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Foreword 

This volume contains the proceedings of the 2nd International Workshop on 
Intelligent Vehicle Control Systems held on May 2008, in Madeira - Portugal, in 
conjunction with the 5th International Conference on Informatics in Control, 
Automation and Robotics. The goal of this workshop is to bring together 
representatives from academia, industry and government agencies to 
exchange ideas on state of the art intelligent vehicle systems and future 
trends. 

 In recent years, the growing role of informatics in controls is probably 
most evident in automotive applications. The increasing complexity of 
modern automotive systems often calls for computational intelligence 
approaches, whereas traditional control methods are infeasible, ineffective 
or not economical. Furthermore, with the proliferation of drive-by-wire 
technologies, advances in sensory, navigation, and wireless 
communication infrastructure, vehicle controls can now take advantage of 
the information regarding the state of an environment and a driver, 
implementing functionalities that are commonly referred to as intelligent.  

The workshop opens with a keynote lecture on European efforts for 
standardization for GPS and map-based driver assistance presented by 
Christian Ress of the Ford of Europe Telematics & Navigation team who 
is the 2008 Chairman of the European Advanced Driver Assistance 
System Interface Specification (ADASIS) Forum.  The workshop received 
12 submissions. The final program of the workshop is comprised of 9 
papers, with 8 double-blind reviewed papers and one invited paper by 
IEEE Fellow Dr. Ilya Kolmanovsky. The papers represent both academia 
and automotive industry with topics ranging from case studies from the 
2007 Urban Challenge autonomous vehicle competition to stochastic 
optimization methods for adaptive cruise control. 

I would like to thank all of the authors for their contributions to this 
workshop, members of the program committee and reviewers for 
providing their support, suggestions and comments on the technical 
directions, and thorough reviews for the papers. In addition, I would like 
to acknowledge the assistance from my Ford colleagues Erica Klampfl, 
Perry MacNeille, Diana Yanakiev and Doug Rhode.  Last, but not least, I 
would like to express my gratitude to the ICINCO Organization 
Committee, with special thanks to Professor Joaquim Filipe for 
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inspiration and encouragement for the IVCS workshop and to Marina 
Carvalho for her tremendous efforts in making this workshop happen.  

Oleg Gusikhin 
Ford Research & Advanced Engineering 
Dearborn, Michigan, U.S.A. 
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KEYNOTE 
LECTURE 





European Standardization for Navigation based 
Advanced Driver Assistant Systems (ADAS) - The 

ADASIS Forum 

Christian Ress  

Telematics & Navigation Research 
Vehicle Technologies & Materials 

Ford Research & Advanced Engineering Europe 

Abstract. With the development of navigation based ADAS functions the 
interface to access this so-called Electronic Horizon data is of rising 
importance. In the automotive industry standard interfaces are appreciated to 
reduce development cost and risk. In order to specify an industry standard 
interface for providing Electronic Horizon the ADASIS 1  Forum has been 
launched. The Forum is hosted and coordinated by ERTICO2 and constitutes of 
more than 30 members including car manufacturers, navigation system and 
ADAS suppliers, as well as digital map vendors. The forum's purpose is to: 

• Define an open standardised data model and structure to represent map 
data in the vicinity of the vehicle position (i.e. the Electronic Horizon), in 
which map data is delivered by a navigation system or a general map data 
server.  

• Define an open standardised API to enable ADAS applications to access 
the Electronic Horizon and position-related data of the vehicle. 

A first version of the interface specification is already available and has been 
tested and validated within the PReVENT3 project. The results from PReVENT 
demontrated successfully the feasibility and interroperability of ADASIS. 
Nevertheless also some shortcomings have been identified, which are currently 
addressed by the various Forum's workng groups. In fact, a next version of the 
protocol specifications is under development and will be transmitted to ISO for 
becoming an international industry standard. 

                                                           
1ADASIS = Advanced Driver Assistance System Interface Specification 
2ERTICO = European ITS organisation 
3PReVENT is a European industry research project, that has been co-funded by European 
Commission within 6th framework. 
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Discrete-Time Drift Counteracting Stochastic Optimal
Control and Intelligent Vehicle Applications

Ilya Kolmanovsky and John Michelini

Ford Research and Advanced Engineering, Ford Motor Company
2101 Village Road, Dearborn, Michigan, U.S.A.
{ikolmano,jmichel1}@ford.com

Abstract. In this paper we present a characterization of a stochastic optimal
control in the problem of maximizing expected time to violate constraints for
a nonlinear discrete-time system with a measured (but unknown in advance) dis-
turbance modeled by a Markov chain. Such an optimal control may be viewed as
providing drift counteraction and is, therefore, referred as the drift counteracting
stochastic optimal control. The developments are motivated by an application to
an intelligent vehicle which uses an adaptive cruise control to follow a randomly
accelerating and decelerating vehicle. In this application, the control objective is
to maintain the distance to the lead vehicle within specified limits for as long
as possible with only gradual (small) accelerations and decelerations of the fol-
lower vehicle so that driver comfort can be increased and fuel economy can be
improved.

1 Introduction

In the paper we examine a stochastic optimal control problem motivated by an appli-
cation of adaptive cruise control to follow a randomly accelerating and decelerating
vehicle. For this application, we consider the control objective to maintain the distance
to the lead vehicle within specified limits for as long as possible with only very gradual
(small) accelerations and decelerations so that to improve fuel economy and increase
driver comfort. This and similar application problems can be treated using methods of
stochastic drift counteracting optimal control developed in [6].

The paper is organized as follows. In Section 2 we discuss a formulation of the
stochastic drift counteracting optimal control problem for a nonlinear discrete-time sys-
tem with measured (but unknown in advance) disturbance input modeled by a Markov
chain. In Section 3 we review the theoretical results [6] pertinent to the characterization
and computations of the stochastic optimal control law in this problem. We also present
a result to compute expected time to violate the constraints for a fixed control policy,
which may be useful in evaluating legacy control solutions. In Section 4 we discuss a
simulation example illustrating the application of these methods to a vehicle follow-
ing, where the lead vehicle speed trajectory is modeled by a Markov chain with known
transition probabilities. Concluding remarks are made in Section 5.



2 Problem Formulation

Consider a system which can be modeled by nonlinear discrete-time equations,

x(t + 1) = f(x(t), v(t), w(t)), (1)

where x(t) is the state vector, v(t) is the control vector, w(t) is the vector of measured
disturbances, and t is an integer, t ∈ Z+. The system has control constraints which are
expressed in the form v(t) ∈ U , where U is a given set.

The behavior of w(t) is modeled by a Markov chain [3] with a finite number of
states w(t) ∈ W = {wj , j ∈ J}. The transition probability from w(t) = wi ∈ W to
w(t + 1) = wj ∈ W is denoted by P (wj |wi, x̄). In our treatment of the problem, we
permit this transition probability to depend on the state x(t) = x̄. For automotive appli-
cations, modeling driving conditions using Markov chains for the purpose of applying
Stochastic Dynamic Programming to determine fuel and emissions optimal powertrain
operating policies has been first proposed in [4].

Our objective is to determine a control function u(x, w), such that with v(t) =
u(x(t), w(t)), a cost functional of the form,

Jx0,w0,u = Ex0,w0τ
x0,w0,u(G), (2)

is maximized. Here τx0,w0,u(G) ∈ Z+ denotes the first-time instant the trajectory of
x(t) and w(t), denoted by {xu, wu}, resulting from the application of the control v(t) =
u(x(t), w(t)), exits a prescribed compact set G. See Figure 1.

w1 w2 w3

w




x


* *
*

t=0
t=1

t=2

t=3

t=4

t=1

t=2

|

G

||

Fig. 1. The set G and two trajectories, {xu, wu}, exiting G at random time instants due to a
random realization of w(t). Here W = {w1, w2, w3}. Note that one of the trajectories exits G
at t = 4 due to the evolution of x(t) alone, the other trajectory exits G at t = 2 due to evolution
of both x(t) and w(t).

The specification of the set G reflects constraints existing in the system. Note that
{xu, wu} is a random process, τx0,w0,u(G) is a random variable and Ex0,w0 [·] denotes
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the expectation conditional to initial values of x and w, i.e., x(0) = x0, w(0) = w0.
When clear from the context, we will omit the subscript and square brackets around E.

For continuous-time systems, under an assumption that w(t) is a Wiener or a Pois-
son process, it can be shown [1] that determining an optimal control in this kind of a
problem reduces to solving a non-smooth Partial-Differential Equation (PDE). For in-
stance, for a first order stochastic system, dx = (v − w0)dt + σ · dw, where w0 is a
constant, w is a standard Wiener process, the control v satisfies |v| ≤ v̄, this PDE has
the form,

1
2
σ2 ∂2V

∂x2
+

∂V

∂x
(−w0) + |∂V

∂x
|v̄ + 1 = 0.

The boundary conditions for this PDE are V (x) = 0 for x ∈ ∂G, where ∂G denotes
the boundary of G. The optimal control has the form

v = v̄ · sign(
∂V

∂x
).

Note that this optimal control is of bang-bang type.
As compared to solving the above PDE numerically, the discrete-time treatment

of the problem, which is the focus of the present paper, appears to provide a more
computationally tractable approach to determining the optimal control. In what follows,
we will treat this discrete-time optimal control problem within the framework of optimal
stopping [3] and drift counteraction [5], [6] stochastic optimal control.

3 Theoretical Results and Computations

Given a state vector, x−, and disturbance vectors, w−, w+ ∈ W , we define,

LuV (x−, w−) ∆= Ex−,w−

[
V (f(x−, u(x−, w−), w−), w+)

]
− V (x−, w−)

=
∑

j∈J

V (f(x−, u(x−, w−), w−), wj) · P (wj
∣∣w−, x−) (3)

− V (x−, w−).

The following theorem provides sufficient conditions for the optimal control law, u∗(x,w):
Theorem 1: Suppose there exists a control function u∗(x,w) and a continuous, non-

negative function V (x,w) such that

Lu∗V (x, w) + 1 = 0, if (x,w) ∈ G,
LuV (x,w) + 1 ≤ 0, if (x,w) ∈ G, u 6= u∗,
V (x, w) = 0, if (x,w) 6∈ G.

(4)

Then, u∗ maximizes (2), and for all (x0, w0) ∈ G, V (x0, w0) = Jx0,w0,u∗ , Jx0,w0,u

and E[τx0,w0,u(G)] are finite for any policy u, and the function V , satisfying (4), if
exists, is unique.
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Proof: The theorem follows as an immediate application of a more general result
developed in [6]. More specifically, in [6], a similar result is shown for cost functionals
of the form

Jx0,w0,u = Ex0,w0

τx0,w0,u(G)−1∑
t=0

g(x(t), v(t), w(t)),

with g ≥ ε > 0, of which (2) is a special case with g = 1. ¥
The following procedure for estimating the expected time to violate constraints for

a fixed control law is obtained as an immediate consequence of Theorem 1:
Corollary 1: Given a fixed control law ū(x, w), suppose there exists a continuous,

non-negative function V̄ (x,w) such that

LūV̄ (x,w) + 1 = 0, if (x,w) ∈ G,
V̄ (x,w) = 0, if (x,w) 6∈ G.

(5)

Then, E[τx0,w0,ū(G)] = V̄ (x0, w0).
We next consider the application of the value iteration approach to (4), assuming,

for simplicity of exposition, that f is continuous in x, and that U is compact. The
proofs of subsequent results are similar to [6, 5] and are not reproduced here. We define
a sequence of value functions using the following iterative process:

V0 ≡ 0

Vn(x, wi) = max
v∈U

{ ∑
j∈J

Vn−1(f(x, v, wi), wj)P (wj |wi, x) + 1

}
, if (x, wi) ∈ G.

n > 0.

(6)

This sequence of functions {Vn} yields the following properties:
Theorem 2: Suppose the assumptions of Theorem 1 hold. Then the sequence of

functions {Vn}, defined in (6), is monotonically non-decreasing and Vn(x,wi) ≤ Jx,wi,u∗

for all n, x and wi. Furthermore, {Vn} converges pointwise to V∗(x, wi) = Jx,wi,u∗

and this convergence is uniform if Jx,wi,u∗ is continuous.
On the computational side, either value iterations or Linear Programming may be

used to numerically approximate the solution to (4).
The value iterations (6) produce a sequence of value function approximations, Vn,

at specified grid-points x ∈ {xk, k ∈ K}, and a stopping criterion is |Vn(x,wi) −
Vn−1(x,wi)| ≤ ε for all x ∈ {xk, k ∈ K} and i ∈ J , where ε > 0 is sufficiently small.
In each iteration, once the values of Vn−1 at the grid-points have been determined, linear
or cubic interpolation may be employed to approximate Vn−1(f(xk, vm, wi), wj), on
the right-hand side of (6), where v ∈ {vm, m ∈ M} is a specified grid for v. Formally,
the approximate value iterations can be represented as follows,

V0(xk, wi) ≡ 0,

Vn(xk, wi) = max
vm,m∈M

{ ∑

j∈J

Fn−1(f(xk, vm, wi), wj) · P (wj |wi, xk) + 1
}

,

where
Fn−1(x,wi) = Interpolant[Vn−1](x,wi) if (x, wi) ∈ G,
and Fn−1(x,wi) = 0 if (x, wi) 6∈ G.

