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Abstract: Finding the optimal OWA (ordered weighted averaging) operators is important in many decision support 
problems. The OWA-operators enables the decision maker to model very different kinds of aggregator 
operators. The weights need to be, however, determined under some criteria, and can be found through the 
solution of some optimization problems. The important parameter called the level of orness may, in many 
cases, be uncertain to some degree. Decision makers are often able to estimate the level using fuzzy 
numbers. Therefore, this paper contributes to the current state of the art in OWA operators with a model that 
can determine the optimal (minimum variability) OWA operators under a (unsymmetrical triangular) fuzzy 
level of orness.   

1 INTRODUCTION 

Information aggregation is used in many 
applications. Some fields of research that takes 
advantage of aggregation may be found in Neural 
Networks, fuzzy logic controllers, multi-criteria 
optimisation and more. Aggregation is necessary to 
logically split up entities onto several units. A very 
eminent way of doing aggregators is the OWA 
operators, originally described by (Yager, 1988). He 
defined a weight, wi, to be associated with an 
ordered position of the aggregate. The weights are 
often ordered such that the best criterion is 
associated with the first weight and so on. Given the 
weights for each object, Yager defined a level of 
orness, which will represent a major characteristic of 
the weighting structure. An orness-value of zero 
represents a situation that the weakest criterion has 
the full weight, whereas an orness-value of one 
represents the opposite, i.e. the strongest criterion 
has the full weight.  

Finding the optimal distribution of the weights 
under a certain level of orness has obtained some 
interest during the last decade. The weights can be 
optimal in many ways; O’Hagan, for instance 
(1988), presented a numerical method to find the 
maximum entropy OWA operators under a crisp 
level of orness. Quite recently (Fuller and 
Majlender, 2001), (Fuller and Majlender, 2003) and 

(Carlsson et al., 2003) extended those results with 
both a analytical model for the maximum entropy 
problem as well as an analytical solution to the 
minimum variability problem. These contributions 
are interesting and sound theoretical findings. They 
did not, however, consider a fuzzy level of orness. 
The level of orness is often estimated from expert 
opinions and can be inherent fuzzy. Therefore, this 
paper contributes with a fuzzy orness level, 
minimum variability, OWA operator model. This 
paper does not use the Lagrange multiplier method, 
used by (Fuller and Majlender, 2001, 2003), but 
instead the constraints for the minimum variability 
problem are substituted in the objective function. 
Afterwards, the objective function is assumed to 
have a triangular fuzzy level of orness. This paper 
uses the signed distance method (Yao and Wu, 
2000) to defuzzify the objective function, where 
after the optimisation problem is checked for 
convexity and solved numerically to the optimal 
solution. Other contributions using the signed 
distance method to defuzzify fuzzy numbers are 
(Salameh and Jaber, 2000) and (Yao and Chiang, 
2003), for instance.  

The paper is organised as follows: first the 
minimum variability OWA operator problem is 
formulated. Then the problem is altered to contain 
only an objective function, where after the level of 
orness is allowed to be fuzzy, but defuzzified in 
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order to obtain a crisp optimal solution to the 
problem. Finally, a small problem is solved and 
compared with the solution obtained by (Fuller and 
Majlender, 2003). 

2 THE MINIMUM VARIABILITY 
OWA OPERATOR PROBLEM 

According to (Fuller and Majlender, 2003), the 
minimum variability problem is the following: 
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where wi is the positive weigths (the variables in the 
optimisation problem) and n is the total number of 
weights. α is the level of orness (parameter in the 
optimisation problem). This model can be solved 
analytically to optimum using a Lagrange multiplier 
method as in Fuller and Majlender (2003). 

The model in eq. (1) can be reformulated by 
substituting each of the two constraints into the 
objective function. The second constraint in (1) will 
give us the following relationship:  
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Subsituting (2) into (1) yields 
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The constraint in (3) will give us the following 
relationship: 
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Using (4) in (3) will give us the simplified 
optimisation problem, containing only an objective 
function as follows (after some simplifications) 
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First of all it is worth noticing that the optimisation 
problem in eq. (5) is convex. The convexity can be 
established by examining the terms and since 
classical convexity theory states that a function 

∑ +=
i

ii kxcxf 2)()( , is always convex, where ci and 

k are constants.  
The next step is to manipulate (5) to remove the 
squares (in order to be able to defuzzify it with the 
signed distance method). This will result (after some 
simplifications and rearrangements) in the following 
problem (i.e. to an equivalent problem to the one 
found in eq. 5): 
 

There are some intermediate steps between eqs. (5) 
and (6) that are left out since it would require some 
additional pages of formulas. The reformulation of 
eq. (5) into the problem in eq. (6) may seem to 
complicate the problem structure, but in fact it helps 
the defuzzification step, since α will only be found 
in separate terms.  
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3 DEFUZZIFICATION OF THE 
ORNESS VALUE 

If the α value (the orness value) is triangular fuzzy, 
denoted as α~ ,  the optimization problem becomes 
simply the following: 

Some basics from fuzzy set theory need to be 
introduced in order to make the following model 
development self-contained. 

