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Keywords: Path planning, Cramèr Rao Bound, map-based localization,dynamic programming.

Abstract: In surveillance or exploration mission in a known environment, the localization of the dedicated sensor is of
main importance. In this paper, we discuss the path planningproblem for the localization algorithm which
correlates range and bearing measurements and a map composed of several features. The sensor motion
is designed from an information measure derived from the Fisher Information Matrix. It is shown that a
closed form expression of the cost can be obtained. The optimal features location can be neatly geometrically
interpreted. An integral cost which includes the sensor perception limitation is then formulated. It is used in a
dynamic programming framework to tackle the path optimization problem.

1 INTRODUCTION

The path planning problem for map-based localiza-
tion consists in designing the best trajectory for a mo-
bile in a known environment, which guarantees the
highest performance of positioning during its execu-
tion. Data collected from sensors are “matched” to
a prior map to estimate the state (e.g., position and
heading). Depending on the sensor dynamic and the
observation models, different localization algorithms
can be used. When the system is linear or near linear
with Gaussian noises, Kalman-based approaches are
relevant (Thrun et al., 2005; S. Thrun and Dellaert,
2000). In this paper, we introduce a framework to
compute “optimal” path for a moving vehicle which
collects range and bearing data from 2D features. One
of the main challenges is to choose an appropriate
measure to be optimized. In random estimation, the
Fisher Information Matrix (FIM) can be used. We
considered a D-optimal design (Paris and Le Cadre,
2002). The first interesting result of this work is the
derivation of a closed form expression for the FIM
determinant. It is shown that it depends on groups of
two or three features. Then, a geometric analysis of
the optimal features placement can be done. By ex-
ploiting this measure, we introduce an integral cost
functional for a path space, which is composed of el-

ementary moves with constant velocity and constant
heading. Moreover, the sensor field of view limita-
tions are included to the cost computation. At last, we
formulate the problem as finding an optimal path on a
graph by means of dynamic programming. The paper
ends with one illustrative example.

2 PROBLEM FORMULATION

We consider a moving sensor evolving according to
the dynamic model

ẋt = vt cosϕt ,

ẏt = vt sinϕt ,

ϕ̇t = ωt . (1)

where its stateXt
∆
= [xt ,yt ,ϕt ] is composed of its

2-D position and its orientation. A feature map of
its environment is available for localization purpose.
In equation 2, we assume that the known control

ut
∆
= [vt ,ωt ] ∈ U ⊂ R

2. During its displacement, the
mobile gets sensor measurements from detected fea-
tures which are in the embedded map. Let us denote

ft
∆
= { f1, . . . , fmt } the set ofmt features visible and

used in the localization process at timet. Each fea-
ture is defined by its 2D position in a global frame
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Rg
∆
= (O,−→u ,−→v ):

fi ↔
(
xi ,yi) ∈ D ⊂ R

2. (2)

and the “sensor-feature” vector δpi(t)
∆
=

[
xi −xt , yi −yt

]∗
. The measurements vector is

the stacked vectorZt =
[
zt
1, . . . ,z

t
mt

]
wherezt

i is the
range and bearing measurement for featurefi . So,
the observation model stands as follows :

Zt = Ht(Xt , ft)+ Wt. (3)

where the 2× ith and 2× i +1th elements ofHt(Xt , ft)
are the components of the two dimensional vector
h(Xt , fi) given by

zt
i = h(Xt , fi)+wi

t . (4)

h(Xt , fi)
∆
=

{ √

(xt −xi)2 +(yt −yi)2

atan2(
yi−yt
xi−xt

)−ϕt
(5)

The noise vectorwi
t is modelled by an i.i.d. Gaus-

sian process with zero mean and covariance matrix
Σi

t . Moreover, we suppose thatΣi
t = Σ,∀i and

Σ =

(
σ2

r 0
0 σ2

ϕ

)

. (6)

We also consider thatwj
t andwl

t are independent for
l 6= j. So in light of (2), the likelihood function is
given by

p(Zt |Xt) ∝ exp

(

−
1
2

mt

∑
l=1

‖zl −h(Xt , fl )‖
2
Σ

)

. (7)

If X̂t is one estimate based on the measurementZt
(e.g., the maximum likelihood estimate), the covari-
ance erroreXt = Xt − X̂t is lower bounded by the
Cramer Rao Bound(CRB) (Van Trees, 1968).