(7)
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An alternative approach is to seek V in the form,

V (x,wi) =
∑

l∈L

θlφl(x, wi),

where φl are specified basis functions satisfying the property that φl(x,wi) = 0 if
(x, wi) 6∈ G. Then relations (4) evaluated over specified grid points x ∈ {xk, k ∈ K},
v ∈ {vm,m ∈ M}, and i ∈ J , lead to a Linear Programming problem with respect to
θl, l ∈ L:

∑

l∈L

θl

∑

k∈K,i∈J

φl(xk, wi) → min,

subject to∑

l∈L

θlφl(xk, wi) ≥ 1 +
∑

l∈L

θl

∑

j∈J

φl(f(xk, vm, wi), wj) · P (wj |wi, xk),

k ∈ K, i ∈ J,m ∈ M.

(8)

There are many aspects, such as selection of the grids and basis functions, which can
be exploited to optimize the computations for specific problems. The dependence of the
approximation error on the properties of the grid can be established using, for instance,
techniques in Chapter 16 of [2].

Once an approximation of the value function, V∗, is available, an optimal control
may be determined from the following relation:

u∗(x, wi) ∈ argmaxv∈U

{
1 +

∑

j∈J

V∗(f(x, v, wi), wj)P (wj |wi, x)
}

,

or

u∗(x, wi) ∈ argmaxv∈U

{ ∑

j∈J

V∗(f(x, v, wi), wj)P (wj |wi, x)
}

. (9)

4 Vehicle Following Example

In this section we illustrate the above developments with an example of an intelligent
vehicle which uses an adaptive cruise control to follow another, randomly accelerating
and decelerating vehicle. In this application, the control objective is to maintain the
distance to the lead vehicle within specified limits for as long as possible with only very
gradual (small) accelerations and decelerations of the follower vehicle to improve fuel
economy and increase driver comfort.

The relative distance between two vehicles minus minimum acceptable distance is
denoted by s [m], the velocity of the lead vehicle is denoted by vl [mph], the velocity
of the follower vehicle is denoted by vf [mph] and ∆T is the sampling time period.
Assuming that the acceleration a [mph/sec] of the follower vehicle is a control variable,
the discrete-time update equations have the following form,

s(t + 1) = s(t) + 0.1736 ·∆T · (vl(t)− vf (t)),
vf (t + 1) = vf (t) + ∆T · a(t). (10)

11



The factor 0.1736 is introduced because the velocity units are in miles-per-hour (mph)
while the distance is in meters (m). With x = [s, vf ]T, w = vl, and v = a as the control,
(10) has the form of (1).

We consider a scenario when the vehicles are driven on a road with average speed of
55 mph, minimum speed of 46 mph and maximum speed of about 66 mph. The update
period is fixed to ∆T = 1 sec. The lead vehicle velocity, w = vl, is modeled by a
Markov chain with 20 discrete levels uniformly distributed between 46 and 66.0013
mph. The transition probabilities (see Figure 2-right) have been constructed from an
experimental vehicle velocity trajectory shown in Figure 2-left.
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Fig. 2. Left: Experimental vehicle velocity trajectory. Right: Transition probabilities of the
Markov chain model of the lead vehicle velocity.

It is desired to maintain the relative distance between two vehicles minus minimum
acceptable distance in the range s ∈ [0, 20] meters. The accelerations of the follower
vehicle must be in the range a ∈ [−0.5, 0.5] mph/sec.

An approximation of the optimal control, u∗, determined using the value itera-
tion approach, is illustrated in Figure 3 while the value function, V∗ is illustrated in
Figure 4. Note that the u∗ and V∗ depend on three variables: s, vf , and vl. Hence,
only the cross-sections of u∗ and V∗ are shown for a fixed value of vf . Figure 5
demonstrates numerically the convergence of the value iterations. The grids used were
{−0.5,−0.25, 0, 0.25, 0.5} for a, {46, 47.0527, 48.1054, · · · , 66.0013} for vf and vl,
and {0, 1.0526, 2.1053, · · · , 20} for s.

Figures 6 illustrates the time responses when the follower vehicle is controlled with
the above approximate stochastic optimal control and when the lead vehicle velocity
is a typical realization of the Markov chain trajectory. Note that the accelerations and
decelerations of the lead vehicle are up to 2.1 mph/sec, well in excess of 0.5 mph/sec
limit imposed on the accelerations and decelerations of the follower vehicle. Figure 7 il-
lustrates the time responses when the lead vehicle velocity is a sequence of non-random
accelerations and decelerations.

As can be observed from the plots, the velocity of the follower vehicle, controlled
by stochastic drift counteracting optimal control, tracks the velocity of the lead vehicle
but with smaller accelerations and decelerations, which satisfy the required limits of 0.5

12



mph/sec. The controller also enforces the constraints on the relative distance between
the vehicles. When the lead vehicle moves at high speed, the follower vehicle increases
the relative distance knowing that deceleration of the lead vehicle is more likely and
acceleration is less likely. When the lead vehicle moves at low speed, the follower vehi-
cle decreases the relative distance knowing that acceleration of the lead vehicle is more
likely and deceleration is less likely. This behavior of the follower vehicle is direction-
ally consistent with the constant headway time policy.
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Fig. 3. A cross-section of approximate optimal control.
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Fig. 4. A cross-section of approximate optimal value function.

Remark 1: The stochastic optimal control maximizes the expected time to violate
the constraints, but it cannot entirely eliminate the possibility that the constraints are
violated. If the relative distance constraints become violated, a decision needs to be
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Fig. 5. Maximum of |Vn(x, wi)− Vn−1(x, wi)| over x ∈ {xk, k ∈ K} and i ∈ J as the value
iterations progress (i.e., n increases).

made if to discontinue following the lead vehicle since it is too difficult to follow, or
to switch to a different controller which may use larger accelerations and decelerations
to bring the relative distance and the follower vehicle velocity to values appropriate to
re-engage the stochastic optimal controller.

Remark 2: The transition probabilities for the lead vehicle velocity may be estimated
on-line by measuring the lead vehicle velocity. Considering that on-board computing
power may be limited, fast procedures to approximate u∗, once transition probabilities
have been estimated, are desirable. The development of such procedures is a subject of
future research.

5 Concluding Remarks

In this paper we presented a method for constructing a stochastic optimal control law in
the problem of maximizing expected time to violate constraints for a nonlinear discrete-
time system with a measured (but unknown in advance) disturbance modeled by a
Markov chain. The resulting control law is referred to as the stochastic drift counter-
acting optimal control law.

A simulation example was considered where an intelligent vehicle follows another,
randomly accelerating and decelerating lead vehicle. The control objective in this ex-
ample was to control the follower vehicle acceleration to maintain the distance to the
lead vehicle within specified limits and avoid high accelerations and decelerations so
as to improve fuel economy and increase driver comfort. It has been shown that the
behavior of the vehicle with the stochastic drift counteracting optimal control law is
intuitively reasonable, e.g., the relative distance between the vehicles increases (respec-
tively, decreased) when the lead vehicle is near its maximum (respectively, minimum)
speed, as the follower vehicle expects a deceleration (respectively, acceleration) of the
lead vehicle.
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by dashed lines. Dashed lines in the middle plot indicate the lead vehicle velocity.
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acceleration (bottom) in response to non-random lead vehicle velocity profile. Relative distance
constraints and acceleration constraints are indicated on the top plot and bottom plot, respectively,
by dashed lines. Dashed lines in the middle plot indicate the lead vehicle velocity.

More elaborate vehicle models and lead vehicle speed models can be treated simi-
larly even though, as with any dynamic programming approach, high state dimensions
present an obstruction due to “curse of dimensionality.” Fast procedures for comput-
ing or approximating the stochastic optimal control law, so that it can be reconfigured
on-line if the problem parameters or statistical properties of the lead vehicle veloc-
ity change, is a subject of future research. While this paper only discussed procedures
suitable for off-line computations, these results are already valuable as the resulting
stochastic optimal control law can be used as a benchmark for control algorithms de-
veloped other approaches, and it can yield valuable insights into the optimal behavior
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desirable of the follower vehicle. Also, from Figure 3, it appears that u∗ does not have
a very elaborate form and so it may inspire a simpler rule-based control law which
achieves a near optimal performance.

The theoretical results and computational approaches discussed in this paper can
have other applications in intelligent vehicle control and manufacturing. Specifically,
they may be applicable in other situations where there is a disturbance with statistical
properties that can be modeled in advance (e.g., demands of the driver, changes in the
environmental conditions, production orders being scheduled, etc.) while pointwise-in-
time constraints on certain critical state and control variables need to be enforced. Along
these lines, another example application to Hybrid Electric Vehicle (HEV) control has
been discussed in [6].
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Abstract. We present an approach that allows mission and contingency man-
agement to be achieved in a distributed and dynamic manner without any central
control over multiple software modules. This approach comprises two key el-
ements: a mission management subsystem and a planning subsystem based on
a Canonical Software Architecture (CSA). The mission management subsystem
works in conjunction with the planning subsystem to dynamically replan in reac-
tion to contingencies. The CSA provides for consistency of the states of all the
software modules in the planning subsystem. System faults are identified and re-
planning strategies are performed distributedly in the planning and the mission
management subsystems through the CSA. The approach has been implemented
and tested on Alice, an autonomous vehicle developed by the California Institute
of Technology for the 2007 DARPA Urban Challenge.

1 Introduction

One of the major challenges in urban autonomous driving is the ability of the system to
reason about complex, uncertain, spatio-temporal environments and to make decisions
that enable autonomous missions to be accomplished safely and efficiently, with reac-
tive replanning in case of contingencies. Due to the complexity of the system and a wide
range of environments in which the system must be able to operate, an unpredictable
performance degradation of the system can quickly cause critical system failure. In a
distributed system such as Alice, an autonomous vehicle developed by the California
Institute of Technology for the 2007 DARPA Urban Challenge,performance degra-
dation of the system may result from changes in the environment, hardware failures,
inconsistencies in the states of different software modules, and faulty behaviors of a
software module. To ensure safety and mission success, there is a need for the system
to be able to properly detect and respond to these unexpectedevents which affect the
vehicle’s operational capabilities.

Mission and contingency management is often achieved usinga centralized ap-
proach where a central module communicates with nearly every software module in
the system and directs each module sequentially through itsvarious modes in order to
recover from failures. Examples of such a central module arethe behavior manage-
ment module of the TerraMax Autonomous Vehicle [1] and the supervisory controller
(SuperCon) module of Alice previously developed for the 2005 DARPA Grand Chal-
lenge [2]. A drawback of this approach is that the central module usually has so much



functionality and responsibility that it easily becomes unmanageable and error prone as
the system gets more complicated. In fact, Team Caltech’s failure in the 2005 DARPA
Grand Challenge was mainly due to an inability of the SuperCon module to reason and
respond properly to certain combinations of faults in the system [2]. This resulted from
the difficulty in verifying this module due to its complexity.

The complexity and dynamic nature of the urban driving problem make centralized
mission and contingency management impractical. A missionmanagement subsystem
and a planning subsystem based on a Canonical Software Architecture (CSA) [3] have
therefore been developed to allow mission and contingency management to be achieved
in a distributed manner. The mission management subsystem comprising the mission
planner, the health monitor and the process control modulesworks in conjunction with
the planning subsystem (the trajectory planner, the follower and the drive control) to
dynamically replan in reaction to contingencies. As shown in Figure 1, the health mon-
itor module actively monitors and estimates the health of the hardware and software
components to dynamically assess the vehicle’s operational capabilities throughout the
course of mission. It communicates directly with the mission planner module which re-
plans the mission goals based on the current vehicle’s capabilities. The process control
module uses the health estimates of individual software modules to automatically restart
a software module that quits unexpectedly and a software module that identifies itself
as unhealthy. An unhealthy hardware component is power-cycled by the software that
communicates with it. The CSA provides for consistency of the states of all the software
modules in the planning subsystem. System faults are identified and replanning strate-
gies are performed distributedly in the planning and the mission management subsys-
tems through the CSA directive/response mechanism. Together these mechanisms make
the system capable of exhibiting a fail-operational/fail-safe and intelligent responses to
a number different types of failures in the system.

Related work includes a holistic contingency management technology [4], a Mis-
sion Effectiveness and Safety Assessment (MENSA) technology [5], real-time fault
detection and situational awareness [6], the high level controller of the Intelligent Off-
Road Navigator [7] and a model-based approach [8]. These approaches rely on having
a subsystem, similar to our mission management subsystem, capable of monitoring and
assessing unexpected, mission-related events that affectthe overall system operation
and mission success. This subsystem may also be capable of suggesting a new strategy
or operation mode for the planning subsystem or reconfiguring the system in response
to these events. The CSA, however, is intended to facilitatethese responsibilities of
the mission management subsystem. By exploiting the hierarchical structure and in-
tegrating the directive/response mechanism into the planning subsystem, the mission
management subsystem can assess most of the mission-related events by only reason-
ing at the level of failure or completion of its directives and the health of the hardware
and software components.

The contributions of this paper are: (1) a framework for integrating mission and
contingency management into a planning system so that it canbe achieved distributedly
and dynamically; (2) a complete implementation on an autonomous vehicle system ca-
pable of operating in a complex and dynamic environment; and(3) an evaluation of
the approach from extensive testing and some insight into future research directions.
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Fig. 1. Alice’s mission management and planning subsystems in the Canonical Software Archi-
tecture. Boxes with double lined borders are subsystems that will be broken up into multiple CSA
modules.

