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Abstract: In this paper, a new optimisation strategy for the solution of the classical Unit Commitment problem is 
proposed. This problem is known to be an often large scale, mixed integer programming problem. Due to 
high combinatorial complexity, the exact solution is often intractable. Thus, a metaheuristic based method 
has to be used to compute a very often suitable solution. The main idea of the approach is to use ant colony 
algorithm, to explicitly deal with the feasibility of the solution, and to feed a genetic algorithm whose goal 
is to intensively explore the search space. Finally, results show that the proposed method leads to the 
tractable computation of satisfying solutions for the Unit Commitment problem. 

1 INTRODUCTION 

The Unit Commitment problem is a classical 
optimization mixed integer problem, referring to the 
optimal scheduling computation of several 
production units while satisfying consumer’s 
demand. Due to temporal coupling of constraints 
(time up and time down constraints), a long temporal 
horizon is required, implying a large number of 
binary variables. Numerous methods have already 
been applied to tackle the difficulties of the problem 
(Sen and Kothari, 1998). Roughly speaking, the 
following classification can be made: Exact methods 
(exhaustive enumeration, “Branch and Bound” 
(Chan and Wang, 1993), dynamic programming 
(Ouyang and Shahidehpour, 1991)); deterministic 
approximated methods (priority lists (Senjyu, et al., 
2004)); Lagrangian relaxation (Zhai and Guan, 
2002); Stochastic methods, also called 
metaheuristics (simulated annealing (Yin Wa Wong, 
1998), tabu search (Rajan and Mohan, 2004), 
genetic algorithms (Swarup and Yamashiro, 2002)). 

All these approaches have pros and cons: exact 
methods suffer from combinatorial complexity, 

deterministic approaches are very easy and tractable, 
but can be strongly suboptimal, Lagrangian 
relaxation allows taking into account constraints and 
can be used to medium scale cases, but, due to the 
non convexity of the objective function, no 
guarantee can be given on the actual optimality. In 
the case of metaheuristics methods, there is no 
guarantee on the actual optimality of the solution, 
but one can very often compute a very satisfying 
suboptimal with low computation times. This kind 
of methods is very interesting, especially for large 
scale cases. However, one of the problems of such 
stochastic methods is the management of the 
feasibility of solutions. As the algorithm “walks” 
randomly in the search space, there is no guarantee 
that the final solution is in the feasible set. This is 
particularly the case for the Unit Commitment 
problem, which is a strongly constrained problem. 

In this paper a new optimization strategy is 
defined for the use of metaheuristics optimization 
methods, leading to a satisfying solution and the 
guarantee of its actual feasibility. The first step of 
the procedure is to use an ant colony algorithm as a 
“feasible solutions generator”. As such an algorithm 
is constructive it is possible to explicitly manage the 
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constraints of the problem to create a set of feasible 
solutions. The second step is to define a criterion to 
optimize the problem with a genetic algorithm from 
the initial population created by ant colony. In 
section 2, the optimization strategy is depicted and 
then is adapted to the Unit Commitment problem in 
section 3. Numerical results are given in section 4. 
Forthcoming works are given in section 5 and 
concluding remarks are drawn in section 6. 

2 OPTIMIZATION STRATEGY 

2.1 Optimization Method Synopsis 

The synopsis of the algorithm is depicted on figure 
1. The idea is to firstly sample the feasible space 
with an ant colony algorithm. This algorithm is 
constructive. Thus, solutions are explicitly built as 
feasible ones (see section 2.2). However, ant colony 
may fail to find a very good solution: because of its 
positive feedback structure, it may be trapped in a 
local minimum. Thus, a genetic algorithm will be 
used to intensively explore the search space (see 
section 2.4) from the population computed by ants. 
For that purpose, a new criterion is defined, for 
which feasibility is guaranteed (see section 2.3). 

 
Compute initial 

population with ant 
colony algorithm 

Compute a new 
criterion, guaranteeing 

feasibility 

Intensively explore 
search space with 
genetic algorithm 

 
Figure 1: Optimization strategy synopsis. 

The proposed methodology can be used to solve 
various and large scale optimization problems, the 
satisfaction of all constraints being guaranteed. 

2.2 Ant Colony Optimization 

Ant colony optimization was introduced by Marco 
Dorigo (Dorigo, et al., 1996). It is based on the way 
ants are looking for food. The metaphor is used to 
solve graph exploration problems. Various criterions 

can be optimized. For instance, a cost may be 
associated to each node. The goal is to minimize the 
sum of costs while exploring the graph. This is the 
well known Travelling Salesman Problem, for which 
ant colony algorithm has been firstly used (Dorigo, 
et al., 1997). During iteration t of the algorithm, F 
ants walk on the graph of figure 2. 

 Edge ij 
Node i 

Node j 

 
Figure 2: Graph exploration. 