Cov(eXt ) ≻ F−1(t). (8)

The calculation of the FIMF(t) is given in our case
by,

F =
mt

∑
i=1

(
∂h(Xt , fi)

∂Xt

)∗

Σ−1
(

∂h(Xt , fi)
∂Xt

)

. (9)

The elementary gradient vector can be derived
straightforwardly

∂h(Xt , fi)
∂Xt

=

(
ci si 0
− si

ρi

ci
ρi

−1

)

. (10)

whereαi(t)
∆
= ∠

−→u δpi(t), ρi
∆
= ||δpi(t)||, ci

∆
= cosαi

andsi
∆
= sinαi . Let us also introduce the following

notations :

• ~c
∆
= [c1 · · ·cmt ]

∗,~s
∆
= [s1 · · ·smt ]

∗,

• ~cρ
∆
= [ c1

ρ1
· · ·

cmt
ρmt

]∗,~sρ
∆
= [ s1

ρ1
· · ·

smt
ρmt

]∗.

• 1mt
∆
= [1· · ·1]∗, 0mt

∆
= [0· · ·0]∗

Without loss of generality, we setσd = σϕ = 1 then
we can rewrite1

F(t) = G(t)G(t)∗. (11)

with

G(t) =

G1(t)
︷︸︸︷

G2(t)
︷︸︸︷





~ct ~sρ
t

~st −~cρ
t

0mt 1mt



 .
(12)

G(t) is a 3×2mt matrix with columnsGi are part of
the subsetG1(t) or G2(t) :

G1(t) =
{

Gi1,1≤ i1 ≤ mt |Gi1 =
(
ci1 si1 0

)∗}
,

G2(t) =
{

Gi2,1≤ i2 ≤ mt |Gi2 =
( si2

ρi2
−

ci2
ρi2

1
)∗}

.

In this paper, we are dealing with the optimization
of the sequence of displacement which provides the
“best” estimate of the state. This can be achieved us-
ing an appropriate measure of information gain. We
adopt here a D-optimal design considering the deter-
minant of the FIM2. In the next section, we show
that this measure is a function implying the esti-
mated bearings angles(αi(t))

mt
i=1 and relative ranges

(ρi(t))
mt
i=1.

3 DERIVATION OF det(F)

Let us defineL (t) as the determinant of the FIM at
time t in positionXt . From (11), we have

L (t) = det(G(t)G(t)∗). (13)

Using the Binet-Cauchy formula3, we can notice that

L (t) = ∑
1≤i< j<k≤2mt

{
det(Gi ,G j ,Gk)

}2
. (14)

hence to computeL (t), we have to enumerate the
different cases in accordance with the column vec-
tors (Gi ,G j ,Gk) are inG1 or G2. In the following,

we denotedi jk
∆
= det(Gi ,G j ,Gk). If all columns are

in G1, di jk is trivially equal to zero. Using determi-
nant computation properties and relations betweeen
trigonometric functions, we get

1* is the transpose operator
2other matrix operator can be used, such as thetrace
3det(AB) = ∑Sdet(As)det(Bs), S= {1, · · · ,n}, if A ∈

MK(m,n) etB ∈ MK(n,m), As is them× n matrix whose
columns are those ofA with in S
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a) Gi ,G j ∈ G1 andGk ∈ G2

d1
i jk = sin(αi −α j).

b) Gi ∈ G1 andGk, G j ∈ G2

d2
i jk =

cos(αi −αk)

ρk
−

cos(αi −α j)

ρ j
.

c) Gi ∈ G1, G j andGk ∈ G2

d3
i jk =

sin(αi −αk)

ρiρk
+

sin
(
αi −α j

)

ρiρ j
+

sin
(
α j −αk

)

ρ jρk
.

