
NONLINEAR SYSTEM IDENTIFICATION USING 
DISCRETE-TIME NEURAL NETWORKS WITH 

STABLE LEARNING ALGORITHM 

Talel Korkobi, Mohamed Djemel 
Institute of Problem Solving, XYZ University, Intelligent Control, design & Optimization of complex Systems 

National Engineering School of Sfax - ENIS, B.P. W, 3038 Sfax, Tunisia 
korkobi_talel@yahoo.fr, mohamed.Djemel@enis.rnu.tn 

Mohamed Chtourou 
Intelligent Control, design & Optimization of complex Systems 

National Engineering School of Sfax - ENIS, B.P. W, 3038 Sfax, Tunisia 
mohamed.chtourou@enis.rnu.tn 

Keywords: Stability, neural networks, identification, backpropagation algorithm, constrained learning rate, Lyapunov 
approach. 

Abstract: This paper presents a stable neural sytem identification for nonlinear systems. An input output discrete time 
representation is considered. No a priori knowledge about the nonlinearities of the system is assumed. The 
proposed learning rule is  the backpropagation algorithm under the condition that the learning rate belongs 
to a specified range defining the stability domain. Satisfying such condition, unstable phenomenon during 
the learning process is avoided. A Lyapunov analysis is made in order to extract the new updating 
formulation which contain a set of inequality constraints. In the constrained learning rate algorithm, the 
learning rate is updated at each iteration by an equation derived using the stability conditions. As a case 
study, identification of two discrete time systems is considered to demonstrate the effectiveness of the 
proposed algorithm. Simulation results concerning the considered systems are presented. 

1 INTRODUCTION 

The area of system identification has received 
significant attention over the past decades and now it 
is a fairly mature field with many powerful methods 
available at the disposal of control engineers. Online 
system identification methods to date are based on 
recursive methods such as least squares, for most 
systems that are expressed as linear in the 
parameters (LIP). 
To overcome this LIP assumption, neural networks 
(NNs) are now employed for system identification 
since these networks learn complex mappings from a 
set of examples. Due to NN approximation 
properties  as well as the inherent adaptation features 
of these networks, NN present a potentially 
appealing alternative to modeling of nonlinear 
systems. 
Moreover, from a practical perspective, the massive 
parallelism and fast adaptability of NN 

implementations provide additional incentives for 
further investigation. 
Several approaches have been presented for system 
identification without using NN and using NN 
(Narendra and Parthasarathy, 1990) (Boskovic and 
Narendra 1995). Most of the developments are done 
in continuous time due to the simplicity of deriving 
adaptation schemes. To the contrary, very few 
results are available for the system identification in 
discrete time using NNs. However, most of the 
schemes for system identification using NN have 
been demonstrated through empirical studies, or 
convergence of the output error is shown under ideal 
conditions (Ching-Hang Lee and al, 2002). 
Others (Sadegh, 1993) have shown the stability of 
the overall system or convergence of the output error 
using linearity in the parameters assumption. Both 
recurrent and dynamic NN, in which the NN has its 
own dynamics, have been used for system 
identification. 
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Most identification schemes using either multilayer 
feedforward or recurrent NN include identifier 
structures which do not guarantee the boundedness 
of the identification error of the system under 
nonideal conditions even in the open-loop 
configuration. 
Recent results show that neural network technique 
seems to be very effective to identify a broad 
category of complex nonlinear systems when 
complete model information cannot be obtained. 
Lyapunov approach can be used directly to obtain 
stable training algorithms for continuous-time neural 
networks (Ge, Hang, Lee, Zhang, 2001), 
(Kosmatopoulos, Polycarpou, Christodoulou, 
Ioannou, 1995) (Yu, Poznyak, Li, 2001). The 
stability of neural networks can be found in (Feng, 
Michel, 1999)and (Suykens, Vandewalle, De Moor, 
1997). The stability of learning algorithms was 
discussed in (Jin, Gupta, 1999) and (Polycarpou, 
Ioannou 1992).  
It is well known that normal identification 
algorithms are stable for ideal plants (Ioannou, Sun, 
2004). In the presence of disturbances or unmodeled 
dynamics, these adaptive procedures can go to 
instability easily. The lack of robustness in 
parameters identification was demonstrated in (E. 
Barn, 1992) and became a hot issue in 1980s. 
Several robust modification techniques were 
proposed in (Ioannou, Sun, 2004). The weight 
adjusting algorithms of neural networks is a type of 
parameters identification, the normal gradient 
algorithm is stable when neural network model can 
match the nonlinear plant exactly (Polycarpou, 
Ioannou 1992). Generally, some modifications to the 
normal gradient algorithm or backpropagation 
should be applied, such that the learning process is 
stable. For example, in (L. Jin, M.M. Gupta, 1999) 
some hard restrictions were added in the learning 
law, in (Polycarpou, Ioannou 1992) the dynamic 
backpropagation was modified with stability 
constraints.  
The paper is organized as follows. Section II 
describes the adopted identification scheme. In 
section III and through a stability analysis a 
constrained learning rate algorithm is proposed to 
provide stable adaptive updating process. two simple 
simulation examples give the effectiveness of the 
suggested algorithm in section VI. 