If ant f has reached node i , the probability that it 
chooses the next node j  is:  
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 )(tτij  is the pheromone trail on edge ij  during 
iteration t. Its value depends on the results of 
previous ants; 

 ijη  is the attractiveness. It refers to the « local 
choice ». For the Traveling Salesman Problem, 

ijij dη /1= , where ijd  is the cost associated to 
the edge ij  of the graph; 

 α and β are weighting factors; 

 )(iJ f  is the feasible set (for the travelling 
Salesman problem, this feasible set contains all 
nodes connected to node i, but those nodes 
which have been already explored by the ant 
are to be removed). 

At the end of iteration t of the algorithm, F ants have 
computed F potential solutions, which are evaluated. 
The pheromone trail which laid on the graph of 
figure 2 is then updated:  

)(Δ)()1()1( tτtτρtτ ijijij +−=+  (2) 

ijτΔ  is the update coefficient whose value depends 
on the results of ants in iteration t. The more the ants 
which have walked on edge ij  have obtained good 
results, the higher is ijτΔ . Several strategies can be 
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used for this update. ρ  is the evaporation 
coefficient. This coefficient is an analogy with 
physical evaporation of pheromone in nature. 
Usually, there are about 20 to 30 ants, and 

2and1 ≈≈ βα . It is often necessary to bound the 
pheromone trail on each edge ( ],[ maxmin σσσ ∈ ), to 
avoid premature convergence; see (Stützle, et al., 
2000). Note that ant colony optimisation is a 
constructive algorithm. As results, it can explicitly 
take into account all the constraints of the problem, 
with the help of the feasible sets )(iJ f  which are 
built for each ant.  

2.3 Defining a Feasibility Criterion 

Consider the following optimization problem: 
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If a feasible solution with cost fc  is known, the 
following feasibility criterion can be defined: 

)()).()1(()(min xBxhcεxf f
x

+++  (4) 

where 
 ε  is a small positive real; 
 )(xh  is a penalty function. 
 )(xB  is a boolean function with value 1 for 

non feasible solutions and 0 for feasible ones. 
Any unfeasible solution has a higher cost than the 
feasible known solution. Then the criterion can be 
optimized by any unconstrained optimization 
algorithm, and for instance by genetic algorithm. In 
the proposed strategy, cf is the cost of the best 
solution found by the ant algorithm. 

2.4 Genetic Algorithm 

Genetic algorithm is a classical global optimization 
method. The general flow chart of this algorithm is 
given in figure 3. Classical cross-over and mutation 
operators are represented in figure 4 and 5 for a 
binary optimization problem. The aim of the 
crossover operator is to create 2 new potentially 
efficient individuals from 2 parents by mixing their 
variables. 

Initial 
population 

Genetic 
operations : cross-

over, mutation 

Selection 

New population 

 
Figure 3: General flow chart of a genetic algorithm. 
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+

Crossing over point, randomly chosen 

 
Figure 4: Crossing-over operator. 

The mutation operator allows the introduction of 
new genes in the population by randomly changing 
one of the variables. The selection operator is made 
via the classical biased roulette selection.  

1x 2x K 1−ix ix 1+ix  K  nx  Parent 

Mutation point, randomly chosen 

Child 1x 2x K 1−ix ix−1 1+ix  K  nx  

 

Figure 5: Mutation operator. 

3 APPLICATION TO THE UNIT 
COMMITMENT 

3.1 Unit Commitment Problem 

The Unit Commitment refers to the minimization of 
global costs of K production units, over a time 
horizon N, satisfying a consumer’s demand:  
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where: 

 k
nQ  is the produced power of unit k at time n; 

 k
nu  is the on/off status of unit k at time n 

(binary variable); 
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is the start up and shut down cost of unit k. 
Constraints of the problem are: 
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3.2 Graph Exploration Formulation 
for Ant Colony 

The Unit Commitment problem can be depicted by 
the graph represented in figure 6. Nodes of the graph 
are all the possible states of production system: 

},,{ 1 K
nn uu K . The goal is to go from one of the 

possible states at time 1, to one of the possible states 
at time N, while satisfying all constraints and 
minimising global costs. Start up/shut down are 
associated to edges of the graph; production costs 
are associated to nodes. 

 

Time 
interval 1 

State 00…00

State 00…01

State 01…11

State 11…11

Time 
interval 2 

Time  
interval N-1 

Time  
interval N  

Figure 6: Graph exploration formulation of Unit 
Commitment. 

3.3 Computation of Real Variables 

Ant colony and genetic algorithm are mostly 
dedicated to integer programming. The problem can 
be reformulated in a purely integer programming 
problem. Consider that binary variables are given 
and refer to a feasible solution. Real variables are 
computed as the solution of the following 
optimization problem: 
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The optimal solution is to produce as much as 
possible with low-cost units, while satisfying 
capacity constraints: 
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3.4 Enhanced Genetic Algorithm 

It has been observed that the classical genetic 
algorithm can be more efficient by using the a priori 
knowledge of the system (Sandou, et al., 2007). A 
“selective mutation operator” is added to the 
classical genetic operators. Consider figure 7, with a 
particular unit scheduling. Very often, a random 
mutation leads to an infeasible solution, because of 
time-up and time-down constraints. To increase the 
probability of reaching a feasible point with a 
mutation, the muted gene has to be located at 
switching times of the planning.  