In conclusion, we notice thatL (t) is the sum of three
termsL1(t), L2(t)andL3(t) which characterize inter-
actions between pairs and triplets of visible features.

L (t) = a1L1(t)+a2L2(t)+a3L3(t). (15)

with L1(t) = ∑mt
i=1 ∑mt

j>i g1 ( fi , f j ), L2(t) =

∑mt
i=1 ∑mt

j=1 ∑mt
k> j g2( fi , f j , fk) and L3(t) =

∑mt
i=1 ∑mt

j>i ∑
mt
k> j g3 ( fi , f j , fk) where (gl )l∈{1,2,3}

are respectively given by the square ofdl
i jk in the

above cases. Coefficients(al )1≤l≤3 depend onσr and
σϕ.

4 THE OPTIMAL PLACEMENT
OF THE FEATURES

We now study the location of the features which pro-
vides the best performance of estimation around a
given mean statēX. The analysis takes into account
the sensor field of view and only considerL1(t) (pairs
interaction). Such an approximation is valid when
σd
ρ ≪ σϕ. Let ( fi)1≤i≤n be visible from statēX. We

introduceP = (x̄; ȳ), (~vi)1≤i≤n, Dm, ~v− and ~v+ (see
figure 1).Dm is the angular aperture of the sensor field
of view. An analogy can be made with the reasoning

P v−

v+

f1

f2

α2
α12α2

2α1

~v1 ~v2

Dm

2Dm

Figure 1: Sensor features spatial configuration.

in (Gu et al., 2006) for multiple UAVs cooperation
for sensing. The derivation made here is nevertheless
simpler and more geometrically intuitive.

Proposition 1. Maximizing L1(t) is equivalent to
find the configuration(~v1

∗, . . . , ~vn
∗) which minimizes

||~vT || = ||∑n
i=1~vi ||

2.

Indeed, using classic trigonometric properties4 we
can show thatL1 = 1

4

(
1−||∑n

i=1~vi ||
2
)
.

4.1 Optimal Placement for Dm < π
2

In this context, the value of the angle made by vectors
~vi and~v j is strictly smaller thanπ. So||~vT || > 0. Let

i0 ∈{1, · · · ,n} andθi0 = ∠~v−~vi0. We also denote~vi0
∆
=

∑ j 6=i0 ~v j andθi0 = ∠~v− ~vi0

||~vT ||
2 = ||~vi0 + ~vi0||

2

= 1+ ||~vi0||
2 +2||~vi0||cos

(

θi0 −θi0

)

.

As Dm < π
2 , ~vi0 is also between~v− and ~v+. So, for

a given placement of vectors{~vi}i6=i0
, ||~vT || is min-

imized for θ∗i0 which makesg(θi0) = cos
(

θi0 −θi0

)

minimum.

Proposition 2. In the optimal configuration, each
vector~vi is on the frontier of the visibility cone.

Proof. 0≤ θi ,θi0 ≤ 2Dm ⇒ θi0 −2Dm ≤ θi0 − θi0 ≤
θi0. Moreover,θi0 −2Dm > −π et θi0 < π. We can
easily deduce that

θ∗i0 =

{

2Dm if |θi0 −2Dm| > θi0

0 if |θi0 −2Dm| < θi0
.

which proves that either~vi0 = ~v− or ~vi0 = ~v+. Let us
denoten− and n+ the number of vectors~vi respec-
tively equal to~v− and ~v+ (n− + n+ = n). n− must
verify the relation

||~vT ||
2 = 2(1−a)n2

−−2(1−a)nn−+n2 ∆
= f (n−).

with a = cos(2Dm) (a < 1). f is minimal forn− = n
2,

so

• if n is even,n− = n+ = n
2 and which provides

L1 =
n2

4
sin2(Dm) .

