NONLINEAR SYSTEM IDENTIFICATION USING DISCRETE-TIME NEURAL NETWORKS WITH STABLE LEARNING ALGORITHM

Talel Korkobi, Mohamed Djemel
Institute of Problem Solving, XYZ University, Intelligent Control, design & Optimization of complex Systems
National Engineering School of Sfax - ENIS, B.P. W, 3038 Sfax, Tunisia
korkobi_talel@yahoo.fr, mohamed.Djemel@enis.rnu.tn

Mohamed Chtourou
Intelligent Control, design & Optimization of complex Systems
National Engineering School of Sfax - ENIS, B.P. W, 3038 Sfax, Tunisia
mohamed.chtourou@enis.rnu.tn

Keywords: Stability, neural networks, identification, backpropagation algorithm, constrained learning rate, Lyapunov approach.

Abstract: This paper presents a stable neural system identification for nonlinear systems. An input output discrete time representation is considered. No a priori knowledge about the nonlinearities of the system is assumed. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomenon during the learning process is avoided. A Lyapunov analysis is made in order to extract the new updating formulation which contain a set of inequality constraints. In the constrained learning rate algorithm, the learning rate is updated at each iteration by an equation derived using the stability conditions. As a case study, identification of two discrete time systems is considered to demonstrate the effectiveness of the proposed algorithm. Simulation results concerning the considered systems are presented.

1 INTRODUCTION

The area of system identification has received significant attention over the past decades and now it is a fairly mature field with many powerful methods available at the disposal of control engineers. Online system identification methods to date are based on recursive methods such as least squares, for most systems that are expressed as linear in the parameters (LIP).

To overcome this LIP assumption, neural networks (NNs) are now employed for system identification since these networks learn complex mappings from a set of examples. Due to NN approximation properties as well as the inherent adaptation features of these networks, NN present a potentially appealing alternative to modeling of nonlinear systems.

Moreover, from a practical perspective, the massive parallelism and fast adaptability of NN implementations provide additional incentives for further investigation.

Several approaches have been presented for system identification without using NN and using NN (Narendra and Parthasarathy, 1990) (Boskovic and Narendra 1995). Most of the developments are done in continuous time due to the simplicity of deriving adaptation schemes. To the contrary, very few results are available for the system identification in discrete time using NNs. However, most of the schemes for system identification using NN have been demonstrated through empirical studies, or convergence of the output error is shown under ideal conditions (Ching-Hang Lee and al, 2002).

Others (Sadegh, 1993) have shown the stability of the overall system or convergence of the output error using linearity in the parameters assumption. Both recurrent and dynamic NN, in which the NN has its own dynamics, have been used for system identification.
Most identification schemes using either multilayer feedforward or recurrent NN include identifier structures which do not guarantee the boundedness of the identification error of the system under nonideal conditions even in the open-loop configuration. Recent results show that neural network technique seems to be very effective to identify a broad category of complex nonlinear systems when complete model information cannot be obtained. Lyapunov approach can be used directly to obtain stable training algorithms for continuous-time neural networks (Ge, Hang, Lee, Zhang, 2001), (Kosmatopoulos, Polycarpou, Christodoulou, Ioannou, 1995) (Yu, Poznyak, Li, 2001). The stability of neural networks can be found in (Feng, Michel, 1999) and (Suykens, Vandewalle, De Moor, 1997). The stability of learning algorithms was discussed in (Jin, Gupta, 1999) and (Polycarpou, Ioannou 1992).

It is well known that normal identification algorithms are stable for ideal plants (Ioannou, Sun, 2004). In the presence of disturbances or unmodeled dynamics, these adaptive procedures can go to instability easily. The lack of robustness in parameters identification was demonstrated in (E. Barn, 1992) and became a hot issue in 1980s. Several robust modification techniques were proposed in (Ioannou, Sun, 2004). The weight adjusting algorithms of neural networks is a type of parameters identification, the normal gradient algorithm is stable when neural network model can match the nonlinear plant exactly (Polycarpou, Ioannou 1992). Generally, some modifications to the normal gradient algorithm or backpropagation should be applied, such that the learning process is stable. For example, in (L. Jin, M.M. Gupta, 1999) some hard restrictions were added in the learning law, in (Polycarpou, Ioannou 1992) the dynamic backpropagation was modified with stability constraints.