The remainder of this paper is organized as follows. Section2 introduces the concept
of the Canonical Software Architecture. Section 3 describes the mission management
subsystem in more detail. Section 4 explains how system faults can be identified and
handled distributedly through the CSA. Section 5 presents the results from the 2007
DARPA Urban Challenge’s National Qualifying Event and provides a discussion about
the advantages and disadvantages of the approach. Section 6concludes the paper and
discusses some future work.

2 Canonical Software Architecture

In many complex systems, the software modules that make up the planning system are
responsible for reasoning at different levels of abstraction. Hence, the planning system
can be decomposed into a hierarchical framework. A Canonical Software Architecture
has been developed to support this decomposition and separation of functionality, while
maintaining communication and contingency management. This architecture builds on
the state analysis framework developed at the Jet Propulsion Laboratory (JPL) and takes
the approach of clearly delineating state estimation and control determination as de-
scribed in [9], [10], [11] and [12]. To prevent the inconsistency in the states of different
software modules due to the inconsistency in the state knowledge, we require that there
is only one source of state knowledge although it may be provided in different abstrac-
tions for different modules.

There are two types of modules in CSA: estimation modules andcontrol modules.
For modularity, each software module in the planning subsystem may be broken down
into multiple CSA modules. An example of the planning subsystem in CSA we have
implemented on Alice is shown in Figure 1. An estimation module estimates the sys-
tem state and provides an abstraction of the system state forthe corresponding con-
trol module(s). A control module gets inputs, performs actions based on the inputs,
and delivers outputs. As shown in Figure 2, the inputs consist of state information,
directives/instructions (from other modules wishing to control this module) and re-
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sponses/status reports (from other modules receiving instructions from this module).
The outputs are the same type as the inputs, but in the reversedirection (status reports
from this module and directives/instructions for other control modules).

For each directive that a control module is designed to accept, the following must
be specified: (1) entry condition; (2) exit condition; (3) constraints that must be satis-
fied during the execution of the directive; and (4) performance criteria (performance or
other items to be optimized). The entry and exit conditions define, respectively, what
must be true before starting to execute this directive and what must be true to complete
the execution of this directive. For each directive received, a response which indicates
rejection, acceptance, failure or completion of the directive and the reason for rejection
or failure must be reported to the source of the directive. Rejection or failure of a di-
rective occurs when the entry or exit condition is not readily achievable, the deadlines
aren’t met, or one of the constraints cannot be satisfied.

A CSA module consists of three components:Arbitration, Control andTactics. It
communicates with its neighbors through directives and responses, as shown in Figure
2.Arbitration is responsible for (1) managing the overall behavior of the control module
by issuing a merged directive, computed from all the received directives, to theControl;
and (2) reporting failure, rejection, acceptance and completion of a received directive
to theControl of the issuing control module. We have implemented a simple arbitration
scheme, similar to that of the subsumption architecture [13], where the merged direc-
tive is simply the received directive with the highest priority. As a future work, one can
implement a more complicated arbitration scheme that involves dealing with multiple
received directives simultaneously.Control is responsible for (1) computing the output
directives to the controlled module(s) or the commands to the hardware based on the
merged directive, received responses and state information; and (2) reporting failure
and completion of a merged directive to theArbitration. Tactics provides the core func-
tionality of the control module and is responsible for providing the logic used by the
Control for computing output directives.

3 Mission Management Subsystem

3.1 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that continuously gathers the health
of the software and hardware (GPS, sensors and actuators) components of the vehicle
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and abstracts the information about these devices into a form usable for the mission
planner. This form can most easily be thought of as vehicle capability. For example,
we may start the mission with perfect functionality, but somewhere along the line lose
a right front sensor. The intelligent choice in this situation would be to try to limit the
number of left turns at intersection due to the inability to assess oncoming traffic from
the right and slow down the vehicle. Another example arises if the vehicle becomes
unable to shift into reverse. In this case we would not like topurposely plan paths that
require a three-point turn.

From the health of the sensors and sensing modules, the health monitor estimates
the sensing coverage. The information about sensing coverage and the health of the GPS
unit and actuators allow the health monitor to determine thefollowing vehicle capabili-
ties: (1) turning right at intersection; (2) turning left atintersection; (3) going straight at
intersection; (4) nominal driving forward; (5) stopping the vehicle; (6) making a three-
point turn; (7) driving in an unstructured region; and (8) navigation in unmapped areas.

3.2 Mission Planner

The mission planner module receives a Mission Data File (MDF) that is loaded before
each mission, vehicle capabilities from the health monitormodule, position of obsta-
cles from the mapper module and status reports from the trajectory planner module and
sends segment-level goals to the trajectory planner module. A segment-level goal spec-
ifies the road/zone Alice has to navigate and the constraints, represented by the type
of segment (road, zone, off-road, intersection, U-turn, pause, backup, end of mission)
which basically defines a set of traffic rules to be imposed during the execution of this
goal.

The mission planner is broken up into one estimation and two CSA control modules:
the traversibility graph estimator, the mission control and the route planner. The mission
control module has three main functions: (1) computing mission goals which specify
how Alice will satisfy the mission specified in the MDF; (2) based on the vehicle ca-
pabilities, determining conditions (including the maximum speed) under which we can
safely continue the mission; and (3) detecting the lack of forward progress and replan-
ning the mission goals accordingly. The route planner module determines segment-level
goals to satisfy the mission goals based on the traversibility graph which represents the
connectivity of the route network and is determined by the traversibility graph estimator
module. Since vehicle capabilities are also taken into account in the determination of
the mission goals and the traversibility graph, for example, if the capability for making
a left turn decreases due to the failure of the right front sensor, the route involving the
least number of these maneuvers will be preferred or if the vehicle is not able to shift
into reverse, routes that require a three-point turn will beavoided.

4 Fault Handling in the Planning Subsystem

In the CSA framework, fault handling is embedded into all themodules and their com-
munication interfaces in the planning subsystem hierarchy. Each module has a set of
different control strategies which allow it to identify andresolve faults in its domain
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and certain types of failures propagated from below. If all the possible strategies fail,
the failure will be propagated up the hierarchy along with the associated reason. The
next module in the hierarchy will then attempt to resolve thefailure. This approach al-
lows each module to be isolated so it can be tested and verifiedmuch more fully for
robustness.

Trajectory Planner. The trajectory planner accepts directives from the missionplanner
module and generates trajectories for Alice to follow. It comprises four components: the
logic planner, the path planner, the velocity planner and the predictor. The logic plan-
ner guides the vehicle at a high level by determining the current situation and coming
up with an appropriate planning problem (or strategy) to solve. The path planner is re-
sponsible for finding a feasible path, subject to the constraints imposed by the planning
problem. If such a path cannot be found, an error will be generated. Since Alice needs
to operate in both structured and unstructured regions, we have developed three types of
path planner to exploit the structure of the environment: the rail planner (for structured
regions such as roads, intersections, etc), theoff-road rail planner (for obstacle fields
and sparse waypoint regions) and theclothoid planner (for parking lots and obstacle
fields). All the maneuvers available to therail planner are pre-computed; thus, therail
planner may be too constraining. To avoid a situation where Alice gets stuck in a struc-
tured region (e.g. when there is an obstacle between the predefined maneuvers), the
off-road rail planner or theclothoid planner may also be used in a structured region.
This decision is made by the logic planner. The velocity planner takes the path from
the path planner and the planning problem from the logic planner and generates a time
parameterized path, or trajectory. The predictor is responsible for predicting the future
location and behavior of other vehicles.

The logic planner is responsible for fault handling inside the trajectory planner.
Based on the error from the path planner and the follower, thelogic planner specifies
a different planning problem such as allowing passing or reversing, using theoff-road
rail planner, or reducing the allowable distance from obstacles. The logic for dealing
with these failures can be described by a two-level finite state machine (FSM). First,
the high-level mode (road region, zone region, off-road, intersection, U-turn, failed and
paused) is determined based on the directive from the mission planner and the current
position. Each of the high-level modes can be further decomposed to completely spec-
ify the planning problem described by the drive state, the allowable maneuvers, and the
allowable distance from obstacles.

– Road Region, Zone Region and Off-Road.The logic planner transitions to the
road region, zone region or off-road mode when the type of segment specified by the
mission planner is road, zone or off-road, respectively. The modes and transitions
for the road region mode are shown in Figure 3. In the zone region and the off-road
modes, passing and reversing are allowed by default. For thezone region mode, the
clothoid planner is the default path planner and the trajectory is planned such that
Alice will stop at the right distance from the closest obstacle, so the only decision
that needs to be made by the logic planner is the allowable distance from obstacles
For the off-road mode, the drive state (drive or stop) also needs to be determined.
As a result, only three and six modes are necessary within thezone region mode
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Fig. 3.The logic planner FSM for the road region. Each mode defines the drive state (DR≡ drive,
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or reversing allowed, P≡ passing allowed but reversing not allowed, PR≡ both passing and
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and the off-road mode, respectively. The transitions can beeasily deduced from
those shown in Figure 3.

– Intersection. The logic planner transitions to the intersection mode whenAlice
approaches an intersection. Passing and reversing maneuvers are not allowed and
the trajectory is planned such that Alice stops at the stop line. Once Alice is within
a certain distance from the stop line and is stopped, the intersection handler, an
FSM comprising five modes (reset, wait for precedence, wait for merging, wait
for the intersection to clear, jammed intersection, and go), will be reset and start
checking for precedence [14]. The logic planner transitions out of the intersection
mode when the intersection handler transitions to the go or jammed intersection
mode. If the intersection is jammed, the logic planner will transition to the mode
where passing is allowed.

– U-turn. The logic planner transitions to the U-turn mode when the type of segment
specified by the mission planner is U-turn. Once the U-turn iscompleted, the logic
planner will transition to the paused mode and wait for the next directive.

– Failed. The logic planner transitions to the failed mode when all thestrategies in
the current high-level mode have been tried. In this mode, failure is reported to
the mission planner. The logic planner then transitions to the paused mode. The
mission planner will then replan and send a new directive such as making a U-turn,
switching to the off-road mode, or backing up in order to allow the route planner
to change the route. As a result, the logic planner will transition to a different high-
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level mode. These mechanisms ensure that Alice will keep moving as long as it is
safe to do so.

– Paused.The logic planner transitions to the paused mode when it doesnot have any
segment-level goals or when the type of segment specified by the mission planner
is pause or end of mission. In this mode, the logic planner is reset and the trajectory
is planned such that Alice comes to a complete stop as soon as possible.

Follower. The follower module computes actuation commands that keep Alice on the
reference trajectory [15]. Although these trajectories are guaranteed to be collision-free,
since Alice cannot track them perfectly, she may get too close or even collide with an
obstacle if the tracking error is too large. To address this issue, we allow the follower to
request a replan from the trajectory planner through the CSAdirective/response mecha-
nism when the deviation from the reference trajectory is toolarge. In addition, we have
implemented a reactive obstacle avoidance (ROA) componentto deal with unexpected
obstacles. The ROA component can override the accelerationcommand if the projected
position of Alice collides with an obstacle. The projectiondistance depends on the ve-
locity of Alice. The follower will report failure to the trajectory planner if the ROA is
triggered, in which case the trajectory planner can replan the trajectory.

Drive Control. The drive control module is the overall driving software forAlice. It re-
ceives actuation commands from the follower, determines ifthey can be executed and,
if so, sends the appropriate commands to the actuators. The drive control module also
performs checking on the health and operational state of theactuators, resets the actu-
ators that fail, and broadcasts the actuator state. Also included in the role of the drive
control module is the implementation of physical protections for the hardware to pre-
vent the vehicle from hurting itself. This includes three functions: limiting the steering
rate at low speeds, preventing shifting from occurring while the vehicle is moving, and
transitioning to the paused mode in which the brakes are depressed and commands to
any actuator are rejected when any of the critical actuatorssuch as steering and brake
fail.

5 Results and Discussion

The 2007 DARPA Urban Challenge’s National Qualifying Eventwas split into three test
areas, featuring different challenges. In this section, wepresent the results from Test
Area B which was the most challenging test area from the mission and contingency
management standpoint. Test Area B consisted of approximately 2 miles of driving,
including a narrow start chute, a traffic circle, narrow, winding roads, a road with cars
on each side that have to be avoided and an unstructured region with an opening in a
fence, navigating and parking at a designated spot in an almost fully occupied parking
lot.

In our first attempt, a reasonably conservative vehicle separation distance was used.
As shown in Figure 4(a), the logic planner spent a considerable amount of time in the
aggressive and bare modes where the allowable distance from obstacles is reduced.
Given the size of Alice, the second largest vehicle in the competition, she had difficul-
ties finishing this course mainly due to the vehicle separation distance problem which
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Fig. 4. The logic planner mode during NQE Test Area B (a) run #1 and (b)run #2.

caused her to spend about five minutes trying to get out of the start chute area and more
than ten minutes trying to park correctly while keeping the required distance from ob-
stacles. Specifically, the problem was that in the start chute area, there were K-rails less
than one meter away from each side of Alice, resulting in a violation of the obstacle
clearance requirement for thesafe or nominal mode, which was set in accordance with
the DARPA rules. Alice had to progress through a series of internal planning failures
before finally driving with reduced buffers on each side of the vehicle. In the parking
lot, there was a car parked right in front of our designated spot and if Alice was to park
correctly, she would have to be within two meters of that car;thus, violating the obsta-
cle clearance requirement. Alice ran out of the thirty minute time limit shortly after we
manually moved her out of the parking lot.