• else we can setn− = n−1
2 and n+ = n+1

2 , then

L1 =
n2−1

4
sin2(Dm) .

4sin2a = 1
2(1− cos2a) and cos(a− b) = cosacosb+

sinasinb
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4.2 Optimal Placement for Dm > π
2

In this case, we have to make a different reasoning ac-
cording to the parity ofn. Whenn is even, the optimal
solution is obvious as we can place the features so that
~vT =~0. Indeed, it is enough to choose{~v1, · · · ,~vn}
pairwise such that their difference angle is equal toπ
(i.e. orthogonal assignment of features). We can no-
tice that, there are plenty of such configurations and

the cost isL1 =
n2

4
. Otherwise, ifn is odd, it is more

difficult to find a placement which gives~vT =~0. Nev-
ertheless, we can search among a particular class of
configurations with~vi0 = −~vi0. Assumingi0 = n, one
way to obtain~vn collinear and opposite to~vn, is to
choose{~v1, · · · , ~vn−1} where

∃ϕ ∈
]π

2
,π
[

,

{
∠~vi~vn = ϕ, ∀i ∈ {1, · · · , n−1

2 },
∠~vn~v j i = ϕ, ∀ j i = i + n−1

2 .

Given∠~v−~vi = θp, ∀i ∈ {1, · · · , n−1
2 } and supposing

~v− =~u, then

~vn = cos(ϕ+ θp)~u+sin(ϕ+ θp)~v,
~vi = cos(θp)~u+sin(θp)~v, ∀i,
~v j i = cos(2ϕ+ θp)~u+sin(2ϕ+ θp)~v, ∀ j i .

and∀i ∈ {1, · · · , n−1
2 }

~vi + ~v j i = cos(θp)+cos(2ϕ+ θp)~u

+sin(θp)+sin(2ϕ+ θp)~v. (16)

Using trigonometric properties, we get that:

~vi + ~v j i = 2cos(ϕ)(cos(ϕ+ θp)~u+sin(ϕ+ θp)~v)

= 2cos(ϕ)~vn.

To make~vT =~0 , we must force

~vn +

n−1
2

∑
i=1

~vi + ~v j i =~0,

which is equivalent to the following condition onϕ.

l(ϕ)
∆
= 1+(n−1)cos(ϕ) = 0, ϕ ∈

[π
2
,π
[

. (17)

As the field of view is limited, we have to satisfy
ϕ ≤ Dm. Therefore, if such an angle exists, the cost

value is againL1 = n2

4 . In particular, if Dm > 2π
3 ,

we can always find an optimal placement. Indeed,
it is sufficient to choosen− 3 vectors as in the even
case (orthogonal assignment) and to use the last three
with ϕ = 2π

3 . When existsϕ solution of (17) with
Dm < ϕ < 2π

3 , it seems difficult to find a configuration
which allows to attain the maximum cost. But, we
propose a suboptimal solution which minimizesl(ϕ).

l is decreasing on
[π

2 ,Dm
]

( ∂l
∂ϕ ∝ −sin(ϕ) < 0) so its

maximum is given forϕ = Dm. This leads to the cost
value

L1 =
1
4

(

n2− (1+(n−1)cos(Dm))2
)

.

In this section, we made a geometric analysis to de-
termine the optimal placement of the features to max-
imize the costL1. Making the same kind of reasoning
for the complete costL (t) is much more challeng-
ing. After this static analysis, we deals with the path
planning problem in the next section. For the sake of
brevity, we only detail the approach forL1(t) but it
can be generalized toL2(t) andL3(t).