The paper is organized as follows. Section II describes the adopted identification scheme. In section III and through a stability analysis a constrained learning rate algorithm is proposed to provide stable adaptive updating process. Two simple simulation examples give the effectiveness of the suggested algorithm in section VI.

2 PRELIMINARIES

The main concern of this section is to introduce the feedforward neural network adopted architecture and some concepts of backpropagation training algorithm. Consider the following discrete-time input-output nonlinear system

\[y(k+1) = f[y(k), y(k-n+1), u(k), \ldots, u(k-m+1)] \]

The neural model for the plant can be expressed as

\[\hat{y}(k+1) = F[Y(k), W, V] \]

Where \(Y(k) = (y(k), y(k-1), \ldots, y(k-n+1), u(k), u(k-1), \ldots, u(k-m+1)) \) and \(W \) and \(V \) is the weight parameter vector for the neural model.

A typical multilayer feedforward neural network is shown in Figure 1, where \(I_i \) is the ith neuron input, \(O_j \) is the jth neuron output, \(i, j \) and \(k \) indicate neurons, \(w_{ij} \) is the weight between neuron \(i \) and neuron \(j \). For the ith neuron, the nonlinear active function is defined as

\[f(x) = \frac{1}{1 + e^{-x}} \]

The output \(y^m(k) \) of the considered NN is

\[I_j = \sum_{i=1}^{m} O_i W_{ij} \quad O_j = f(I_j) \quad f = 1, \ldots, m \]

\[I' = \sum_{j=1}^{N} O_j V_j \quad y^m(k) = f(I') \quad k = 1, \ldots, N \]

![Figure 1: Feedforward neural model.](image)

Training the neural model consists of the adjustment of the weight parameters so that the neural model emulates the nonlinear plant dynamics. Input-output examples are obtained from the operation history of the plant.
Using the gradient descent, the weight connecting neuron \(i\) to neuron \(j\) is updated as
\[
W_j(k+1) = W_j(k) - \varepsilon \cdot \frac{\partial J(k)}{\partial W_j(k)}
\]
\[
V_j(k+1) = V_j(k) - \varepsilon \cdot \frac{\partial J(k)}{\partial V_j(k)}
\]
Where \(J(k) = \frac{1}{2} \left[y(k+1) - y^*(k+1) \right]^2 \)
\(\varepsilon\) is the learning rate. The partial derivatives are calculated with respect to the vector of weights \(W\).

3 STABILITY ANALYSIS

In the literature, the Lyapunov synthesis (Z.P. Jiang, Y. Wang, 2001), (W. Yu, X. Li, 2001) consists of the selection of a positive function candidate \(V\) which lead to the computation of an adaptation law ensuring it’s decrescence , i.e \(\dot{V} \leq 0\) for continuous systems and \(\Delta V(k) = V(k+1) - V(k) \leq 0\) for discrete time systems. Under these assumptions the function \(V\) is called Lyapunov function and guarantee the stability of the system. Our objective is the determination of a stabilizing adaptation law ensuring the stability of the identification scheme presented below and the boundness of the output signals. The following assumptions are made for system (1)

Assumption 1. The unknown nonlinear function \(f(\cdot)\) is continuous and differentiable.

Assumption 2. System output \(y(k)\) can be measured and its initial values are assumed to remain in a compact set \(\mathcal{E}_0\).

\[W, V \text{ are respectively the vector weight between the inputs and the hidden layer and the vector weight between the hidden layer and the outputs layer.} \]

3.1 Theorem

The stability of the identification scheme is guaranteed for a learning rate verifying the following inequality :
\[
0 \leq \varepsilon \leq \frac{2 \cdot \sum_{ij} \left| \frac{\partial J}{\partial W_{ij}(k)} \right| + \sum_{ij} \left| \frac{\partial J}{\partial V_{ij}(k)} \right|}{\sum_{ij} \left| \frac{\partial J}{\partial W_{ij}(k)} \right| + \sum_{ij} \left| \frac{\partial J}{\partial V_{ij}(k)} \right|}
\]

Where \(W, V\) are respectively the vector weight between the inputs and the hidden layer and the vector weight between the hidden layer and the outputs layer. \(i\) denote the ith input and \(j\) the jth hidden neuron.