2 PRELIMINARIES 

The main concern of this section is to introduce the 
feedfarward neural network adopted architechture 

and some concepts of backpropagation training 
algorithm. Consider the following discrete-time 
input-output nonlinear system 

[ ])1()......(),1().......()1( +−+−=+ mkukunkykyfky  (1) 
The neural model for the plant can be expressed as  

[ ]VWkYFky ,),()1(ˆ =+  (2) 
Where  )(),1(),....1(),(()( kunkykykykY +−−=  

))1(......,),........1(, +−− mkuku  

and W and V is the weight parameter vector for the 
neural model. 
A typical multilayer feedfarward neural network is 
shown in Figure 1, where Ii is the ith neuron input, 
Oj is the jth neuron output i, j and k indicate 
neurons, wij is the weight between neuron i and 
neuron j. For the ith neuron, the nonlinear active 
function is defined as 
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Figure 1: Feedforward neural model. 

Training the neural model consists on the adjustment 
the weight parameters so that the neural model 
emulates the nonlinear plant dynamics. Input–output 
examples are obtained from the operation history of 
the plant. 
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Using the gradient decent, the weight connecting 
neuron i to neuron j is updated as 
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Where [ ]2)1()1(2
1)( +−+= kykykJ m   

ε is the learning rate. The partial derivatives are 
calculated with respect to the vector of weights W. 

( ) jmj
j

OkykyIfkV
kJ ))1()1((')(

)( +−+⋅=
∂
∂  

 

( ) ( ) ij
m

L

j
jj

ij

xVkykyIfIf
kw
kJ

⎥
⎦

⎤
⎢
⎣

⎡
+−+=

∂
∂ ∑

=

))1()1((''
)(
)(

1

 (6) 

Backpropagation algorithm has become the most 
popular one for training of the multilayer perceptron 
. Generally, some modifications to the normal 
gradient algorithm or backpropagation should be 
applied, such that the learning process is stable. For 
example, in (B. Egardt, 1979) some hard restrictions 
were added in the learning law, in (J.A.K. Suykens, J. 
Vandewalle, B. De Moor, 1997) the dynamic 
backpropagation was modified with stability 
constraints. 

3 STABILITY ANALYSIS 

In the literature, the Lyapunov synthesis (Z.P. Jiang, 
Y. Wang, 2001), (W. Yu, X. Li, 2001) consists on the 
selection of a positive function candidate V which 
lead  to the computation of an adaptation law 
ensuring it’s decrescence , i.e 0≤V&  for continuous 
systems and 0)()1()( ≤−+=Δ kVkVkV  for 
discrete time systems. Under these assumptions the 
function V is called Lyapunov function and garantee 
the stability of the system. Our objective is the 
determination of a stabilizing adaptation law 
ensuring the stability of the identification scheme 
presented below and the boundness of the output 
signals. The following assumptions are made for 
system (1) 
Assumption 1. The unknown nonlinear function f(·) 
is continuous and differentiable. 
Assumption 2. System output y(k) can be measured 
and its initial values are assumed to remain in a 
compact set Ω0 . 

3.1 Theorem 

The stability of the identification scheme is 
guaranteed for a learning rate verifying the 
following inequality : 
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(7) 

Where W, V are respectivly the vector weight 
between the inputs and the hidden layer and the 
vector weight between the hidden layer and the 
outputs layer. i denote the ith input and  j the jth 
hidden neuron.  

3.2 Proof 

Considering the Lyapunov function: 

( ) )(~)(~)(~)(~)( kVkVkWkWtrkV TT
L +=  (8) 

Where  
tr(.)  denotes the matrix trace operation. 
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*W denotes the optimal vector weight between the 
inputs and the hidden layer . 