5 PATH PLANNING

We consider the evolution of the sensor between
[t0,t f ] with 0 < t f ≤ T∗ from positionqs ∈ D to po-
sition qt ∈ D . We look for paths(Xt)t∈[t0,t f ] which

maximizes the cost

Ψ([t0,t f ]) =

Z t f

t0
L1(t)dt. (18)

The problem can be formalize in the optimal control
framework with two boundaries constraints. Unfortu-
nately, due to the cost expression and the sensor field
of view (FOV) limitations, no analytic formulation of
the optimal path can be derived. An approximated
approach based on the discretization of the state and
control space seems more tractable.

5.1 Path Description

As in (Celeste et al., 2007), We formalize here
the problem as a discrete path planning. A regu-
lar grid is considered and one path is a sequence
of elementary displacements with constant heading
(
ϕ ∈ {ϕi = i∗π

4 , i ∈ {−3, ...,4}}
)

and constant veloc-
ity v (a leg). For a pathτ with nτ legs, the cost is as
follows:

Ψ([t0,t f ]) =
nτ−1

∑
i=0

Z ti+1

ti
L1(t)dt. (19)

Xt0 = qs andXtnτ−1 = qt are supposed to be on the
grid. Some constraints on the maneuvers can be im-
posed to avoid chaotic behavior (e.g. bang-bang ef-
fect)(Paris and Le Cadre, 2002). To solve the planning
task we need to compute the cost associated with each
leg. First of all, it is necessary to determine the part of
the leg where each feature is visible due to the sensor
FOV.
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5.2 Cost for One Leg

For a FOV model with an aperture 2∆ and a maximum
range detectionRd, the areaZ visible from the lege is
composed of three regionsZ1, Z2 andZ3 (see Figure
3). A pair of features( fi , f j ) ∈ Z 2 are visible from
Pi j
−(xi j

−,yi j
−) andPi j

+(xi j
+,yi j

+). These limits can be de-
rived using a simple geometric reasoning. Moreover,

S2

S1

S3

S4

Z1

Z2

Z3

S

T

Figure 2: The visible region for one leg.

we have a relation between an elementary displace-
ment and the associated duration (dt∝ dx if ϕ 6= π

2 [π],
dt ∝ dy else). and the leg can be reparametrized as
follows:

• y(x) = β+ γx, ∀x∈ [xS,xT ] if ϕ 6= π
2 [π] (non verti-

cal motion),

• x = xS, yS≤ y≤ yT else (vertical motion),
The total cost for a lege can then be computed using
relevant change of variable.

For non vertical displacement, the cost due to
a pair of features( fi , f j ) is the integral of a rational
function:

Ki j (x) =

[
(x−xi)(y(x)−y j )− (x−x j )(y(x)−yi )

]2

pi(x)p j (x)
.

wherepl (x) = (x−xl )2+(y(x)−yl)2 ∆
= al x2 +blx+

cl , l ∈ { j, i} is the respective square range offi , f j
to the sensor. Therefore, these polynomials are irre-
ducible whatever the sensor position inD \

{
fi , f j

}
.

We can rewrite

Ki j (x) =
(Ai j x+Bi j )

2

pi(x)p j (x)
. (20)

So, we have to compute:

cnv
i j (e) ∝

Z xi j
+

xi j
−

Ki j (x)dx. (21)

which can be done with a relevant partial expansion
of the rational function. Nevertheless, we have to pay

attention to the position of the leg relatively to the fea-
tures.

case (1) e is on the perpendicular bisector of[ fi f j ],
thenp j(x) = pi(x),∀x and

(Ai j x+Bi j )
2

pi(x)p j(x)
=

r1x+s1

pi(x)
+

r2x+s2

p2
i (x)

. (22)

case (2) e is not on the perpendicular bisector of
[ fi f j ], then

(Ai j x+Bi j )
2

pi(x)p j(x)
=

r1x+s1

pi(x)
+

r2x+s2

p j(x)
. (23)