3.2 Proof

Considering the Lyapunov function:
\[
V_L(k) = tr(\hat{W}^T(k) \hat{W}(k)) + \hat{V}^T(k) \hat{V}(k)
\]
Where
\[
tr(\cdot) \text{ denotes the matrix trace operation.}
\]
\[
\hat{V}(k) = V(k) - V^*
\]
\[
\hat{W}(k) = W(k) - W^*
\]
\(W^*\) denotes the optimal vector weight between the inputs and the hidden layer .
\(V^*\) denotes the optimal vector weight between the hidden layer and the outputs.

The computation of the \(\Delta V_L(k)\) expression leads to :
\[
\Delta V_L(k) = V(k+1) - V(k) - tr(\hat{W}^T(k+1) \hat{W}(k)) + \hat{V}^T(k+1) \hat{V}(k)
\]
The adopted adaptation law is the gradient algorithm. We have:
\[
\hat{W}(k+1) = W(k) - \varepsilon \cdot \frac{\partial J}{\partial W(k)} - W^*
\]
\[
\hat{V}(k+1) = V(k) - \varepsilon \cdot \frac{\partial J}{\partial V(k)} - V^*
\]
Where the partial derivatives are expressed as
\[
\frac{\partial J}{\partial W(k)} = \frac{\partial J}{\partial \hat{W}(k)} \frac{\partial \hat{W}(k)}{\partial W(k)} + \frac{\partial J}{\partial \hat{V}(k)} \frac{\partial \hat{V}(k)}{\partial W(k)}
\]
\[
\frac{\partial J}{\partial V(k)} = \frac{\partial J}{\partial \hat{W}(k)} \frac{\partial \hat{W}(k)}{\partial V(k)} + \frac{\partial J}{\partial \hat{V}(k)} \frac{\partial \hat{V}(k)}{\partial V(k)}
\]

Our field of interest covers the black box systems. The partial derivatives denoting the system dynamic are approximated as follow:
The approximated partial derivatives are given through:

\[
\begin{align*}
\frac{\partial y(k+1)}{\partial W(k)} &= \frac{\partial y^n(k+1)}{\partial W(k)} \\
\frac{\partial y(k+1)}{\partial V(k)} &= \frac{\partial y^n(k+1)}{\partial V(k)}
\end{align*}
\] (11)

Adopting the variables \(A \) and \(B \) defined by:

\[
\begin{align*}
A &= tr(\tilde{W}^\tau(k+1)\tilde{W}(k+1)) - tr(\tilde{W}^\tau(k)\tilde{W}(k)) \\
B &= \tilde{V}^\tau(k+1)\tilde{V}(k+1) - \tilde{V}^\tau(k)\tilde{V}(k)
\end{align*}
\]

The \(\Delta V(k) \) expression is calculated as:

\[
\Delta V(k) = A + B
\]

\[
\begin{align*}
\Delta V(k) &= tr\left(\epsilon^2 \left[\frac{\partial J}{\partial W^\tau(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial W(k)} \tilde{W}(k) \right) \\
&\quad + \epsilon^2 \left[\frac{\partial J}{\partial V^\tau(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial V(k)} \tilde{V}(k) \\
&\quad + \epsilon^2 \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial \tilde{V}(k)} \tilde{V}(k) \\
&\quad + \epsilon^2 \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial \tilde{V}(k)} \tilde{V}(k) \\
&\quad + \epsilon^2 \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial \tilde{V}(k)} \tilde{V}(k) \\
&\quad + \epsilon^2 \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 - 2\epsilon \frac{\partial J}{\partial \tilde{V}(k)} \tilde{V}(k)
\end{align*}
\]

Where

\[
\begin{align*}
\alpha &= \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 + \sum_{j=1}^N \left[\frac{\partial J}{\partial \tilde{V}_j(k)} \right]^2 \\
\beta &= \frac{\partial J}{\partial \tilde{V}(k)} \tilde{V}^\tau(k) + tr\left(\frac{\partial J}{\partial \tilde{W}(k)} \tilde{W}^\tau(k) \right)
\end{align*}
\]

The stability condition \(\Delta V(k) \leq 0 \) is satisfied only if:

\[
\alpha \epsilon^2 - 2\beta \epsilon \leq 0
\] (13)

Solving this \(\epsilon \) second degree equation lead to the establishment of the condition (7):

\[
\Delta V(k) \leq 0 \quad \text{if } \epsilon \text{ satisfies the following condition :}
\]

\[
0 \leq \epsilon \leq \epsilon_1
\]

where

Figure 2: Evolution of the system output and the neural model output (\(\epsilon \in \text{stability domain} \)).

