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Abstract: This paper presents a survey on the generic evolution of mobile robot’ neurocontrollers with a particular 
focus on the capacity to adapt these controllers in several environments. Several experiments on the 
example of the grasping task (autonomous vacuum cleaner for example) are performed and the results show 
that the produced neurocontroller is dedicated to the trained conditions and cannot be considered as generic. 
The last part of the paper discusses of the necessary changes in the fitness function in order to produce 
generic neurocontrollers. 

1 INTRODUCTION 

In the past years, biology has been an inspiration for 
computer science researches. Genetics algorithms 
and artificial neural networks are probably the best 
illustration. Evolutionary algorithms are today used 
to optimize, classify or control in a large number of 
problems. The efficiency of the methods has been 
experimentally and sometime theoretically proven 
on given problems (Jansen, 2002), (Bäck, 1996) and 
(Floreano, 1994). In the particular field of robotics, 
especially in the case of real robots, proving the 
efficiency of the methods is very hard due to the 
complexity of the interactions between the 
environment and the robot. In spite of this, 
evolutionary algorithms are commonly used to 
optimize the parameters of robot’s controllers. 

The first experiment in the field of robotics has 
been performed in 1994 by Dario Floreano and 
Francesco Mondada (Floreano, 1994). Based on the 
used of a genetic algorithm, the aim of this 
experiment was to optimize the parameters of an 
artificial neural controller in order to generate an 
obstacle avoidance behavior. The experiment was 
performed on a real Kephera robot (Mondada 1993) 
and required 100 generations of 80 individuals. Each 
generation lasts 39 minutes. The results were 
remarkable, after 50 generations (32 hours) the robot 
already performed a behavior close to the optimal. 
Note that the Khepera robot is not a symmetrical 
robot: front face has 6 proximity sensors versus 2 for 

the rear face. During the evolution, the robot 
naturally selected the front face as the best direction.  
Few years later, the same team extended the 
experiment on a bigger robot with a different 
proximity sensors disposition (Floreano 1998). They 
continued the evolution on a Koala robot (described 
in section 4.4 of (Nolfi 2000)). In approximately 
thirty generations the best individuals reported 
fitness values similar to the experiment previously 
described with the Khepera robot (Floreano, 1994).  

The first experiment proved the possibility of 
using evolutionary algorithm in order to learn basic 
behaviors on real robots. The second experiment 
proved that the previous results are platform 
independent, and this result can even be extended: 
from the neurocontroller point of view, inputs are 
the proximity sensors, and outputs are motor’s 
commands. It means that the geometry and the 
kinematics of the robot are external to the controller. 
Then, the results of this second experiment can be 
extended to the environment, as the authors 
explained in (Nolfi 2000): “From the point of view 
of the neurocontroller, changing the sensory motor 
characteristics of the robot is just another way of 
modifying the environment”.  

These results have been exploited on several 
experiments like  motion planning (Ahuactzin, 1992) 
or humanoid walking (. Yamasaki  2002) with a 
recurrent argument: the adaptive capacity of the 
evolutionary algorithms. According to the previous 
explanations, this capacity cannot be contested, but 
what about the neurocontroller? In fact, the 
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neurocontroller is not generic; it has been optimized 
for the environment where the experiment has been 
performed. It means that if the robot needs to evolve 
in a different environment the evolutionary process 
needs to be restarted like for the Koala robot. In 
practice, and especially on real robots, the 
evolutionary algorithms need to be stopped to avoid 
performing dump behaviors due to unfortunate 
crossovers. The study presented in this paper 
evaluates the faculty of a neurocontroller to be 
adapted in several environments.  

Second section of the paper describes the context 
of the experiment, based on a grasping task (Arkin, 
1992). Introduced by R.C. Arkin in the 90’s, this 
task consists in exploring a given environment (for 
example for mowing or painting the floor).  

From section three, the following of the survey is 
based on a methodology inspired from biology: 
evolutionary algorithms are used to generate eight 
neurocontrollers in eight different environments. 
These neurocontrollers are stored as standard 
behavior and are compared in the seven other 
environments to evaluate there performances in 
different contexts.  

The fourth part of the paper introduces a new 
experiment where the robot is trained in the eight 
environments: the fitness function is the average 
performance. Results are analyzed and compared 
with the standards previously defined.  