Definition 1. Consider the fuzzy set 
),,(~ cbaA = where cba << and defined on R, 

which is called a triangular fuzzy number, if the 
membership function of A~  is given by 
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Definition 2. Let B~ be a fuzzy set on R and 
10 ≤≤ cα . The αc-cut of B~ is all the points x such 

that cB x αμ ≥)(~ , i.e. 

{ }cBc xxB αμα ≥= )()( ~  

In order to find non-fuzzy values for the model 
we need to use some distance measures and we will 
use the signed distance (Yao and Wu, 2000). 

Definition 3. For any a  and R∈0 , the signed 
distance from a to 0 is aad =)0,(0 .  And if 0<a , 
the distance from a to 0 is )0,(0 ada −=− .  

Let Ω  be the family of all fuzzy sets B~  defined 
on R for which  the α-cut [ ])(),()( cUcLc BBB ααα =  
exists for every [ ]1,0∈cα , and both )( cLB α  and 

)( cUB α  are continuous functions on [ ]1,0∈cα . 

Then, for any Ω∈B~ , we have (see Chang, 2004, for 
instance) 
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From Chang (2004) it can be finally stated 
(originally by results from Yao and Wu, 2000) how 
to calculate the signed distances. 

Definition 4. For Ω∈B~  define the signed 
distance of B~  to 10~  as 

[ ]∫ +=
1

0
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2
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The Definition 3 will give us several properties 
of which the most important is  

Property 1. Consider the triangular fuzzy 
number ),,(~ cbaA = : the α-cut of A~  is 

[ ])(),()( cUcLc AAA ααα = , for [ ]1,0∈cα , where 

ccL abaA αα )()( −+=  and ccU bccA αα )()( −−= , 

the signed distance of A~  to 10~  is 

).2(
4
1)0~,~( 1 cbaAd ++=  

Let us assume that we have a triangular fuzzy 
orness level, i.e. 

),,(~
hl Δ+Δ−= αααα  (8) 

(Note that the orness value, α , should not be mixed 
up with the α-cut, called αc.) Then we will 
defuzzify α~  in two different ways, depending on 
whether α~  is squared or not. From Property 1 we 
will get directly that the signed distance of α~  is  
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And according to Definition 4 we will get that the 
signed distance for 2~α will be 
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Finally we will get the signed distance value for 2~α  
as  
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The defuzzified objective function will be 
 

And putting the signed distances (to defuzzify) of 
α~  and 2~α  respectively (Equations 9 and 11), into 

eq. (7) will give us the final defuzzified objective 
function as 
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The fuzzy minimum variability OWA operator 
problem can thus be solved by minimizing eq. (13). 
The first and second weight can there-after be 
obtained from eqs. (4) and (2), respectively (with the 
defuzzified value of α~ , and not the crisp one, c.f. 
eq. 14). 
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It is worth noticing that the convexity will remain 
(from eq. 5) through the operations, since the effect 
of a fuzzy orness-value (α-value) will only affect the 
constant in the optimization problem. (I.e. it will 
only affect the parameter k in the functions of the 
form ∑ +=

i
ii kxcxf 2)()( and, thus, not affect the 

convexity. In addition, the operations in eqs. 6-13 
will not change the convexity assumption.) The 
optimization problem in eq. (13) can be solved 
numerically with any local nonlinear optimization 
methods, which can guarantee local optimal 
convergence. The method need not be able to handle 
constraints, since there are no constraints involved in 
eq. (13), except for the non-negativity constraint of 
the variables. A method that can handle simple 
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constraints is, however, advisable so that the 
substituted constraints in eqs. (2) and (4) will always 
get non-negative values. 

4 EXAMPLE 

In this section, a test problem is solved and 
compared to the crisp solution by Fuller and 
Majlender (2003). This problem contains 5 weights 
and it is calculated for a level of orness (α-value) of 
0.1, 0.2, 0.3, 0.4 and 0.5. First, the problem is 
compared to the crisp solution for an α-value of 0.3 
and different values of the Δ-parameters (i.e. 
different fuzziness values). The solution is obtained 
by using a standard local search method on the 
problem in eq. (13). The problem in this paper is 
solved with the extended Newton method found in 
the standard solver available in Microsoft Excel.  