After the first run, we decided to decrease the required vehicle separation distance
and relax the tolerance of reaching waypoints so Alice couldcomplete the course faster.
Alice was then able to successfully complete the course within twenty three minutes
with only minor errors. The logic planner mode during the second attempt is shown in
Figure 4(b).

Despite the failure in completing the first run within the time limit, Alice demon-
strated the desired behavior, consistent with what we have seen in over two hundred
miles of extensive testing, that she would keep trying different strategies to get closer to
completing the mission and she would never stop as long as thesystem is capable of op-
erating safely. Had she been given more time, the mission control would have detected
the lack of forward progress and decided to skip the parking and continue to complete
the rest of the mission.

Compared to a centralized approach, our approach to missionand contingency man-
agement is a lot more modular. It allows independent development and testing of failure
handling in different software modules, which is importantfor a project with a short de-
velopment period and a large development team. Most of the bugs can be found at the
stage of module test, instead of system integration test. Using different levels of ab-
straction, our approach greatly simplifies the logic for dealing with failures and makes
it easier to identify all the combinations of failures in thesystem. A drawback of this
approach is that all the interfaces need to be clearly defined; thus, it requires putting a
substantial amount of effort in the design phase of the project.
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6 Conclusions and Future Work

We described Team Caltech’s approach to mission and contingency management for the
2007 DARPA Urban Challenge. This approach allows mission and contingency man-
agement to be accomplished in a distributed and dynamic manner. It comprises two
key elements: a mission management subsystem and a planningsubsystem based on
a Canonical Software Architecture (CSA). The mission management subsystem works
in conjunction with the planning subsystem to dynamically replan in reaction to con-
tingencies. The CSA provides for consistency of the states of all the software modules
in the planning subsystem. System faults are identified and replanning strategies are
performed distributedly in the planning subsystem throughthe CSA. These mecha-
nisms make the system capable of exhibiting a fail-operational/fail-safe and intelligent
responses to a number different types of failures in the system. Extensive testing has
demonstrated the desired behavior of the system which is that it will keep trying differ-
ent strategies in order to get closer to completing the mission and never stop as long as
it is capable of operating safely.

Extensions of this work include extending the CSA to the estimation side of the sys-
tem. Incorporating the notion of uncertainty in the CSA directive/response mechanism
is also important. Consider a scenario where spurious obstacles are seen such that they
completely block the road. Although the map may correctly reflect high uncertainty,
the logic planner will still progress through all its modes before finally concluding that
it cannot complete the segment-level goal. Failure will then be reported to the mission
planner which will incorrectly evaluate the current situation as the road is completely
blocked and subsequently plan a U-turn. If the response alsoincorporates the notion
of uncertainty, the mission planner can use this information together with the system
health and issue a pause directive instead so Alice will stopand wait for better accuracy
of the map.

Another direction of research is to formally verify that if implemented correctly, the
directive/response mechanism will ensure the consistencyof the states of all the soft-
ware modules in the system and that the CSA and the mission management subsystem
guarantee that Alice will keep going as long as it is safe to doso. Using temporal logic,
we were able to formally verify the state consistency for thefollower and drive control
modules. For the rest of the system, we have only verified the state consistency and the
fail-operational/fail-safe capability through extensive testing.

Lastly, it is also of interest to verify that this distributed mission and contingency
management approach actually captures all the functionality of a centralized approach
such as SuperCon and that it actually facilitates formal verification of the system. We
believe that this is the case for many systems in which the central module does not take
into account the uncertainties in the system and the environment.
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Abstract. Robot navigation in urban environments requires situational reason-
ing. Given the complexity of the environment and the behavior specified by traf-
fic rules, it is necessary to recognize the current situationto impose the correct
traffic rules. In an attempt to manage the complexity of the situational reasoning
subsystem, this paper describes a finite state machine modelto govern the sit-
uational reasoning process. The logic state machine and itsinteraction with the
planning system are discussed. The approach was implemented on Alice, Team
Caltech’s entry into the 2007 DARPA Urban Challenge. Results from the qual-
ifying rounds are discussed. The approach is validated and the shortcomings of
the implementation are identified.

1 Introduction

The problem of robot navigation in urban environments has recently received substan-
tial attention with the launch of the DARPA Urban Challenge (DUC). In this competi-
tion, robots were required to navigate in a fully autonomousmanner through a partially
known environment populated with static obstacles, live traffic, and other robots. In or-
der for the robot to complete this challenge, it needed to drive on urban roads, navigate
intersections, navigate parking lots, drive in unstructured regions, and even navigate un-
structured obstacle fields. Since the environment was only partially known prior to the
race, the robot needed to rely on sensory information to extract the world state, which

Fig. 1. Alice (left), Team Caltech’s (right) entry in the 2007 DARPAUrban Challenge.



introduces additional uncertainty into the problem. Furthermore, lack of exact knowl-
edge about the robot’s location and the state and intent of dynamic obstacles introduced
further uncertainty. Lastly, the robot needed to obey California traffic rules or exhibit
human-like behavior when this was not possible.

The urban component of the problem had two effects on the robotic planning prob-
lem: first it introduced some structure into the environmentthat could be used during
the planning process. Second, the traffic rules associated with urban driving forced the
robots to exhibit specific behaviors in specific situations.These behaviors are at a high
level associated with the driving task that is being executed, which include, for example,
driving on a road versus driving in a parking lot. While executing a driving task, it is
necessary for the vehicle’s control system to reason about which traffic rules are appli-
cable at each instant. It was not sufficient to obey all the rules all the time, but in some
cases constraints needed to be relaxed for the robot to make forward progress. This rea-
soning module is what is presented in this work. A related aspect of urban driving is
intersection handling [1] and is not discussed here.

Prior work has attempted to solve the problem of reasoning about the robot’s correct
driving behavior. Most of the work has been related to highway driving, and deciding
when a maneuver such as a lane change or emergency maneuver isin order [2–5]. One
practical hurdle is managing the complexity of the decision-making module [2] which
must decide which rules to enforce and which actions to take.Another problem is tak-
ing uncertainty about the situation into account. Sukthankar et al. [2] implemented a
scheme based on a voting system, called polySAPIENT. Different traffic objects in the
environment (for example another car, an exit on the highway, etc.) would vote for
the appropriate action. Using a mitigation scheme, the bestaction was chosen. Unsal
et al. [3] used automata theory for longitudinal and lateralcontrol of the vehicle, and
implicitly chooses the best action. Gregor and Dickmanns [4] used a finite state ma-
chine (FSM) to decide. Niehaus and Stengel [5] explicitly account for uncertainty in a
probabilistic fashion, and use a heuristic method to selectthe best action.

The main contribution of this paper is the design of a decision module for a robot
navigating an urban environment. To manage complexity, this module does not attempt
to explicitly reason about all aspects of the environment, but instead makes use of infor-
mation generated by the path-planning module to guide decisions. The decision module
was implemented on Alice, the Team Caltech entry into the DUC(see figure 1). Results
obtained during successful DUC qualifying runs are presented. The paper is structured
as follows: the overall planning approach is briefly reviewed in section 2, before fo-
cussing on reasoning in the logic planner (section 3). An example is given to illustrate
usage. Lastly, some results from the qualifying runs for theDUC are presented, with a
discussion, recommendations and future work.

2 Overview of Planning Approach

The planning problem involved three driving tasks: road driving, off-road driving, and
parking lot navigation. In an attempt to modularize the system for rapid development,
the problems of sensing, planning, and control were separated. The planning problem
itself was divided into three layers (see figure 2), following the hierarchical architec-
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Fig. 2. Planning architecture showing 3 layers used for planning process.

ture dictated by the contingency management approach that was adopted for overall
management of Alice’s activities [6].

At the mission level, it was necessary to generate a route through the road net-
work, as defined by DARPA through the Road Network Definition File (RNDF). The
route planner would specify a sequence of road segment goalsto be completed, which
would be passed to the tactical planning layer. The tacticalplanner was responsible for
generating a trajectory to some intermediate goal (e.g., a position at the end of a road
segment). The reasoning methodology used by the tactical planner is the focus of this
paper. The trajectory generated in the tactical planner wasin turn passed to a low-level
trajectory-following controller, which is documented in [7].

The tactical planner consisted of four parts:
Logic Planner: The logic planner was the reasoning module of the robot. Thismodule
had two functions: reasoning about the current traffic situation, and reasoning about
intersections [1]. This planner was implemented as a set of finite state machines (FSMs)
and would set up a planning problem to be solved. Reasoning about the current traffic
state is the focus of this paper.
Path Planner and Velocity Planner: The trajectory planning problem was separated
into a spatial and a temporal planning problem in order to simplify these planning prob-
lems, and to satisfy the real-time requirement of the planner. Separate path planners
were implemented for the three different driving tasks. These path planners were re-
sponsible for solving the 2-D spatial path planning problem, accounting for the static
component of the environment. The velocity planner time-parameterized the path to ob-
tain a detailed trajectory. This velocity planner adjustedthe robot’s speed for stop lines
along the path, static obstacles on or near the path, the curvature of the path, and the
velocities of dynamic obstacles.
Trajectory Analysis (and Prediction): Navigating in urban environments requires the
incorporation of the (predicted) future states of dynamic obstacles in the planning prob-
lem. Prediction involves two estimation processes: predicting the behavior of the dy-
namic obstacle, and predicting the future states of the dynamic obstacle. This informa-
tion can be compared to the robot’s planned trajectory to detect future collisions. The
generation and use of prediction information will be presented elsewhere.

An important part of the navigation problem was contingencymanagement and in-
ternal fault handling. The hierarchical planning architecture lined up well with the conti-
gency management philosophy that was adopted. The Canonical Software Architecture
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Fig. 3. Example problem: the travel lane of the robot is blocked. Using the failure of the path
planner, the logic planner infers that the lane is blocked and relaxes the lane keeping constraint.
This allows the robot to execute a passing maneuver.

was adopted, where each module handled its internal faults and the failures propagated
from the lower-level modules. When the module could not reach its goal, it would fail
to the level above, which would adjust the goal. A complimentary, detailed discussion
of contigency management has been presented in [6].

3 Situational Reasoning with the Logic Planner

Situational reasoning is necessary to impose both the traffic rules, and the correct behav-
ior when rules need to be relaxed. For the highway driving case, the environment is very
structured, and the behavior of the other dynamic agents that might be encountered by
the vehicle is relatively constrained, yet the complexity of the reasoning modules was
a problem. One reason for this complexity is because these modules attempt to reason
about all components of the environment abstractly. For example, the reasoning module
would need to obtain a list of obstacles in the robot’s vicinity, and reason about their
position (e.g., in lane) in the environment, the context (e.g., static obstacle blocking
the lane) and how that may affect the robot (e.g., need to change lanes). Alternatively,
much information is obtainable from the path and velocity planners, and could be used
to guide the decision process. For example, when the path planner could not find a
collision-free path, an obstacle must be blocking the lane.This information could be
returned to the reasoning module via a status message, SM, tobe used in the decision
making. Decision making was avoided while things were running smoothly. For further
simplicity, the reasoning module was reduced to a finite state machine (FSM).

Example: To understand the reasoning approach, it is useful to look atan example
(see figures 2 and 3). Consider the case of the robot driving down a two-lane, two-way
road segment.

Cycle k-1: From the previous planning cycle, no problem was detected byany com-
ponent of the tactical planner. Imagine now that a static obstacle is detected in the
robot’s driving lane.

Cycle k: The path planner cannot find a collision-free path that staysin the lane
and reaches the goal location. The planner reports the status: SM = COLLPATH ,
and encodes the position of the obstacle in the path structure. From SM, the velocity
planner observes the obstacle and plans to bring the vehicleto a stop.

Cycle k+1: The logic planner evaluates SM, and observes that the path contains a
collision with a static obstacle. Given the current constraint to stay in the lane, the goal
cannot be reached and the lane must be blocked. The appropriate behavior for the robot
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Fig. 4. The logic planner finite state machine for driving in a road region.

would be to drive up to the obstacle and come to a complete stop. Now jump i cycles
ahead, to where the robot is stopped.

Cycle k+i+1: Once the robot is stopped, the reasoning module relaxes the constraint
to stay in the lane. The path planner searches the adjacent lane. No collision is reported
for this new planning problem and the robot is allowed to pass.

Logic Planner: The logic planner was implemented as a finite state machine. For
the road navigation, the machine consisted of 10 states denoted by ([M,F,C]). The states
constisted of a mode (M), a flag (F), and an obstacle clearancerequirement (C). The
state machine is illustrated in figure 4. During urban navigation, the robot must interact
with static and dynamic obstacles. For planning, the staticobstacles required an ad-
justment of the spatial plan, where as dynamic obstacle required an adjustment of the
robot’s velocity. Separating the spatial and velocity planning and encoding the dynamic
obstacle information on the path, the velocity planner alone could account for the nom-
inal interaction with the dynamic obstacle (such as car following), and the logic did not
explicitly have to deal with this problem.

The modes included driving (DR) and stopping for obstacles (STO). The flags in-
cluded no-passing (NP), passing without reversing (P), andpassing with reversing (PR).
The obstacle clearance-modes included the nominal, or safe, mode (S), an aggressive
mode (A), and a very aggressive, or bare, mode (B). The state machine can be divided
into trying to handle the obstacle while maintaining the nominal clearance ([·,·,S]), and
being more aggressive. The second option was only invoked when the first failed, and
safe operation was guarenteed by limiting the robot speed inthese aggressive modes.