The last part of the paper introduces a new 
fitness function based on the performance in the 
worst environment. A general conclusion ends the 
paper. 

2 EVOLUTIONARY 
ALGORITHMS ON THE 
GRASPING TASK  

2.1 Grasping Task  

As explained in the introduction, the grasping task 
has been introduced in a paper on multi-agents 
systems in 1992 by R.C. Arkin. This task has been 
choosen because the duration of the evaluation of 
one individual can be bounded and also because the 
fitness function is easy to evaluate in simulation 
(explored area divided by total surface). Note that 
another kind of tasks would have been used like 
obstacles avoidance or target tracking.  

Due to the duration of the experiments, all the 
presented results are obtained by simulation. Note 
also that our purpose in not to obtain an efficient 
neurocontroller on real robots but to compare the 
results in several contexts. Real experiments suffer 

from noise on sensors, wheels slipping or battery 
discharge that make the comparison sometime 
difficult. In spite of this, the simulator computes the 
model of the real robot Type 1 (described in the next 
section) and the environments are scaled around this 
robot. The simulator is designed with a library of 
eight environments. Each environment has a squared 
shape (length of the side: 3 meters). The disposal of 
walls has been chosen so as to do three kinds of 
environments: with large spaces (Figure 1.a,b,c and 
f) , with narrow corridors (Figure 1.d and g.) and 
mixed (Figure 1.e and h). 

   
a. b. c. 

   
d. e. f. 

  

 

g. h.  

Figure 1: The eight environments used to compare the 
learned behaviors. 

2.2 The Mobile Robot Type 1  

The kinematics model of the robot and sensor’s 
disposal are similar to the robot Type 1 described in 
(Lucidarme, 2006). It has a 10 cm-height and 13 cm-
diameter cylindrical shape (figure 5). Two wheels 
actuate it. Two small passive ball-in-socket units 
ensure the stability in place of usual castor-wheels. 
DC motors equipped with incremental encoders (352 
pulses per wheel's revolution) control the wheels. 
The encoders may be used for both speed control 
and robot localization by odometry. The robot is 
surrounded with 16 infrared emitters and 8 receivers 
(shown on figure 2 and 3). The sensors use a carrier 
frequency of 40 kHz for a good noise rejection. An 
embedded PC (80486 DX with 66 MHz clock) 
manages the robot.  

Figure 3. shows the model used in the simulator, 
especially the sensor’s positions. The kinematics 
model used in the simulator is described by equation 
1. This robot has been chosen because in the case 
where real experiments would have been necessary, 
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Type 1 has many of the characteristics required by 
the evolutionary approach: fully embedded 
computation power (x86 processor), up to two hours 
of autonomy (Li-ion batteries) and large  memory 
capacity (compact-flash). 

 
Figure 2: Picture of the mobile robot Type 1 equipped 
with infrared proximity sensors and the embedded PC104 
visible on the top. 

 
Figure 3: Description of the model used in the simulator 
and position of the sensors (Dimensions are in mm). 
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where : 
• X and Y are the coordinate of the robot in the 

environment frame, 
• Ψ is the orientation in the same frame, 
• Ωl and Ωr are the angular speed of the left and 

right wheels, 
• r is the wheel’s rayon,  
• l is the distance between two wheels. 

2.3 The Neurocontroller  

As explain in (Floreano, 1994) and (Haussler, 1995) 
genetic algorithms can be used to train and optimize 
artificial neural networks (ANNs). Such solution has 
been selected here for its interesting link with 
biology and its anteriority in the field of robotics. 
Previous works (Braitenberg, 1986) prove that 
simple neurocontroller can be used to performed 
obstacle avoidance. Assuming that the grasping task 
is similar to an obstacle avoidance behavior from the 
neurocontroller point of view, the same structure for 
the neural network without hidden layer has been 
chosen (Figure 4 shows the neural network).  

Figure 4: Neurocontroller’s structure. 

 
Figure 5: Transfer function for each perceptron. 

