.t)(min
)(

 (4) 

where K∂°  denotes the order of )(sK , and rn  is 
strictly less than the order of the synthesis model. It 
can be reformulated into LMI equations by adding 
rank constraints on matrices, loosing the property of 
convexity (El Ghaoui et al., 1997).  

3 PSO ALGORITHM 

PSO was introduced by Russel and Eberhart 
(Eberhart and Kennedy, 1995). P particles are 
moving in the search space. k

px  ( k
pv ) is the position 

(velocity) of particle p at iteration k, k
pb  is the best 

position found by particle p until iteration k, 
},,2,1{)( PxV k

p K⊂  is the set of “friend particles” 

of particle p at iteration k, k
pg  best position found by 

the friend particles of particle p until iteration k, and 

⊗  element wise multiplication of vectors. The 
particles move in the search space according to the 
following transition rule: 
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In this equation, w  is the inertia factor and 21,cc are 
random vectors in the range ],0[ c . The choice of 
parameters is very important to ensure the satisfying 
convergence of the algorithm, see (Eberhart and Shi, 
2000). However, it is not in the scope of this study to 
look for fine strategies of tuning. Thus, standard 
values, given in (Kennedy and Clerc, 2006) will be 
used P : nP += 10  ( n  is the number of 
optimization variables), ))2ln(2/(1=w , 

)2ln(5,0 +=c , 3))(dim( ≤k
pxV . 

4 NUMERICAL RESULTS 

4.1 Case Study 

The proposed method has been tested for a 
pendulum in the cart (figure 3).  
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Figure 3: Pendulum in the cart. 

The system can be modelled by: 
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Variables are i  and u (current and input voltage of 
the motor), ω (rotation speed), cx (position of the 
cart), φ  (angle of the pendulum), d  (disturbance 
moment). Constants are JRL ,,  (motor inductor, 
resistance, inertia), eK  (electromagnetic constant), 
f  (friction coefficient), r  (pulley radius), N  (gear 

reduction), l  (pendulum length), α  (pendulum 
friction coefficient) and g  (weight acceleration). 
Specifications are: tracking of the reference of figure 
4, no steady state error, time response ≤ 6s, rejection 
of disturbance d  and rad05.0)( ≤tφ ; 

 

time 
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0 

0 4s  

Figure 4: Position reference. 

4.2 Three Outputs H∞ Synthesis 

To show the versatility of the method, a three 
measurement controller is designed (synthesis model 
of figure 5). The filters are defined as: 
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Figure 5: Synthesis model for the “3 output” case. 

The solution of the full order synthesis leads to a H∞ 
norm 06.1=γ . The full-order controller is of order 
6. The Hankel reduction leads to a very large H∞ 
norm 7.56=γ  for the order 2 controller. A 
controller is computed by the PSO algorithm, with 

the filters of the full order synthesis. Results are 
given in table 1 for 100 tests. Computation times are 
30s (Pentium IV, 2GHz; Matlab 6.5). 

Table 1: Optimisation results for the three output case. 

Worst Best Mean 
53.4=∞  60.2=∞  50.3=∞  

Figure 6 gives the Bode diagram of the transfers of 
matrix (1) (full order, Hankel reduction controller, 
and PSO). Figure 7 represents the corresponding 
time responses. As can be seen, results of the Hankel 
reduction controller are quite similar as for the full 
order controller, except at high frequencies. Figure 8 
and 9 give the same results obtained with the mean 
controller of the PSO method. Note first that the 
response of )(tφ  is quite similar as the previous 
ones and remains therefore satisfying. A slight 
overshoot is observed on the reference tracking.  

However, consider figure 10, where a 
measurement noise md  has been added on the cart 
position. The control input u  is represented both for 
Hankel reduction and PSO controllers. As can be 
seen from figure 6, Hankel reduction leads to a 
modification of the closed loop transfers for high 
frequencies. As a result, high gains for high 
frequencies lead to an amplification of measurement 
noises and thus to chattering control inputs. On the 
contrary, the reduced order synthesis leads to closed 
loop systems with smaller H∞ norm. The system is 
more robust against measurement disturbances. 

5 CONCLUSIONS  

In this paper, a metaheuristic method based on 
Particle Swarm Optimization has been presented. 
PSO is a stochastic optimization method which does 
not require any particular structure for costs and 
constraints. As a result, the method can be used to 
optimize many kinds of criterions and solve non 
convex, non linear or non analytic problems. In this 
paper, the method is used to solve a well known 
problem of modern Automatic Control, namely the 
reduced order H∞ synthesis. The problem is known 
to be a non convex problem, for which the 
traditional approach is an a posteriori reduction of 
the full order synthesis. Results, computed for a 
pendulum in the cart have shown the viability of the 
approach. Computed controllers lead to a slight 
decrease of nominal performances but to a more 
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robust controller with an important decrease of the 
closed loop H∞ norm. 
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Figure 6: Bode transfer of full order and Hankel reduction. 
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Figure 7: Time response - full order and Hankel reduction. 
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Figure 8: Bode transfer for PSO controller. 
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Figure 9: Time response for PSO controller. 
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Figure 10: Control input for Hankel reduction and PSO 
controllers. 
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