The nominal state for road driving, [DR,NP,S], was to allow no passing, no re-
versing, and the nominal obstacle clearance, termed safetymode. With no obstacles
blocking the desired lane, the logic state remained unchanged. When a static obstacle
was detected, the path planner would: (i) find a path around the obstacle while staying
in lane, (ii) change lanes to another legal lane (if available), or (iii) report a path with
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a collision. For case (iii), the logic planner would know that a collision free path was
not available from the status message (SM), and would switchinto obstacle handling
mode.

The correct behavior when dealing with a static obstacle wasto drive up to it, com-
ing to a controlled stop [STO,NP,S] (refer to figure 4). If at any time the obstacle dis-
appeared, the logic would switch back to the appropriate driving mode. Once the robot
was at rest, the logic switched to driving mode, while allowing passing into oncoming
lanes of traffic [DR,P,S]. If a collision free path was obtained, then the robot would
pass the obstacle and switch back to the nominal driving state once the obstacle had
been cleared. If a collision free path did not exist, then thelogic would again make sure
that the robot was stationary before continuing [STO,P,S].At this point, either (i) the
robot was too close to the obstacle, (ii) there was a partial block and by reducing the
obstacle clearances the robot might squeeze by, or (iii) theroad was fully blocked. The
first case was considered by switching into a mode where both passing and reversing
was allowed [DR,PR,S]. If a collision free path was found, the passing maneuver was
performed. If a collision was detected and persisted, the robot would again be stopped
[STO,PR,S]. At this point, reducing the obstacle clearanceand proceeding with caution
was considered.

Given the size of the robot (the second largest robot in the 2007 DUC), a major
concern was maneuvering in close proximity to static obstacles. To curb this problem,
it was desirable to reduce the required obstacle clearances. First the robot switched
to aggressive mode, [STO,PR,A]. If a collision free path wasfound, the robot would
drive in this mode [DR,PR,A]. As soon as a path was found that satisfied the nominal
obstacle clearance, the logic switched back to [DR,PR,S]. If the robot could not find a
collision free path while in aggressive mode, it would reduce the obstacle clearances
even further by switching to bare mode [STO,PR,B]. If a path was found, it would
drive in this mode [DR,PR,B] until a path was found that did not require this mode.
The logic would then switch back to the aggressive mode [DR,PR,A]. If no collision
free path could be found, even in bare mode, the conclusion was that the road must be
blocked. At this point, the tactical planner could not complete the segment-level goal. In
accordance with the contigency management strategy, the tactical planner sent a failure
to the route planner, which replanned the route. If the robotwas on a one-way road, the
route-planner would allow the robot to enter off-road mode,as a last resort.

Since reversing was allowed, it was possible for the robot toget stuck in a cycle of
not finding a path [STO,PR,S], then backing up and finding a path [DR,PR,S], driving
forward and detecting a collision, backing up again, etc. Inan attempt to avoid this cycle
and others like it, some transitions were created to exit these loops (from [DR,PR,S])
as part of contigency management.

4 Results and Discussion

The tactical planner, and logic planner, was implemented onAlice, a modified Ford
E350 van (see figure 1). The robot was equipped with 24 CPUs, 10LADAR units, 5
stereo camera pairs, 2 radar units, and an Applanix INS to maintain an estimate of its
global position.
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Fig. 5. RNDF and aerial image of Area B.

The NQE consisted of three test areas, which tested different aspects of urban driv-
ing. The course of interest here is area B, for which the RNDF,overlayed with aerial
imagery, is given in figure 5. The course consisted of approximately 2 miles of urban
driving without live traffic and tested the robot’s ability to drive on roads, in parking
areas, and in obstacle fields. The course was riddled with static obstacles. The robots
started in the starting chutes, which were short lane segments, lined with rails. The robot
would drive into an open area and proceed to a gate. The gate led to a one-way road,
lined with rails, which in turn led to an intersection and thecourse. The robots would
then proceed around a traffic circle and make its way to the parking zone (southern oc-
tagonal region). Once through this parking lot, the robot passed through the ‘gauntlet’,
and made its way to the northern zone (obstacle field). From there, it would make its
way back to the finish (next to the start area). The results arepresented next, followed
by a discussion.

4.1 Run 1

The logic states and velocity profile for run 1 are presented in figures 6 and 7, respec-
tively. Four events are indicated on these figures, and the corresponding locations are
shown in figure 5. The robot had difficulty exiting the start area (events A and B), but
made rapid progress before getting stuck in the parking lot (event C) and was manually
reset (event D). It still could not exit the parking area and was eventually recovered
from the parking area.

The robot was in the nominal driving state ([DR,NP,S]) only 29.5% of the run (see
figure 6). Since the robot got stuck in the parking area (eventC and onwards) and ended
up spending 34.3% of the run there, it is more useful to consider the logic data up to
event C. The robot spend 44.3% of the run up to event C in the nominal driving state,
which was still a low number. The logic switched out of the nominal state 8 times to deal
with obstacles, of which 5 were in the start area. 42.8% on therun (up to the parking
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Fig. 7. Velocity profile during run 1 of NQE area B.

area) was spent dealing with obstacles - 30.2% in the nominalobstacle clearance mode,
and 12.6% in the more aggressive modes. It also switched out of intersection-handling
mode due to static obstacles 3 times and was in exception handling mode 0.65% of the
total run.

The robot spent the first 9 minutes in the start area, where it needed to travel
through a gate and an alley (event B). The logic correctly switched into the aggressive
modes since the alley was too narrow for the robot to pass through while maintain-
ing the nominal obstacle clearance. Unfortunately, the implementation of the switching
to intersection-handling mode was lacking, and the obstacle clearance would get reset
causing the path-planner to fail again. This happened 3 times in the start area, and the
robot was stationary much of the time in this area (see figure 7). The robot swiched to
the aggressive modes, and eventually to a failure mode, later in the run (around 700 s)
due to a misallignment of the road and the RNDF. The robot got stuck in the parking
area since it again could not maintain the necessary obstacle clearances and complete
the goal. In this case, even the most aggressive mode was not sufficient.

The team realized that, in order to compete, it needed to adjust it’s strategy. It
was necessary to be more aggressive around static obstacles, but still maintain op-
erational safety. It was decided to reduce the nominal obstacle clearance to the bare
value by default, thereby collapsing the logic for changingthis distance in the logic
planner. That meant removing the connections between [DR,PR,S]→[STO,PR,A] and
[STO,PR,S]→[STO,PR,A] (see figure 4). A connection (shown with a dashed arrow)
was added from [STO,PR,S]→[FAIL]. For safety, the planner relied on the velocity
planner to slow the robot near obstacles.
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4.2 Run 2

The logic states for the second attempt are shown in figure 8. The robot was able to
complete the run in a little over 23 minutes. It effortlesslyexited the start area (event
A), and drove up to and through the parking area (event B). Next, it navigated the
‘gauntlet’ (event C) successfully, before driving throughthe obstacle field (event D),
and on to the finish area.

The robot spent 61.6% of the run in the nominal driving mode, and dealt with obsta-
cles for 11.6% of the time. The robot switched out of the nominal driving mode 4 times
to deal with obstacles. It also spent 16.5% of the time in intersection handling mode (14
intersections), and spent 7.93% of the run performing the parking maneuver. The robot
spent 1.73% of the run navigating the obstacle field, and had no exceptions.

The time spent in obstacle mode was still worrisome. During the navigation of the
‘gauntlet’, the obstacles were so close together (longitudinally) that the function esti-
mating the completion of the passing maneuver was insufficient. Thus, the robot re-
mained in passing mode during most of this section.

4.3 Discussion

The notion of using the path planner capabilities to assist in the decision making pro-
cess worked very well, even though the implementation was not perfect. The significant
improvement in performance from run 1 to run 2 was due to the effective reduction in
size of the robot. Some implementation shortcoming have been mentioned, and are
summarized here. It is important to note that these shortcomings are often artifacts of
other parts of the system. The logic for switching to intersection handling was fragile
since the obstacle clearance mode was reset. Also, estimating whether a passing maneu-
ver was complete was not robust. This was complicated by the path planning approach
used. One shortcoming of the approach was not explicitly accounting for uncertainty in
the decision process. It had been intended to extend the logic to account for this, but due
to the time constraints it was not possible. However, by using the planner components
to assist in the decision making, this shortcoming was largely mitigated.

5 Conclusions and Future Work

An approach to situational reasoning for driving on roads inurban terrain was described.
In an attempt to manage the complexity of the reasoning module, knowledge from the
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path planner was used and the reasoning module was implemented as a finite state ma-
chine. This module was only invoked when the planner failed to find a solution while
satisfying all the constraints imposed by the traffic rules.The reasoning module was
implemented as part of a complete (and complex) autonomous system, developed for
urban navigation. The performance of the module was discussed based on the results of
the two runs in area B during the DUC NQE. The module imposed the correct behavior
on the robot in most cases. The failures were a result of the implementation and the size
of the robot. Uncertainty was handled implicitly through the use of the planner compo-
nents to assist in the decision making. Future work includesextending this approach to
explicitly account for uncertainty during the decision process.
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Abstract. The number of vehicle navigation devices has increased tremen-
dously during the last years. The digital maps of these systems contain a lot of 
valuable information that provides benefit for other features besides route guid-
ance as well. The area of potential applications reaches from driver information 
and warning up-to comfort and active safety applications, so-called ADAS1. 
Since built-in sensors are limited to a relatively short range, digital map data 
can be used to "look" much further into the direction of the vehicle's path. The 
map data, e.g. road geometry, number of lanes, speed limits, etc. is provided on 
a vehicle bus system as the so-called Electronic Horizon. European automotive 
industry has teamed up in the ADASIS Forum to develop a common standard-
ized interface to access the Electronic Horizon. Ford Research & Advanced 
Engineering Europe has developed a prototype system for Lane Keeping Assis-
tance as one application example. 

1 Introduction 

Nowadays, modern vehicles are equipped with a variety of sensors to enable safety 
and comfort features. However, these on-board sensors are limited to a relatively 
short range of a few hundred meters. On the other hand, digital maps of a navigation 
system contain valuable information about the road segments lying ahead, such as 
road geometry, functional road class, number of lanes, speed limits, traffic signs, etc. 
This data can be extracted and provided to applications as the so-called Electronic 
Horizon. This virtual sensor is now able to provide information within an extended 
range, see Figure 1. Thus it enables the vehicle to prepare earlier for an up-coming 
situation. 

 
Fig. 1. Range of vehicle sensors. 

                                                           
1 Advanced Driver Assistance Systems 



2 Overview 

The support of ADAS requires an accurate knowledge about the road ahead of the 
vehicle. Since the last years, map vendors already have significantly improved the 
level of detail and accuracy of digitised data. Up-to-date digital navigation maps 
contain detailed information about road geometry, topology, and typical attributes 
such as functional road class, number of lanes, speed limits, traffic signs, etc. Future 
maps will support even more details depending on the requirements demanded by the 
automotive industry to support ADAS. 

The so-called Electronic Horizon contains road attributes from the digital map as 
well as vehicle position data. Fig. 2 gives an overview about the principle. The Navi-
gation system, or more generally the Electronic Horizon Provider, extracts map data 
in the vicinity of the vehicle position. All relevant attributes required by applications 
are extracted and stored locally. The prediction of the Most Likely Path, which the 
vehicle is expected to take, has a significant influence on the quality and reliability of 
the Electronic Horizon. Ford Research and Advanced Engineering has developed 
algorithms for calculating the Most Likely Path based on historic information and 
current vehicle status [2]. The Electronic Horizon is provided to applications on the 
vehicle's bus system, most likely the CAN bus. The specification of the interface 
between Electronic Horizon Provider and applications is of special interest for the 
vehicle manufacturer. In order to reduce development cost and risk, a standardized 
interface is highly appreciated. As a result of this need, the European ADASIS Forum 
was launched in the year 2001. Section 4 outlines the interface specification and 
ADASIS Forum activities. 

 
Fig. 2. Electronic Horizon. 
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3 Electronic Horizon Provider 

Ford Research & Advanced Engineering has developed a prototype system to provide 
an Electronic Horizon, the so-called Information Manager [1] [3]. The system has 
been implemented as a prototype and integrated into test vehicles. The system does 
not only provide vehicle position and digital map data, but also predicts the Most 
Likely Path of the vehicle [2]. Fig. 3 gives an overview about the systems architec-
ture. The entire system is designed in a modular way, allowing a maximum of flexi-
bility and providing the opportunity to enhance and modify due to future require-
ments. 
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Fig. 3. Systems architecture of Ford's Electronic Horizon Provider (Information Manager). 

The following paragraphs introduce the Information Manager in more detail. 

3.1 Electronic Horizon & EH Post Processing 

The "heart" of the system is a module that retrieves a configurable number of attrib-
utes from the digital map in the vicinity of the vehicle (the so-called Electronic Hori-
zon module, EH). In a first step, the road segments for all possible paths are extracted 
from the map in the vicinity of the vehicle. Therefore the current vehicle position is 
estimated by a GPS receiver, and then matched on a road segment. The quality of the 
Electronic Horizon obviously depends on the correct estimation of the vehicle's path. 
If the road attributes would be provided for a path the vehicle does not take, the in-
formation will be worthless for the application and will cause a re-calculation of the 
Electronic Horizon. That would consume processing power and time leading to a gap 
of input data on the application side. In order to avoid re-calculations and to ensure 
proper operation of the system, the module receives information about the Most 
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Likely Path of the vehicle from Vehicle Route Prediction [2]. The EH module then 
extracts all relevant attributes attached to the road segments only for this single path. 