Identification of the numerators yields in both
cases to a linear system to deduceχ = [r1 r2 s1s2]

∗,

M(c)
i j χ = B i j , for cases c= 1,2 (24)

M(1)
i j =






ai 0 0 0
bi 0 ai 0
ci 1 bi 0
0 0 ci 1




 , B i j =







0
A2

i j
2Ai j Bi j

B2
i j







(25)
and

M(2)
i j =






ai a j 0 0
bi b j ai a j
ci c j bi b j
0 0 ci c j




 (26)

For vertical displacements, it is more appropriate to
consider integration with the variabley. The same
reasoning leads to the integration of a rational func-
tion to get the cost expression

cv
i j (e) ∝

Z yi j
+

yi j
−

Ki j (y)dy. (27)

5.2.1 Closed Form Expression for the Cost

Whatever the leg orientation, we have to deals with
the computation of integrals of the form (n ∈ {1,2},
l ∈ {i, j}):

H(n)(l ,u,v,x−,x+) =
Z x+

x−

ux+v
(ax2 +bx+c)ndx (28)

Using specific changes of variable and classic prim-
itives, the closed form expression for the cost(21),
(27) can be derived. For instance,

H(1)(l ,u,v,x−,x+) = ν(1)
l ln

(
|pl (x+)|

|pl (x−)|

)

+

λ(1)
l

(

tan−1(ql (x+ +
bl

2al
))− tan−1(ql (x− +

bl

2al
))

)
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whereql =

√

4a2
l

4al cl−b2
l
, ν(1)

l = u
2al

and

λ(1)
l = 2val−ubl

2a2
l

ql .

The expressions of the costs are finally

ci j (e) = H(1)(i, r1,s1,x
i j
−,xi j

+)+H(n)( j , r2,s2,x
i j
−,xi j

+)

wheren ∈ {1,2} depends on the leg orientation ac-
cording to[ fi , f j ]. Given the contribution of each vis-
ible pair of features, the complete cost of the leg is
given byc(e) = ∑i, j ci j (e) Therefore, the cost associ-
ated to a pathτ = {e1, · · · ,en} of lengthn = nτ − 1
is c(τ) = ∑n

i=1c(ei). The optimization can then be
solved via dynamic programming.

6 EXPERIMENT

In this experiment, we consider an embedded map
composed of ten features organised on the border of
D = [0;200;0;200]. The sensor FOV is character-
ized by a maximum range detectionRmax= 70mand a
half aperture angleDm = 120 deg.. Moreover, the au-
thorized difference angle between two following time
steps must be bounded byπ/4 and the path length
smaller thanlmax = 98 legs fromqs = (20;20) to
qt = (170;20). The grid resolutions areδx = δy = 10.
The algorithm seems to behave well. The sensor

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

path planning 

qs qf

Figure 3: Optimal path, features(green),qs andqf (blue).

moves in order to be as soon as possible on the per-
pendicular bisector of pairs of features and to increase
the number of visible pairs. The proposed path allows
to provide better triangulation conditions which im-
proves the estimation process. Moreover some inter-
esting behaviour like cycles can also be observed.

7 CONCLUSIONS AND
PERSPECTIVES

In this paper, we introduced a path planning algorithm
for map based localization. First of all, we derived an
information gain as the determinant of the Fisher In-
formation Matrix adapted to multiple features. A geo-
metric interpretation of this measure was made. Then,
to determine the optimal path, we considered the in-
tegral cost of this function. It is important to notice
that the cost computation take into account the sensor
field of view model. Finally, we applied the approach
on a scenario and illustrate the behaviour of the algo-
rithm. We detailed the approach for only the first part
of the total cost, but it can be generalized to the oth-
ers. Now, we plan to take into account noisy feature
positions which will yields to a path planning problem
with uncertain cost. Then, the next challenge is to find
optimal paths which tackle also those uncertainties on
the given map.
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