 

1 1 1 1 1 1 0 0 0 0 

Switching times : 
Authorized 
mutations 

 
Figure 7: Selective mutation operator. 

4 NUMERICAL RESULTS 

The proposed strategy has been tested with Matlab 
6.5 with a Pentium IV 2.5GHz. Optimization 
horizon is 24 hours with a sampling time of one 
hour. A comparison is made with pure genetic 
algorithm. A “four unit” case is considered. 
Characteristics are given in table 1. onc  is 2€ and 

offc  is 10€ for all units. 

Table 1: Characteristics of the “4 unit case”. 

k Qmin 
(MW) 

Qmax 
(MW) 

α0 
(€) 

α1 Td 
(h) 

Tup 
(h) 

1 10 40 25 2.6 2 4 
2 10 40 25 7.9 2 4 
3 10 40 25 13.1 3 3 
4 10 40 25 18.3 3 3 

For this small case example, a “Branch and Bound” 
method has been developed so as to gat the global 
optimum and validate the method. Parameters of the 
the ant colony algorithm are: ,2;1 == βα 2.0=ρ , 

5;1 maxmin == ττ . For the genetic algorithm, 
parameters are: Crossover probability 70%, classical 
mutation probability 5%, selective mutation: 10%. 
Results are given in table 2. As stochastic algorithms 
are considered, 100 tests are performed for each 
case, and statistical data about the results are given: 
mean cost (compared to the global optimum), worst 
case, rate of success (number of times that the global 
optimum is found) and computation times. The 
population are set to 50 individuals for genetic 
algorithm. When it is fed by ant colony, 5 iterations 
of 10 ants are performed to compute 50 initial 
solutions. 

Table 2: Results for the “4 unit” case. 

 Mean Worst Success Comp.
times 

Ants + GA
100 iter 

+2.5% +9.4% 30% 15 s 

GA  
100 iter 

+3.1% +13.4% 20% 13 s 

Ants + GA
200 iter 

+0.4% +3.5% 80% 25 s 

GA  
200 iter 

+0.5% +4.5% 77% 24 s 

Computation times are very low for all cases. 
Results show that the use of ant colony as a “feasible 
solutions generator” leads to an increase in the 
quality of the solution. In particular, the worst case 
cost is better with the cooperative method. Thus, the 
cooperative method is very satisfying, especially for 
the “50 Ants – GA 200 iterations” case, as the mean 
result is just 0.4% higher than the optimal solution, 
and the worst case leads to a slight increase (less 
than 4%). Computation times are about 25 seconds. 

For 200 generations, results seem to prove that 
the ant generation has no influence anymore, 
compared with the pure genetic algorithm. However, 
for successful tests, it is interesting to have a look on 
the iteration number for which the best solution has 
been found. For pure generic algorithm, the best 
solution is found after 126 generations (average 
number), whereas it is found after 96 generations for 
the ant colony/genetic algorithm. Convergence is 
achieved earlier with the cooperative method. Note 
that results of the pure genetic algorithm are still 
very satisfying, thanks to the selective mutation 
operator, as shown in (Sandou, et al., 2007).  
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5 DISCUSSION 

5.1 Very Large Scale Cases 

The interest of a feasible initial population has been 
shown in previous results. In this paper, this feasible 
population is computed by an ant algorithm. The ant 
colony algorithm can be seen as a stochastic 
dynamic programming algorithm. The size of the 
state space is 2K. This is the main limiting point of 
the proposed method. Thus, for high values of K, the 
computation times of the ant colony algorithm grows 
very quickly. Thus, one of the main points is the 
application of ant colony to very large scale cases. 

5.2 Global Optimization and 
Cooperation 

Ant colony algorithm and genetic algorithm are two 
global optimization techniques and it may be 
astonishing to use them as a cooperative method. 
The goal of this hybridising was to couple the 
feasibility properties of ant colony algorithm and the 
intensive exploration of genetic algorithm. The 
cooperation is a sequential procedure, and a more 
alternated procedure could be profitable. For 
instance, results of genetic algorithms can be used to 
define the attractiveness parameters in a new 
iteration of ant colony algorithms. Furthermore, it 
will be interesting to couple the method with a local 
search. 

6 CONCLUSIONS 

In this paper, an optimization strategy has been 
defined and applied to solve the Unit Commitment. 
The main idea is to use an ant algorithm as a feasible 
solutions generator. These feasible solutions are 
brought together in an initial population for a genetic 
algorithm. To guarantee the feasibility of the final 
solution, a special criterion is computed from the 
results of the ant algorithm. To increase the 
efficiency of the classical genetic algorithm, a 
knowledge-based operator is defined (selective 
mutation). Finally, the proposed method leads to 
high quality solution, with guarantees of feasibility 
and with low computation times. The main limiting 
point appears to be the computation times of ant 
colony algorithm for very large scale cases. 
However, the use of feasible solutions in the initial 
population of a genetic algorithm is an interesting 
way to decrease the number of iterations required to 

find near optimal solutions. Forthcoming works deal 
with the use of such algorithm for predictive control 
of non linear hybrid systems. 
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