Table 1: The optimal OWA-operators for different 
fuzziness values (α=0.3). 

w1 w2 w3 w4 w5 Obj 
0.300 0.000 0.000 0.040 0.120 0.200 0.280 0.360 0.013
0.300 0.050 0.050 0.040 0.120 0.200 0.280 0.360 0.018
0.300 0.100 0.050 0.030 0.115 0.200 0.285 0.370 0.027
0.300 0.050 0.100 0.050 0.125 0.200 0.275 0.350 0.024

lΔ hΔα

 

In Table 1 it should be noted that the crisp case (i.e. 
when the Δ’s are 0) collapses to the same solution as 
reported in Fuller and Majlender (2003). It should 
also be noted that the optimal solution (in this 
example) remained the same as the crisp solution if 
Δl= Δh. In order to illustrate the behaviour of the 
weights for different Δ-values (as well as the 
objective function), Figure 1 and Figure 2 are 
included. In these figures, the α-value is set to 0.3, 
but one of the Δ-values is allowed to change. One 
can see in Figure 1 that if Δh is increased from 0 to 
0.3 the objective value increases from 0.013 to 0.065 
and the weights get more similar to each other. In a 
similar manner when Δl increasing from 0 to 0.3, the 
objective value will increase from 0.013 to 0.084 
and the weights become more diverse.  
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0.100
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0.200

0.250

0.300

0.350

0.400

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Δh

w1 w2 w3 w4 w5 Obj. value   

Figure 1: The sensitivity analysis of Δh for α=0 and Δl=0. 

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Δl

w1 w2 w3 w4 w5 Obj. value  

Figure 2: The sensitivity analysis of Δl for α=0 and Δh=0. 

In Table 2, the optimal OWA-operators for several 
α-values are calculated. When the Δl= Δh= 0, (i.e. the 
crisp case) the operator-values are the same as the 
one reported by Fuller and Majlender (2003). In the 
case of Δ-values greater than zero (and unequal) the 
operator-values are different from the crisp case, 
except for the case of α=0.1. It is also worth noticing 
that the objective value for the crisp case is always 
better than for the fuzzy cases (in this example); 
when α=0.1 the increase is only about 20 %, but 
with bigger α-values, the bigger the increase in the 
objective function when fuzziness is introduced.  

Table 2: The optimal OWA-operators for different α-
values as well as fuzziness values. 

w1 w2 w3 w4 w5 Obj 
0.100 0.000 0.000 0.000 0.000 0.033 0.333 0.633 0.063
0.100 0.050 0.100 0.000 0.000 0.058 0.333 0.608 0.069
0.100 0.100 0.050 0.000 0.000 0.008 0.333 0.658 0.081
0.200 0.000 0.000 0.000 0.040 0.180 0.320 0.460 0.030
0.200 0.050 0.100 0.000 0.055 0.185 0.315 0.445 0.039
0.200 0.100 0.050 0.000 0.025 0.175 0.325 0.475 0.045
0.400 0.000 0.000 0.120 0.160 0.200 0.240 0.280 0.003
0.400 0.050 0.100 0.130 0.165 0.200 0.235 0.270 0.015
0.400 0.100 0.050 0.110 0.155 0.200 0.245 0.290 0.016
0.500 0.000 0.000 0.200 0.200 0.200 0.200 0.200 0.000
0.500 0.050 0.100 0.210 0.205 0.200 0.195 0.190 0.012
0.500 0.100 0.050 0.190 0.195 0.200 0.205 0.210 0.012

lΔ hΔα

 

5 CONCLUSIONS 

This paper presents a new fuzzy minimum 
variability model for the OWA-operators, originally 
introduced by Yager (1988). Previous results in this 
line of research is the elegant results by Fuller and 
Majlender (2001, 2003), where both the minimum 
variability problem as well as the maximum entropy 
problem were solved. These results assumed, 
however, a crisp level of orness.  

This paper added the current research track a 
model that could account for unsymmetrical (or 
symmetrical) triangular fuzzy levels of orness. This 
is important if the decision maker is not certain 
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about the level of orness, but can estimate it through 
the proposed fuzzy numbers. The minimum 
variability model for the fuzzy orness level is 
obtained through a slightly different approach than 
the one used in Fuller and Majlender (2001, 2003). 
This paper substitutes the constraints in the problem 
(c.f. eq. 1) such that the variables w1 and w2 are 
eliminated out of the problem, and after some 
rearrangements a convex objective in smaller 
dimension remains of the original problem. This 
problem is allowed to have triangular fuzzy α-
values, but in order to solve the optimisation 
problem, the α-values are defuzzified with the 
signed distance method. The defuzzified 
optimization problem is then solved with a 
numerical optimisation method that can guarantee 
local convergence. The first two weights are then 
solved from the substituted constraints.  

The future research consists of analytical 
solutions for the optimization problem as well as 
extending the level of orness to contain other types 
of fuzzy numbers than the triangular ones. A natural 
extension could be to investigate the trapezoidal 
fuzzy numbers as well as other defuzzification 
methods.  
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