*V  denotes the optimal vector weight between the 
hidden layer and the outputs. 
The computation of the )(kVLΔ expression leads to : 
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The adopted  adaptation law is the gradient 
algorithm. We have: 
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Where the partial derivatives are expressed as  
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Our field of interest covers the black box systems. 
The partial derivatives denoting the system dynamic 
are approximated as follow: 
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The approximated partial derivatives are given 
through: 
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Adopting the variables A and B defined by: 
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The stability condition 0)( ≤Δ kV  is satisfied only 
if :  

022 ≤⋅⋅−⋅ εβεα  (13)

Solving this ε second degree equation lead to the 
establishment of the condition (7) : 

0)( ≤Δ kV  if ε satisfies the following condition : 
sεε≤≤0  

where 

Figure 2: Evolution of the system output and the neural 
model output ( domainstability∈ε ). 

4 SIMULATION RESULTS 

In this section two discrete time systems are 
considered to demonstrate the effectivness of the 
result discussed below. 

4.1 First Order System  

The considered system is a famous one in the 
litterature of adaptive neural control and 
identification. The discrete input-output equation is 
defined by: 

System  
Neural model 

[ ]

[ ]

[ ]{ } [ ]

[ ]( )∑∑ ∑

∑

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−+−+

⎢
⎢

⎣

⎡

⎜
⎜

⎝

⎛
⋅+−++⋅

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+−+

=

=

∈

∈

∈=

j
jmm

ji
i

N

j
jjj

mm

T
mj

jmmT

ni

mj

i

N

j
jjj

mm

s

OkekykyxOOVkekyky

VOkekykykWxOOVkekykytr

2

,

2

1
1

1

1

11
1

).()).1(1)(1()1.(.).()).1(1)(1(

).()).1(1)(1()()1.(.).()).1(1)(1(2
L

L

L
ε

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

354



3
2 )(

)(1
)()1( ku
ky

kyky +
+

=+
 

(15)
 

For the neural model , a three-layer NN was 
selected with two inputs, three hidden and one 
output nodes. Sigmoidal activation functions were 
employed in all the nodes.  
The weights are initialized to small random values. 
The learning rate is evaluated at each iteration 
through (14). It is also recognized that the training 
performs very well when the learning rate is small. 
As input signal, a sinusoidal one is chosen which 
the expresion is defined by: 

( )505.0cos5.0)( ππ+⋅= kku  (16) 

The simulations are realized in the two cases 
during 120 iterations. Two learnning rates values 
are fixed in and out of the learning rate range 
presented in (7).Simulation results are given 
through the following figures : 

 
Figure 3 : Evolution of the system output and the neural 
model output ( domainstability∉ε ). 

4.1.1 Comments 

Fig 2 and Fig 3 show that if the learning rate 
belongs to the range defined in (7), the stability of 
the identification scheme is garanteed. It is shown 
through this simulation that the identification 
objectives are satisfied. Out this variation domain 
of the learning rate, the identification is instable 
and the identification objectives are unreachable.  

4.2 Second Order System 

The second example concerns a discrete time 
system given by: 
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The process dynamic is interesting. In fact it has 
the behaviour of a first order law pass filter for 
inputs signal amplitude about 0.1, the behaviour of 
a linear second order system in the case of small 
amplitudes (0,1 < |u| < 0,5) and the behaviour of a 
non linear second order system in the case of great 
inputs amplitudes (0,5 < |u| < 5) (Ching-Hang Lee 
and al, 2002). 
For the neural model , a three-layer NN was 
selected with three inputs, three hidden and one 
output nodes. Sigmoidal activation functions were 
employed in all the nodes.  
The weights are initialized to small random values. 
The learning rate parameter is computed 
instantaneously. As input signal, a sinusoidal one 
is chosen which the expresion is defined by: 

( )3005.0cos5.0)( ππ+⋅= kku  (18) 

The simulations are realized in the two cases. Two 
learnning rates values are fixed in and out of the 
learning rate range presented in (7). 
Simulation results are given through the following 
figures: 

 
Figure 4: Evolution of the system output and the neural 
model output ( domainstability∈ε ). 

System  
Neural model 

System  
Neural model 
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Figure 5: Evolution of the system output and the neural 
model output ( domainstability∉ε ). 

4.2.1 Comments 

Here we made a comparative study between an 
arbitrary choice of a learning rate out side of the 
stability domain and a constrained choice verifying 
the stability condition and guarantying tracking 
capability. The simulation results schow that a 
learning rate in the stability domain ensure the 
stability of the identification scheme. 

5 CONCLUSIONS 

To avoid unstable phenomenon during the learning 
process, constrained learning rate algorithm is 
proposed. A stable adaptive updating processes is 
guaranteed. A Lyapunov analysis is made in order 
to extract the new updating formulations which 
under inequality constraint. In the constrained 
learning rate algorithm, the learning rate is updated 
at each iterative instant by an equation derived 
using the stability conditions.  The applicability of 
the approach presented is illustrated through two 
simulation examples. 
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