The pre-processed Electronic Horizon is filtered in a second step, the EH Post 
Processing, due to the requirements of the supported applications. The EH Post Proc-
essing includes also demonstration software to visualize the Electronic Horizon as 
shown in Fig. 4. The module can be enhanced with additional sub-modules, e.g. a 
speed estimator that is calculating a predicted speed profile for the road segments 
ahead of the vehicle.  

 
Fig. 4. Visualization of Electronic Horizon. 

The calculated Electronic Horizon is then transferred to the Data Store. 

3.2 Data Store 

The Data Store is the common database of the system, which stores all data required 
by the applications as well as needed internally for the Past Experience Processing. 
Incoming data is received from the EH Post Processing as well as vehicle sensor data 
from the Input Interface. Data is then provided to the Application Interface as well as 
to the Past Experience Processing modules. 

3.3 Input/ Output Interfaces 

The Application Interface provides all data for any connected application in a speci-
fied format. The Application Interface supports the ADASIS protocol as described in 
section 4.2. At the moment, the Application Interface is implemented for the CAN 
bus only. However, other bus systems can be integrated easily by adding the adequate 
software. 

The Input Interface manages all input data for the Information Manager. This in-
cludes vehicle sensor data, switch positions and other data available on the vehicle 
bus system as well as GPS position data. In addition, a driver identification mecha-
nism is used, allowing the system to behave differently depending on the current 
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driver. This information is needed by the Past Experience Processing and the Route 
Prediction modules.  

3.4 Past Experience Processing 

The Past Experience Processing stores the route currently driven by the vehicle, 
which is subsequently used by the Route Prediction module. 

The Past Experience Processing contains a database for storing the collected in-
formation, building the basic step for a learning system. This database stores all trip 
data on segment by segment basis. That is while driving, all road geometry data is 
broken up into road segments as stored in the digital map. Along with coordinates or 
keys that allow identifying the segments later, additionally time, date and other data is 
stored as needed by other supported applications. Fig. 5 illustrates how the map data-
base stores geometry information by splitting up the road network into segments and 
nodes. When driving to a destination the Past Experience Database receives the se-
quence of segments. For convenience, the system can either store the whole trip as 
that sequence or store only the transitions, which are consecutive segment pairs, 
where the second is always a successor to the first along with the time and date. 
These segment pairs are also called decision points. 

 
Fig. 5. Storing transitions while driving. 

In order to optimize the memory usage, data is stored with an expiration time-
stamp. Once the past experience data reaches a specified age, the affected records are 
deleted. The memory management can further be improved by limiting the amount of 
stored data. Instead of keeping track of complete routes, only the segments that build 
a so-called decision point are considered (see above).  During testing, it has been 
estimated that 3 -5 Mbytes of storage capacity will be sufficient for achieving a high 
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prediction quality. This amount of memory would allow storing all routes driven by a 
typical driver during a period of three years.  

Additionally, other data might be stored as well, in order to generate profiles and 
history of vehicle data. For instance, individual travel times can be recorded per each 
link. This information is then taken into account for future route calculations allowing 
to calculate an optimum route based on real-world travel times. Nowadays navigation 
systems only use static values based on the functional road class not matching reality 
e.g. in terms of traffic jams during rush hours. 

3.5 Vehicle Route Prediction 

The Vehicle Route Prediction module is responsible for determining the most prob-
able route the vehicle is likely to go. Therefore, a two-way approach is used [2]. First, 
data from the vehicle's bus system is analyzed to determine a categorized driving 
situation. For instance, if the vehicle approaches a crossing, the system has to decide 
which way the driver intends to go. Taking into account turn signal information in 
combination with the current vehicle speed and distance to the decision point, an 
intelligent algorithm proposes the way of the vehicle at this crossing. 

In a second step, a complete route can be proposed by taking into account the cur-
rently driven road segments and comparing these to the stored routes in the Past Ex-
perience Processing database. Particular patterns, which occur in a defined accumula-
tion, are compared and used as a decision criterion for determining which route the 
driver intends to take. In order to optimize processing effort and memory usage no 
complete routes are compared. Instead only decision points are taken into account, as 
described in section 3.4, containing the succeeding segment for the one currently 
driving on. For each successor segment a specific probability is calculated based on 
the amount of occurrences, day-of-week and time-of-day when driven before. The 
algorithm chooses the segment with the highest probability as the Most Likely Path. 

The estimated Most Likely Path of the vehicle is then provided to the Electronic 
Horizon module, which uses this information for retrieving a single-path Electronic 
Horizon, as described above. 

4 Interface Specification 

A well-defined interface between navigation system providing Electronic Horizon 
and applications is required. Vehicle manufacturers have a strong interest in using a 
standard interface specification. In order to develop such a standard interface the 
ADASIS Forum was founded. The following paragraphs introduce the forum itself 
and its technical approach. 
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4.1 ADASIS Forum 

In 2001 the ADASIS Forum has been launched in Europe in order to specify an in-
dustry standard interface for providing Electronic Horizon. Ford Motor Company is 
playing an active role within that forum and contributing to the interface specifica-
tion. Since December 2007, Ford has taken over the chairmanship of the forum (C. 
Ress). 

The ADASIS Forum is hosted and coordinated by ERTICO2 and constitutes to 
date of more than 30 members including car manufacturers, navigation systems and 
ADAS suppliers, as well as digital map vendors. The forum's purpose is to: 

• Define an open standardised data model and structure to represent map data in 
the vicinity of the vehicle position (i.e. the Electronic Horizon), in which map data is 
delivered by a navigation system or a general map data server.  

• Define an open standardised API to enable ADAS applications to access the 
Electronic Horizon and position-related data of the vehicle. 

The final specification is currently worked out in the ADASIS Forum and will be 
transmitted as a next step to ISO for becoming an international industry standard. The 
first version of the interface specification is already available for forum's members. 

During the period from 2004 to beginning of 2008, the successful work of the 
ADASIS Forum has been supported within the PReVENT project, i.e. 
MAPS&ADAS sub-project. The objectives for MAPS&ADAS project were to 
specify, implement, test, and validate the first version of ADASIS specification. 
Additionally, the development of new digital maps including safety aspects was also 
a goal of the project. 
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4.2 ADASIS Functional Architecture 

The systems architecture defined by ADASIS Forum is shown in Figure 6. It consists 
of the ADAS Horizon Provider (AHP) on the one side. That retrieves digital map data 
around the estimated position of the vehicle using GPS and map matching. In the first 
release of ADASIS only a single path in front of the vehicle is supported. Future 
versions will also be capable of multiple paths where the ADAS Horizon is provided. 
The data is then compressed and coded for transmission on the vehicle's bus system. 
On the application side, an ADAS Horizon Reconstructor (AHR) re-builds the ADAS 
Horizon from the received messages and provides it to the ADAS application. More 
than one application is supported but depending on the implementation, each one 
requires its own Horizon Reconstructor. 

ADASIS addresses two interfaces on different levels: 
(i) A "low level" interface describing the messages to be transferred on the vehicle 

bus system. The ADASIS specification is generic for any bus system, the so-called 
AGMP (ADASIS Generic Message Protocol). Since the CAN bus is the most used bus 
system in vehicles nowadays, a specific implementation for CAN has been derived, 
the so-called ASCP (ADASIS Specific CAN Protocol). 

(ii) A "high level" interface allowing the applications to access the Electronic Ho-
rizon data after being re-built by the Horizon Reconstructor. This is a C code style 
API. 

The developed systems architecture and interface specifications have been imple-
mented as prototypes within the scope of PReVENT MAPS&ADAS by the project 
partners. Data transmission has been realized on a CAN bus. Tests and validation 
have been successfully been performed. The results look very promising: the average 
additional bus load caused by the Electronic Horizon is relatively low on the CAN 
bus (below 1 percent), and no latency issues or other negative effects for the CAN 
bus messages have been detected. Different ADAS Horizon Providers and Recon-
structors have been developed by the project partners. These have been connected via 
the CAN bus and their interoperability was also demonstrated successfully. 

More information about the ADASIS Forum is available on the internet: 
http://www.ertico.com/en/subprojects/adasis_forum. 

5 Example Application: Lane Keeping Assistance 

One of the applications, which have successfully been enhanced by the Information 
Manager, is Lane Keeping Assistance. A prototype system has been implemented and 
validated within the scope of the European PReVENT project. PReVENT is an indus-
try research project, co-funded by European Commission within the 6th Framework, 
and has been successfully finalized in March 2008. More information about the PRe-
VENT project is available on the PReVENT web site: http://www.prevent-ip.org . 

For Lane Keeping Assistance a camera system is used as the primary sensor to de-
tect if the vehicle is still within the lane. In order to support the image processing in 
difficult situations, e.g. approaching a curve, driving in bad weather, or low light 
conditions, Electronic Horizon data is taken into account as an additional virtual sen-
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sor. This provides information about lane attributes and geometry of the road ahead. 
In consequence this enables the lane tracker to evaluate more reliably if the vehicle is 
still within the lane, or whether an action needs to be taken. This could then be done 
in the form of a warning or by performing an active steering manoeuvre. 

Fig. 7 shows an example of the benefit: ambiguous lane markings by shadows of 
guardrails are not recognized correctly by the camera itself, see left picture. Using 
lane width information from a digital map can help the lane tracker to exclude wrong 
information and to detect the lane markings correctly, see right picture. 

 
Fig. 7. Lane marking detection with camera only (left) and enhanced with Electronic Horizon 
(right). 

6 Summary and Perspectives 

Nowadays navigation systems have the potential to offer much more than solely route 
calculation and guidance. The digital map provides a lot of information about the 
route lying ahead of the vehicle that can successfully be used to enable new or en-
hance existing applications, the so-called Electronic Horizon. 

Ford Research & Advanced Engineering has successfully designed and imple-
mented a prototype system providing Electronic Horizon. It provides digital map data 
as well as the vehicle's position and sensor data to ADAS applications. Special atten-
tion has been paid on the calculation of the Most Likely Path the vehicle is expected 
to take. That allows a high quality of Electronic Horizon data and improves reliability 
of applications. 

As one example how an application can benefit of Electronic Horizon "Lane 
Keeping Assistance" has been presented. Within the PREVENT project the lane 
tracker algorithms have significantly been improved with the use of digital map data 
as an additional "virtual sensor". 

However for a series implementation of the system, some restrictions have to 
overcome in the near future. For instance, the ADASIS specification has to be refined 
with regard to the test experiences from PReVENT project. Also the Ford prototype 
system is implemented on a PC with a relatively huge amount of memory and proc-
essing power, which has to be replaced by an Embedded Platform for future use in a 
vehicle or to be integrated into the navigation system. 
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Abstract. Navigation systems based on GPS and digital maps have become ex-
tremely popular in passenger and commercial vehicles during the last years. 
The accuracy and amount of information contained in digital maps is constantly 
evolving, offering a tremendous amount of knowledge about the road network. 
In addition to providing driving directions, this information may be used on a 
wide range of technologies. One of these is the so-called Electronic Horizon, an 
application based on digital maps that helps to overcome the physical limits of 
many vehicle sensors, such as radar and vision systems. This is accomplished 
by predicting where the driver is heading, and subsequently extracting from the 
digital maps information about the predicted path. This paper provides an in-
troduction to the Electronic Horizon, the Most-likely Path concept, and gives 
some examples of how digital map data can be used for the enhancement of 
comfort and safety functions. 

1 Background 

In recent years, navigation and telematics systems based on GPS and digital map 
databases have become increasingly popular in passenger and commercial vehicles. 
The accuracy of GPS receivers has improved with the introduction of new chipsets 
and technologies like the SiRF III and DGPS. At the same time, the road coverage of 
digital maps has been extended, its accuracy has been improved, and map vendors 
have committed to offer even further improvements in upcoming generations. In 
addition to road network topography, digital maps are able to carry large amounts of 
information describing the characteristics of the road. These include information like 
speed limit, number of lanes, curvature, slope, tunnels, lane dividers, traffic signs, and 
many other important attributes. 
These digital map attributes can be very useful to many in-vehicle applications be-
yond the traditional point-to-point driving directions. This paper is divided in two 
main sections. The first part will introduce the reader to the Electronic Horizon con-
cept. This technology is used for efficiently extracting the most relevant data from 
digital maps, and presenting it to other applications via a common interface layer. The 
second part will give an overview of some of these applications and functional en-
hancements, some which would not be as efficient or even not realizable without the 
use of digital map data. 



2 Electronic Horizon 

As modern vehicles are constantly being equipped with additional functionalities, the 
amount of in-vehicle electronics is equally growing. This not only increases the over-
all complexity, but it also introduces additional production costs. New technologies 
like adaptive cruise control require a radar sensor, while other functions like over 
speed warning rely on camera sensors for the recognition of traffic signs. 

Although physical sensors have experienced substantial improvements and cost 
reduction within the past years, their range is still limited by physical constrains. 
Despite the accuracy of the traffic-sign pattern recognition, no vision sensor is able to 
anticipate the speed limit behind the next curve. Other road attributes like the pres-
ence of upcoming traffic lights, pedestrian crossings, or the estimating the radius of 
an upcoming curve can simply not be deduced by using conventional sensors. 