In order to homogenize the simulation and the result 
analysis, all the data are scaled in the interval [-1;1]. 
For example, in the case of the wheel’s angular 
speed: +1 applied to the motors is equivalent to the 
maximum speed (0.1 rad.s-1). For the same reason, 
the synaptic weights are bounded in the same 
interval and the output of the perceptron is also 
bounded (Figure 5) to reproduce the mechanical 
characteristics of the motors. Proximity sensor’s data 
is applied on the input of the network that computes 
the command on each motor. Note that a synaptic 
link with a constant value applied to the input (equal 
to one) has been added allowing the robot to move 
when none of the sensors are providing a value, i.e. 
when all the ci are equal to zero. As usual, the neural 
network is just a friendly representation of a 
mathematical expression (equation 2). In this 
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equation, all the parameters are known except the 18 
synaptic weights, optimized by the evolutionary 
algorithm. 
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where : 
• Ωl and Ωr  : command applied on the motors, 
• wi , i∈[1;9] : synaptic weight for the left motor, 
• wi , i∈[9;18] : synaptic weight for the right 

motor, 
• ci : distance detected by the sensor i. 

2.4 The Evolutionary Algorithm 

The algorithm is based on a classical genetic 
approach described as follow. 

2.4.1 Chromosome 

As the structure of the neurocontroller has been 
fixed, only the synaptic weights have to be 
optimized. The chromosomes are only containing 
these weights. An intuitive approach consists in 
coding the weights in binary, providing a series of 0 
and 1. The drawback of this approach results in the 
most important influence of most significant bit 
during crossovers and mutations. To avoid this 
problem, an elementary component of the 
chromosome is not a 0 or a 1, but the weight himself 
as described in table 1.  

Table 1: Structure of a chromosome. 

w1 W2 … wi … w17 w18 

2.4.2 Crossovers 

Crossovers are performed with two individuals 
selected from previous generation. The selection of 
the individual is based on the roulette-wheel 
reproduction as described in (Nolfi, 2000) that 
allows the best individual to be statistically selected 
more frequently.  The probability for an individual n 
to be selected is given by the equation 3.  

Once the two parents are selected, one of them is 
randomly selected (each with a probability of 0.5) to 
provide the first gene, and this process is repeated 18 
times (one for each weight). The crossover’s 

strategy is multipoint as described in (Mitchell, 
1997).  

∑
=

= N

i

n
n

fi

fP

0

 
  (3) 

where : 
• Pn : probability of selection for the individual n, 
• fj : fitness of the individual j, 
• N : number of individuals in the previous 

generation 

2.4.3 Mutation 

According to the strategy chosen, the mutation 
process is very important. Assume that the optimal 
weights for a given gene aren’t present in none of 
the 100 individuals: without mutation, it is strictly 
impossible to find the optimal solution. Mutations 
are indeed very important and the mutation rate must 
be high enough to ensure a good exploration of the 
space. The mutation process is performed after the 
crossovers; 10% of the new individuals are 
randomly selected. For each individual a gene is 
randomly selected and replaced by a random value 
in the range [-1,1]. For each draw, the probability is 
uniform.  

2.4.4 Fitness Function 

As our goal is a grasping task, the fitness function 
must be linked with the explored area. The 
environment is sampled with a sampling rate of 30 
cm for each axis. As the size of the environment is 
3m x 3m the space is divided into 100 squares. At 
the end of the evaluation of each individual, the 
fitness function is computed with the equation 4. 
Figure 6 shows a snapshoot of the simulator.  

Total

lored
j N

N
f exp=    (4) 

where : 
• fj : fitness of the individual j, 
• Nexplored : number of squares explored 
• NTotal : total number of squares 

2.4.5 Parameters 

In the first version of the simulator, a noise was 
added on the motors. After analyzing the results we 
discovered that this noise prevented from comparing 
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the results. We decided to eliminate this noise in 
order to make the simulator deterministic. For the 
same reason, the initial position of the robot is 
always located at the same place (at the top left, c.f. 
Figure 6) to prevent from favoring individuals. 

 
Figure 6: Snapshoot of the simulator showing the 
trajectory of the robot and the explored area. The current 
fitness of the robot is 0.43 (43 explored squares divided by 
100 total squares). 

Note that collisions between robot and walls are 
considered. As the neurocontroller has been 
designed without hidden layer, it is impossible for a 
jammed robot to escape from a collision. To 
decrease the computation time, when a robot is 
jammed its evaluation is stopped and the fitness is 
computed. Table 2 describes the parameters of the 
simulator. 