4 SIMULATION RESULTS

In this section two discrete time systems are considered to demonstrate the effectiveness of the result discussed below.

4.1 First Order System

The considered system is a famous one in the literature of adaptive neural control and identification. The discrete input-output equation is defined by:

\[
\begin{align*}
v(k+1) &= f(v(k), u(k)) + w(k) \\
\end{align*}
\]
\[y(k+1) = \frac{y(k)}{1 + y(k)^2} + u(k)^2 \] \hspace{1cm} (15)

For the neural model, a three-layer NN was selected with two inputs, three hidden and one output nodes. Sigmoidal activation functions were employed in all the nodes.

The weights are initialized to small random values. The learning rate is evaluated at each iteration through (14). It is also recognized that the training performs very well when the learning rate is small.

As input signal, a sinusoidal one is chosen which the expression is defined by:

\[u(k) = 0.5\cos\left(0.05k\pi + \frac{\pi}{5}\right) \] \hspace{1cm} (16)

The simulations are realized in the two cases during 120 iterations. Two learning rates values are fixed in and out of the learning rate range presented in (7). Simulation results are given through the following figures:

Figure 3: Evolution of the system output and the neural model output (see stability domain).

4.1 Comments

Fig 2 and Fig 3 show that if the learning rate belongs to the range defined in (7), the stability of the identification scheme is guaranteed. It is shown through this simulation that the identification objectives are satisfied. Out this variation domain of the learning rate, the identification is instable and the identification objectives are unreachable.

4.2 Second Order System

The second example concerns a discrete time system given by:

\[y(k) = 50\tanh\left[\varphi(k-1)\right] + 0.5u(k-1) \] \hspace{1cm} (17)

where

\[\varphi(k) = 2.10\left(\frac{24 + y(k)}{3} + \frac{y(k-1) - 0.5u(k)}{1 + 0.5u(k)}\right)^{1/4} \]

The process dynamic is interesting. In fact it has the behaviour of a first order law pass filter for inputs signal amplitude about 0.1, the behaviour of a linear second order system in the case of small amplitudes \((0,1 < |u| < 0.5)\) and the behaviour of a non linear second order system in the case of great inputs amplitudes \((0.5 < |u| < 5)\) (Ching-Hang Lee and al, 2002).

For the neural model, a three-layer NN was selected with three inputs, three hidden and one output nodes. Sigmoidal activation functions were employed in all the nodes.

The weights are initialized to small random values. The learning rate parameter is computed instantaneously. As input signal, a sinusoidal one is chosen which the expression is defined by:

\[u(k) = 0.5\cos\left(0.005k\pi + \frac{\pi}{3}\right) \] \hspace{1cm} (18)

The simulations are realized in the two cases. Two learning rates values are fixed in and out of the learning rate range presented in (7). Simulation results are given through the following figures:

Figure 4: Evolution of the system output and the neural model output (see stability domain).
4.2.1 Comments

Here we made a comparative study between an arbitrary choice of a learning rate out side of the stability domain and a constrained choice verifying the stability condition and guarantying tracking capability. The simulation results show that a learning rate in the stability domain ensure the stability of the identification scheme.

5 CONCLUSIONS

To avoid unstable phenomenon during the learning process, constrained learning rate algorithm is proposed. A stable adaptive updating processes is guaranteed. A Lyapunov analysis is made in order to extract the new updating formulations which under inequality constraint. In the constrained learning rate algorithm, the learning rate is updated at each iterative instant by an equation derived using the stability conditions. The applicability of the approach presented is illustrated through two simulation examples.

REFERENCES