Digital maps on the other hand, can be bundled with large amounts of data about 
the road network. By extracting information from the digital maps, a speed warning 
system would be able to make decisions based on speed limits several hundred meters 
ahead. This range goes substantially further than in conventional vision systems, 
allowing for new or enhanced functionality. 

Extracting digital-map information about the road being driven and presenting to 
other applications constitutes the so-called Electronic Horizon (EH) concept. Figure 1 
(left) illustrates how EH interprets digital-map data at the current vehicle position and 
uses this information for creating a virtual view of the road ahead. 

 

 
 

Fig. 1. Electronic Horizon and the Most-likely Path concept. 

The task of extracting digital information from the roads with the virtual horizon 
becomes exponentially complex as network density increases. In highly dense areas 
with multiple intersections, such as large cities, the amount of possible paths grows 
rapidly. Extracting map information about every possible path would be unfeasible 
and constitute a waste of system resources. As a matter of fact, most applications that 
would benefit from EH are not interested in all possible scenarios, but rather on the 
most-likely one. 
Figure 1 (right) illustrates the most-likely path concept (MLP) in a scenario with 
multiple intersections. Several methods exist for estimating the most-likely path. 
These vary in accuracy, complexity, and required system resources. If the driver is 
using the navigation system for driving directions, the destination address and the 
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corresponding planned route are readily known. Other methods include static predic-
tions based on road classes, or more complex dynamic calculations. Nevertheless, 
regardless the computational method, MLP is effectively able to reduce a 360 degree 
electronic horizon such as that shown in Figure 2, down to a single virtual linear road. 
Armed with a unique path, EH can now discard all not-so-likely alternatives, and 
extract as much digital information as possible about the most-likely path. All rele-
vant information is then filtered, sorted, and presented using a standard interface to 
other applications [1]. It should be obvious that the feasibility of EH and the use of 
digital map data is highly dependent on the accuracy of the MLP predictor. If the 
vehicle energy management module bases its charging cycle decision on a wrong 
prediction, the benefit of EH would not be as significant. Ford Research Centre 
Aachen has developed an MLP algorithm based on past experience. This method is 
able to learn the driving patters of the vehicle owner, creating a driving history that 
may be used in subsequent drives. After a few days of learning, this technique has 
been able to achieve accuracy levels of up to 99% under typical driving behavior [2]. 

3 ADAS Application Support 

The high level of accuracy achieved by MLP in combination with past experience has 
permitted the development of a very robust EH. The information extracted from EH 
has been used by different applications, some for enhancing performance, while in 
other situations for providing new functionality. Some applications currently being 
researched by the automotive industry will be presented in the following sections. 

3.1 Curve Speed Warning  

Accidents due to high speeds in curves have always been a concern to drivers. Slip-
pery surfaces, hidden curves, and sharp turns are some examples of the many danger-
ous situations that could arise when driving curves. In other scenarios, driving in 
curves at high speed might not be necessarily dangerous, but it could provide discom-
fort to the driver or its passengers. 

Curve-speed warning technology (CSW) has been developed with the goal of 
identifying these uncomfortable or potentially dangerous situations, and being able to 
warn the driver with enough time to react. CSW is a non intrusive technology, based 
on standard digital maps that are commonly present in GPS-based navigation sys-
tems. Since the application does not require additional physical sensors, its additional 
functionality is provided at a minimum cost. The process of identifying hazardous 
situations is divided into different phases. First, the system needs to predict the road 
that is most likely to be taken by the driver. Once the route is identified, the system 
accesses the digital maps and retrieves information about the shape and characteris-
tics of the upcoming curve. The combination of path prediction and extraction of 
information from the digital maps is provided by the electronic horizon module (EH).  
Figure 2 illustrates the CSW principle based on gathering the shape points that de-
scribe an upcoming curve, and using this information to estimate the road curvature. 
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Fig. 2. Curve Speed Warning curvature estimation. 

Future generations of digital maps will incorporate curvature information as native 
road attributes, simplifying the real-time computational requirements during driving. 
In addition to road curvature, CSW considers other factors such as weather conditions 
and estimates of road friction. With this information in hand, the maximum recom-
mended speed for the curve is estimated. If the vehicle is approaching the curve at a 
speed higher than the recommended value, the system could either warn the driver of 
the potential hazard, or actively inhibit further acceleration of the vehicle. In order to 
avoid annoying the driver with unnecessary warnings, the alert threshold is dynami-
cally adjusted based on the driving style. This allows the system to recognize whether 
the driver prefers a sportive or a more comfort-oriented driving style, adjusting itself 
without user intervention. 
In this way, curve-speed warning is effectively able to increase the driver awareness 
in dangerous scenarios, therefore reducing the likelihood of accidents. 

3.2 Lane Keeping Support 

Automotive OEM and suppliers have been actively looking for ways to improve the 
overall vehicle safety using cameras and visual sensors. Lane Keeping Support (LKS) 
is a camera-based technology which uses road pictures and image processing algo-
rithms for determining whether the vehicle is driving within lane boundaries. 
This technology is of significant importance not only for passenger vehicles, but also 
for commercial vehicles, where drivers are subject to long periods of driving. LKS is 
able to assist the driver in several dangerous scenarios, such as sleepiness, tiredness, 
or simple distractions. 

These algorithms typically work by recognizing the lane markings painted on the 
road and computing the intended direction of travel. In parallel, the algorithm analy-
ses the steering wheel angle, vehicle speed, and other parameters, and determines the 
actual direction of travel. If the intended direction of travel differs from the actual 
direction of travel, the system is able to spot a lane departure scenario. 

Each LKS implementation may react in response to lane departures in different 
ways. This could be either by means of an acoustic alarm, an active intervention on 
the steering wheel, or a combination of both. Active intervention systems are usually 
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very subtle, providing only a steering guidance that is overridden as soon as the 
driver resumes control of the situation. 
Despite its potential, there are several scenarios that could easily confuse the lane 
detection algorithm. Figure 3 (left) shows a typical lighting problem due to the low 
dynamic range of typical camera sensors. In this example, exiting from a tunnel in a 
sunny day exposes the camera to a simultaneous dark and bright situation that is not 
able to handle properly. As a result, LKS is not able correctly determine the lane 
markings beyond the tunnel, forcing to temporarily disable the safety feature. 
  

 

Fig. 3. Lane detection problems due to lighting conditions and lane expansion. 

The right side of figure 3 shows another problematic scenario due to changes in 
the lane configuration. In this example, a new lane opens in the highway, confusing 
the algorithm for detecting lane markings. Such a situation would trigger a false lane 
departure alarm or even worse, an incorrect active intervention. Lanes that merge or 
split, highway entrances and exits, bicycle lanes, and pull-in lanes are just some ex-
amples of the many situations that could confuse the lane recognition algorithm. One 
way to improve accuracy of the system under these scenarios is with the support of 
digital map data and EH. Next generations of digital maps, as well as some prototypes 
used within research, already incorporate attributes with the number of lanes, type of 
markings dividers, exits and entrances in highways, and tunnels. By combining vision 
sensor information with digital map data, it is possible to predict an upcoming situa-
tion that could confuse the lane detection algorithm. In these examples, the lane de-
parture system would know from the digital map data that the vehicle is in a situation 
that would likely confuse the vision algorithm. As a countermeasure, the system 
could either use an alternative strategy or temporarily inhibit the false alarm. 

By incorporating knowledge about the road ahead, LKS can reduce the amount of 
false positives, therefore reducing the driver annoyance, increasing the acceptance of 
the technology, and improving the overall vehicle safety. 

3.3 Adaptive Cruise Control 

Automatic cruise control has been present in series vehicles for many years, as a way 
to increase driving comfort in those situations where a constant speed is desired, such 
as driving in highways. With the introduction of radar and laser sensors in vehicles, 
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next generation cruise control systems have been developed. In addition to maintain-
ing a constant speed, adaptive cruise control (ACC) uses radar or laser sensors to 
monitor the speed of the vehicle ahead, as well as the distance separating them. If the 
difference in speed and distance is considered to be unsafe, ACC could warn the 
driver, reduce the target speed, or even actively brake the vehicle. 

Despite being a leap forward in comparison to standard cruise controls, ACC can 
easily get confused under various driving scenarios. Figure 4 shows one these poten-
tially dangerous situation. In this example, the driver had programmed his cruise 
control to drive at a certain speed. After a while, the vehicle encountered a slower 
vehicle ahead. In order to maintain a safety distance, ACC reacted by reducing the 
vehicle speed. After some time, now the driver desires to leave the highway, pulling 
into the exit lane. At this point, ACC will see the slower vehicle disappear and as a 
result, it would accelerate back to the target speed. This behavior is probably the 
opposite of what the driver expects when exiting from a highway and it could repre-
sent a very dangerous situation.  

 
Fig. 4. Adaptive Cruise Control problem when exiting from a highway. 

One way to support ACC in these confusing situations is with digital map information 
provided by EH. If the system had known that the driver was likely to exit the high-
way, it would have not accelerated. Even in the event of an incorrect prediction, by 
simply knowing about a highway exit at the current location, ACC would have waited 
until past the exit, in order to make sure that the driver is still in the highway. 

By providing additional information about the road, EH is effectively able to as-
sist ACC, improving its overall effectiveness and user experience. 

3.4 Adaptive Front Lighting 

Headlamps have always been an important item during vehicle design. Automotive 
OEMs have provided customers with headlights whose height may be easily adjusted 
with the push of a button, cooler and brighter lamp colors, and extra lights for aiding 
in parking maneuvers. Despite its usefulness, these solutions offer limited functional-
ity and often require some manual intervention by the driver.  

In contrast to fix lighting, adaptive front lighting (AFL) is able to adapt the shape, 
height, intensity, area covered, and other aspects of the light beam to fit each particu-
lar driving scenario. This permits AFL to customize the lighting to each particular 
driving situation, improve overall visibility and vehicle safety.  
Despite its potential, determining the correct driving scenario and predicting the 
shape of the road headed by the vehicle constitute major obstacles for an effective 
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AFL. This information can be extracted by the Electronic Horizon, enabling the use 
of interesting configurations not possible otherwise. 
Figure 5 shows different situations in which AFL in combination with EH is able to 
provide some assistance. While waiting on a traffic light, AFL can adjust its lighting 
pattern to match the intended behavior. If EH predicts a left turn, AFL would focus 
its beam on that direction, with the possibility of an additional side LED-light for 
spotting crossing pedestrians. This provides not only a clearer view of the road, but it 
also shows the driver's intention to other vehicles, and it provides additional pedes-
trian protection. 
 

 
Fig. 5. Various scenarios suitable for Adaptive Front Lighting. 

If driving straight, AFL would extend the range slightly further, offering a more com-
fortable view in the direction of travel. 

Using this technology in curves or winding roads provides a better view of the 
road, while inducing the driver to look in the direction headed by the vehicle. In addi-
tion, it reduces the blinding effect experienced by forthcoming vehicles, offering an 
increase in comfort, as well as in overall safety. Highways can be easily identified by 
EH and, depending on external factors like the presence of other vehicles, it may 
switch to a long range mode for optimal lane view, or a more conservative low-beam 
configuration. 

3.5 Hybrid Vehicle Support 

With the introduction of hybrid vehicles into the market, considerable effort has been 
devoted to maximizing their efficiency. The main concept behind hybrids is to com-
bine an electrical motor with a traditional gasoline engine, profiting from the advan-
tage offered by each device. On one hand, regenerative braking is used for recovering 
energy that would otherwise be lost as heat. This energy is stored in a high-capacity 
battery and later is reused by the electric motor. This could be used for briefly driving 
the vehicle at low speeds, where the gasoline engine would not be as efficient. Alter-
natively, the electric motor may provide a complementing torque to the power-train, 
reducing the work of the gasoline engine. Despite its advantages, accomplishing an 
optimal energy management strategy is a difficult task. For instance, driving downhill 
or braking with a fully charged battery would constitute a waste of valuable energy. 
Likewise, starting a charging cycle before a hill would probably overload the engine 
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and require an interruption of the charging phase. Using stored energy as a comple-
mentary torque close to a pedestrian crossing might not represent the best choice, as 
this energy could possibly be better used for accelerating the vehicle after the cross-
ing. Many possible scenarios and strategies are conceivable for hybrid vehicles, and 
determining an optimal decision is dependent on multiple factors. Nevertheless, using 
digital map data can be of great value to the energy management strategy. Informa-
tion coming from EH such as traffic lights, pedestrian crossings, and road inclination 
can be used for optimizing the assessment. Figure 6 illustrates EH in action. After 
predicting the most-likely path, EH gathers information about slope (shown in the 
figure with color bars), traffic lights, and crossings up to 1km ahead. 

Armed with a profile of the road ahead, the vehicle is able to compute more effi-
cient engine and charging strategies, ultimately leading to lower fuel consumption. 
 

 
Fig. 6. Electronic horizon supporting hybrid vehicles. 

3.6 Driver Awareness 

One important safety application of electronic horizon is the inducing of higher driver 
awareness, with the immediate consequence of an improved overall safety. In contrast 
to other safety technologies like CSW, driver awareness intends to identify poten-
tially dangerous scenarios based exclusively on digital map data and current vehicle 
location. These scenarios could be specific locations that the driver should be aware 
of, such as kindergartens, schools, pedestrian crossings, or dangerous intersections. 