Table 2: Parameters of the simulations. 

Description Name Value 
Wheel’s rayon r 0.05 m 
Distance between wheels l 0.1 m 
Sensor’s range Sr 0.2 m 
Maximum angular speed of 
the wheels 

Ωmax 0.1 rad.s-1 

Size of the environment - 3x3 m 
Sampling rate (space) - 0.3m 
Size of the population Nindividual 100 ind. 
Mutation rate - 10% 
Sampling rate (time) Δt 0.01 s 
Duration of an evaluation - 30 s 
Number of generations - 250 gen. 

3 STANDARD BEHAVIORS  

3.1 Standard Experiments 

For each environment a neurocontroller has been 
trained. This controller is considered as the standard 
behavior in the following. The evolution of the 250 
generations lasts around two hours on a desktop 
computer. Figure 7 shows the evolution of an 

individual in the environment c. Figure 8 shows the 
evolution of the fitness. For each environment, an 
efficient strategy has been generated that confirms 
the relevance of the used parameters. 

   
a. b. c. 

   
d. e. f. 

Figure 7: Evolution of the robot’s behavior in the 
environment c. (see Fig.1) at generations 2,3,6,13,17 and 
162 with respective fitness: 0.15, 0.19, 0.43, 0.51, 0.66 
and 0.93. 
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Figure 8: The fitness of the individuals (Fitness of the best 
individual (continuous line) for each generation and 
average (dotted line) of the whole population). 

Analyzing the results shows that efficient behaviors 
can be classified in three categories: 

• performing epicycloidals trajectories 
(Figure 9.a),  

• moving straight and avoiding obstacles 
(Figure 9.b) 

• wall following (Figure 9.c) 
Best strategies are usually a mixed of the previous 
behaviors (Figure 9.d) 

3.2 Swapping the Environments 

In order to evaluate how generic are the produced 
behaviors, each individual is placed in the seven 
other environments. Note that the genetic process is 
stopped. Table 3 summarizes the results. For 
example bolded 38% presents the performance in the 
environment a of the individual trained in the 
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environment d. Grey cells show the best 
performance for each environment. This agrees with 
the diagonal that represent the performance of each 
individual in “its” environment except for 
environment d. and e. where individuals are equally 
ranked, probably due to the fact that environments d. 
and e. are quiet similar. 

  
a. b. 

  
c. d. 

Figure 9: Examples of strategies used for exploring the 
environment. 

This preliminary result allows us two conclusions: 
the neurocontroller produced by the genetic process 
cannot be considered as generic. An nice illustration 
is shown on table 3.: the performance in the 
environment g. is very poor except for the 
individuals trained in this kind of environment. 
These results also confirm that genetic algorithm 
may be considered as generic: the produced behavior 
is nicely adapted to the trained environment, on table 
3. the best fitness are always located on the diagonal. 
The last part of the paper will discuss about the best 
strategy for generating generic neurocontrollers. 

4 GENERIC 
NEUROCONTROLLERS  

4.1 Random Selection of the 
Environment 

The first idea for building generic neurocontrollers 
consists in mixing the environments during the 
evolution. A new simulation has been performed, 
but the environment is now randomly selected for 
each generation. After 1500 generations, the 
synaptic weights never converge to a stable value. 
Figure 10 shows the evolution of the fitness during 
the 200 first generations (no changes were observed 
after). Compared to Figure 8 this evolution cannot 
be considered as satisfying. Results have shown that 
random selection of the environment makes the 
global system non-deterministic and prevents the 
genetic algorithm from finding the optimal solution. 
To avoid this problem, each individual is now 
trained in the eight environments. 
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Figure 10: Fitness versus generations. 

Table 3: Performance of the best individual of the final generation in the seven other environments. 

 
 

Explored environment 
 

  a. b. c. d. e. f. g. h. 

a. 96 % 70 % 6 % 9 % 12 % 10 % 1 % 1 % 
b. 94 % 98 % 4 % 11 % 14 % 11 % 2 % 2 % 
c. 14 % 13 % 93 % 92 % 33 % 20 % 15 % 15 % 
d. 38 % 62 % 9 % 100 % 86 % 81 % 11 % 11 % 
e. 7 % 7 % 7 % 100 % 86 % 5 % 4 % 4 % 
f. 41 % 65 % 8 % 9 % 9 % 85 % 14 % 14 % 
g. 38 % 62 % 17 % 23 % 84 % 77 % 77 % 72 % 
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h. 44 % 64 % 90 % 93 % 84 % 83 % 61 % 76 % 
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4.2 Evolution in the Eight 
Environments 

For the reason explained in the previous section, 
each individual is now successively trained in the 
eight environments. The fitness is similar to the 
previously described equation 4 (equivalent to the 
average performance in the eight environments). The 
experiment lasts about fifteen hours (eight times 
longer than for one environment). The evolution of 
the fitness is now asymptotic (similar to figure 8) 
that proves the convergence of the genetic 
algorithm.  Examples of trajectories are shown on 
figure 11. 

  
a. b. 

  
c. d. 

Figure 11: Example of trajectories in four environments. 
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Figure 12: Performance of the best individual (last 
generation) in the eight environments. 

Figure 12.a. shows the fitness in each environment. 
The global performance is satisfying (76.75%) to the 
detriment of the environment c. (only 29%). Figure 
11.b. shows the trajectory of the robot in this 
environment; the robot is quickly jammed in a dead 
end. However it’s hard to conclude about the 
adaptability of the neurocontroller. Indeed, it is clear 
that the performance in the environment c. has been 
sacrificed in favour of global fitness. Considering 
that generic means able to perform a high fitness in 
any situations, this goal isn’t reach.  

4.3 Increasing the Last 

To avoid having a “sacrificed” environment, we 
performed the previous experiment with a new 
fitness function. The average isn’t longer 
considered. Each individual is evaluated in the eight 
environments and the new fitness is the performance 
in the worst environment. For example, on figure 
12.a, the performance used to compute crossovers is 
the weakest: 29% (environment c.).  

   
a. b. c. 

   
d. e. f. 

  

 

g. h.  

Figure 13: Trajectory of the robot in each environment. 

Figure 12.b shows the performance in each 
environment of the best individual (last generation). 
The worst performance is 40% in the environment a. 
(slightly better than the previous 29%). The 
trajectories of the robot are clearly based on a wall 
following strategy visible on figure 13. As the 
environment a. has no wall (except the outline walls) 
the performance is poor. In spite of this, this result is 
encouraging. The average performance is 70.62%, 
not so far from the previous 76.75%. This means 
that the global performance isn’t too much affected. 
Even if these results are globally worst, it stays 
encouraging. Probably that the chosen 
neurocontroller (without hidden layer) does not 
allow the robot to perform a high performance in the 
eight environments at the same time. These results 
tend to show that taking the performance of the 
worst case may provide more generic controllers 
than averaging the fitness 
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5 CONCLUSIONS 

We presented in this paper some experiments based 
on the grasping task (for example an autonomous 
vacuum robot). These experiments are based on the 
genetic evolution of a neurocontroller without 
hidden layer. In the first part we evolved in 
simulation eight neurocontrollers (each in a given 
environment). The neurocontroller were swapped 
and the performances in the other environments 
were evaluated. For some researchers, there is 
sometime a mix-up between the genetic algorithm 
and the generated behavior. We’ve shown that 
genetics algorithms can be easily adapted with the 
same parameters to several problems. We’ve also 
shown that the generated neurocontroller is 
dedicated to the trained environment. It means that 
genetics algorithms are generic, contrary to 
neurocontrollers that are dedicated. This result can 
probably be extended to all the parameters of the 
evaluation: noise, robot’s hardware, battery charge, 
etc. 

In the second part of the paper, several strategies 
were experimented to produce generic 
neurocontrollers. First, the evaluation of the 
individual was done in the eight environments and 
the average performance was used for the fitness 
computation. This experiment provides good results 
except in one environment where the fitness was 
very poor. In the final experiment the performance 
in the worst environment was used to compute the 
fitness. The global performance is slightly smaller 
than in the previous experiment, but the performance 
is more distributed in the environments. Generating 
generic controllers using genetic algorithms stay a 
complex problem but we’ve shown that taking the 
worst case for evaluating the individual may be a 
first step in the automatic generation of generic 
neurocontrollers. 
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