Another important example of driver awareness is the identification of the so-
called hot-spots. These are locations statistically known to be problematic or have 
previously incurred in a large number of accidents. These could be specific highway 
entrances, lanes that enter an avenue without a merge area, difficult left turns on two-
way roads, narrow bridges, roads susceptible to icing, etc. However, in order to pro-
vide valuable information ahead of time, it is essential to implement a highly reliable 
electronic horizon using precise digital map data, and an accurate most-like path 
prediction. 

3.7 Green Driving Support 

The rising prices of oil, in combination with increasing pressure from governments to 
reduce vehicle emissions have become a major concern to both drivers and manufac-
tures. The automotive industry is investing considerable effort in reducing fuel con-
sumption levels, such as with the introduction of hybrid vehicles and better engine 
management. At the same time, the transportation business is quite aware of the fact 
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that driving style has a large impact in fuel consumption. These concerns have intro-
duced the concept of green driving or green navigation.  
One way to support green driving is by computing routes to destination that would 
result in the lowest fuel consumption. Drivers are usually aware of the fact that driv-
ing on highways is more efficient than driving through the city. However, other fac-
tors such as hills or mountains, speed limits, traffic lights, and types of intersection 
play an important role in finding the green route. 

Determining the green route is difficult for the driver, particularly if he is not fa-
miliar with the area. Quite often, the route with the lowest fuel consumption does not 
represent the fastest route. And to make things harder, routes with best fuel economy 
are not necessarily the routes with lowest fuel consumption. This makes an educated 
guess a difficult task. Figure 7 shows two real-world alternatives computed by the 
driving-directions portal Map24. The first alternative shown on the left was provided 
as the fastest route, with a distance of 13 Km and an estimated travel time of 19 min-
utes. The fuel consumption was predicted to be 0.9 Liters, giving a fuel economy of 
6.67 L/100 Km. The second route was provided as the shortest route, with a distance 
of 10.4 Km, a travel time of 21 minutes, and a fuel consumption of 0.7 L. This con-
figuration gives a fuel economy of 7.17 L/100 Km. Other examples could show an 
opposite scenario, where the lowest fuel consumption is achieved by the fastest route. 
 

 
Fig. 7. Two route alternatives from A to B (source map24). 

In any case, digital map data is essential for estimating the greenest route. This com-
putation is carried by combining slope, road class, and surface type information, as 
well as a profile describing the consumption characteristics of the vehicle. 

Although the green route is typically computed before departure –by entering the 
destination into the navigation system–, EH is also able improve the fuel consumption 
during driving. With knowledge about the road ahead, such as slope and road class 
information, green route is able to optimize the engine and energy management 
strategies. This effectively results in a reduction of the overall fuel consumption, and 
consequently lower emissions and a greener driving. 
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4 Conclusions 

The introduction of navigation systems in passenger vehicles has opened the door for 
a large number of applications. In addition to the highly deployed driving guidance, 
digital maps contain a tremendous amount of information that could support existing 
applications, as well as enable new technologies not realizable otherwise. This paper 
has provided an overview of some map-based applications currently being researched 
in the automotive industry. Despite their potential, it should be emphasize that the 
effectiveness and acceptance of these technologies is highly dependent on precise 
map data and an accurate electronic horizon. Map vendors are working in cooperation 
with the automotive industry to provide the necessary road attributes in their next-
generation maps. At the same time, new generation of GPS technologies are offering 
better precision, and the accuracy of digital maps is being constantly improved. 

As next-generation maps and new technologies become available to consumers, 
more map-based applications are expected to be deployed in vehicles. Due to their 
low implementation cost, these features are very attractive to OEMs. These will not 
only offer additional driving comfort, but also improve the overall vehicle safety. 
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Abstract. Recent advances in wireless communication technologies have led to
numerous new developments that take advantage of network access, ranging from
real-time information delivery essential for many driving decisions to harvesting
off-board computing power for remote vehicle diagnostics. Specifically, with the
ever increasing fuel cost, there is growing popularity of services that provide
information to drivers on current gas prices and alerts on upcoming changes to
gas prices. This paper demonstrates how to take currently available technology
one step further by providing a proactive refueling advisory system based on
minimizing fuel costs over routes and time. The system integrates vehicle data, a
navigation system, and internet connectivity to supplant the existing vehicle low
fuel warning with a comprehensive decision support system on refueling choices.

1 Introduction

Recent advances in wireless communication technologies have led to numerous devel-
opments that take advantage of internet connectivity. These developments support a
wide range of industries and applications. Focusing on the personal transportation sec-
tor, harvesting computing power accessible over the net can be used for remote vehicle
diagnostics. Another example is real-time information delivery used onboard vehicles
to assist drivers with decisions such as where to find the nearest gas station. A popu-
lar extension of this is an emerging service that offers access to current retail gasoline
prices. With ever increasing fuel prices, drivers are paying closer attention to their re-
fueling strategies, making when and where to refuel a more important and complex
question than in the past. Many drivers are willing to drive a few extra miles to get a
cheaper gas price. Drivers may even be willing to only purchase a few gallons of gas
today when refueling is necessary with expectations of lower gas prices the next day;
this results in more frequent stops, but lower total fuel costs.

The model we introduce in this paper offers users substantial benefits by identifying
the best possible refueling strategy over an entire route and multiple time periods, as
opposed to the best strategy based on current gas prices in a small local area. It includes
how to determine the best refueling strategy for a driver by considering their route, the
gas stations and gas prices along the route, the starting fuel level, good estimates of fuel
consumption along the route, and user preferences.



Inputs to the system can come from several different sources. A driver’s route can
be determined in either of two ways: it can be manually input or for frequently driven
routes it can be predicted from past driving patterns (see [8] and [16]). Once the route
has been determined, gas stations along the route can be identified along with current
gas prices. Current gasoline prices can also be used to estimate future fuel prices by a
forecasting model. By connecting to the vehicle’s internal network, the current fuel level
can be obtained along with the vehicle’s average fuel economy, which can be used to
form a good estimate of fuel consumption for new routes. For frequently driven routes,
previously collected data from the vehicle internal network can be used determine route
specific fuel consumption.

We will first present background in Section 2 and then give an overview of our
system in Section 3. We then provide details on how we forecast future gas prices
and determine the refueling strategy in Sections 4 and 5, respectively. We present an
example in Section 6 and discuss future work and conclude in Section 7.

2 Background

In the United States, there are currently two main sources of current gasoline prices:
credit card transactions and networks of gas price spotters. GasBuddy [10] and GasPrice-
Watch [11] are examples of the latter approach. Both companies offer a web site and
mobile application where the user can look up gas prices for free. The gas prices re-
ported are collected from a network of gas price spotters who are usually volunteers.
Consequently, neither company can guarantee the accuracy of the information they pro-
vide. Oil Price Information Services (OPIS) [19] obtains their data from credit card
transactions, which makes it more reliable than other sources.

When a driver is deciding whether or not to stop to purchase gas, they usually con-
template if the gas prices will be going up or down in the next couple of days. Gas
prices at the pump largely depend on wholesale prices and are subject to cyclical fluc-
tuations. While some people follow fluctuations of retail gasoline prices and may have
reasonable predictions on when prices will rise or fall, the majority of drivers do not
know the likelihood of gas prices going up or down. There are a number of popular web
sites that offer the general population an educated guess on the future direction of gas
prices; one example is The Gas Game [20].

To assist drivers in making more informed refueling decisions, many car navigation
system manufacturers offer gas price services delivered to the vehicle through mobile
phone data services or satellite radio broadcast. Examples include the TomTom 920T
[17], Dash express [3], and nüvi 780 by Garmin [9] (most get their prices from OPIS).
Vehicle manufacturers, like Ford Motor Company, are even taking this one step fur-
ther by offering their factory installed navigation system with SIRIUS Travel Link [7].
In addition, some researchers have explored notifying drivers of the cheapest place to
refuel when their current gas level drops below a certain threshold (see [13] and [15]).

In comparison to the privately owned vehicle sector, the commercial trucking in-
dustry has considered complex decisions about when and where truck drivers should
stop for gas as a part of their route planning process for quite some time due to the tight
correlation between profits and fuel cost. They have developed optimization models to
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assist with refueling decisions as each truck’s driving route is known and network in-
frastructures are in place to communicate with truck drivers on the road: an example is
Expert Fuel developed by Integrated Decision Support [14].

Our approach differs from the above in the several ways. First, we use forecasted
gas prices, so that we can consider future days on the route, making the best decision
over multiple days. While forecasting has been used for other consumer oriented help
applications, such as predicting when online customers should purchase airline tickets
[6], it is a new approach for providing refueling strategies. Another way that our ap-
proach is different is that our routes do not have to be predetermined, as we can get
routes directly from the vehicle GPS. In addition, we get other data directly from the
vehicle internal network, such as current fuel level and fuel consumption. Also, we can
recalculate on the fly a new strategy if the driver deviates from the original plan. Fi-
nally, our system acts as a proactive fuel gauge that notifies the driver before they are
approaching the gas station where they should stop (current low on fuel gauge warnings
provide data only relative to the internal fuel tank).

3 System Overview

Our system combines web and in-vehicle components to assist the driver in minimizing
their fuel purchase costs, as seen in Figure 1. To use the system, a driver must first reg-
ister on a web portal and enter their fuel purchase preferences, such as how many times
per week they are willing to stop for gas and which brands they prefer. The web site
also assists the driver in mapping out their frequently traveled routes. The driver then
creates an approximate travel plan for the next week, which the system uses to identify
potential refueling stations. Future versions of our system will predict the driver’s future
driving routes without any input from the driver

Web server

Fig. 1. System consisting of web to vehicle con-
nection.
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Fig. 2. This figure illustrates the data
flow used in the refueling strategy op-
timization algorithm.

To get the most out of our system, the driver’s vehicle should include a navigation
system and a means of connecting the vehicle to the internet, such as a telematics plat-
form (e.g., OnStar [18], BMW Assist [1]) or a cell phone with data service (e.g. GPRS
or EVDO). The vehicle maintains a connection to the web server and periodically up-
loads the vehicle’s current fuel level and GPS location. An optimization algorithm (see
Section 5.1) on the web server uses the fuel level to calculate when and where the driver
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should refuel and how many gallons to purchase. If the algorithm determines that the
driver should stop, it sends this information to the vehicle’s navigation system and alerts
the driver.

Figure 2 shows the main data sources our system uses to calculate a refueling plan.
Future fuel prices for individual fueling stations are predicted using a forecasting al-
gorithm (see Section 4) that takes into account historical prices as well as wholesale
prices. Historical and current prices are obtained from a database maintained by OPIS.
User preferences and vehicle routes are obtained from the web portal, and the current
fuel level is directly obtained from the vehicle.

4 Forecasting Model

As previously mentioned, if the consumer had more information on gasoline prices at
each gas station along the specified route and predicted prices for the next few days,
determining a refueling plan that would minimize the total fuel cost over the trip would
be achievable. One important aspect in determining the consumer’s refueling strategy
is an econometrical model that reasonably predicts daily gasoline retail prices at each
station on the route. Many studies show that the retail gasoline price is highly correlated
with wholesale gasoline price, according to the production and distribution system of
gasoline in the U.S [2]; this provides the foundation for our approach.

We present a simple forecasting approach that predicts future retail gas prices at
individual stations when the following limited data is available: wholesale regional gas
prices, one-month future market wholesale prices, current station retail gas prices, and
historical retail station gas prices. To determine which wholesale price to use as the
explanatory variable in our forecasting model, we considered several wholesale prices
to see which provided the best correlation to retail gas prices. There are four regional
wholesale prices in the U.S.: mid-continent, Los Angeles, New York, and Gulf coast
markets. These four regions and the one-month future market wholesale prices have
the following correlation with retail prices at gasoline stations in Michigan: 0.89, -0.71,
-0.89, 0.92, and -0.91, respectively. In addition, we tested the correlations between the
average of two or more wholesale prices and the retail gasoline prices: all values were
less than 0.92. As a result, we chose the Gulf coast wholesale price as our explanatory
variables in the model, which yielded the best correlation to retail gas prices.

The Energy Information Administration (EIA) reported in 1999 [5] that the down-
stream gasoline price responses caused by upstream price changes can be represented
by the following equation:

Dt = β0 +
∑

i

(βiUt−i) + ε. (1)

Here Dt is the price offered to each gas station by the supplier at time t; it is a moving
average of the wholesale prices Ut−i at time t for the previous days i such that i =
1, . . . , 6. The error term is ε, which also represents the downstream markup.

The markup of each gasoline station πt at time t is the retail gasoline price pt at
time t at each gasoline station minus the price Dt paid to its suppliers; that is,

πt = pt −Dt. (2)
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In this study, we do not use the coefficients β provided by the EIA report, but esti-
mate coefficients β by applying an Ordinary Least Square (OLS) linear regression [12]:
the retail gasoline price at time t is the dependent variable, and explanatory variables are
the wholesale prices Ut−i for i = 1, . . . , 6, and the monthly dummy prices, Mk, where
k = 1, . . . , 12 represents January through December, respectively, for any day t. The
results of this OLS linear regression are in Table 1. Applying the regression coefficients,
β and θ, we can obtain the estimated suppliers’ prices Dt:

Dt = β0 +
∑

i

(βiUt−i) +
∑

k

(θkMk). (3)

Table 1. Relationship between retail gas and mid-continent wholesale prices: R2 = 0.97, ***Sta-
tistically significant at 99% confidence level, *Statistically significant at 90% confidence level.

Variable Coefficient (β) Standard Error
Ut−1 0.002 *** 0.001
Ut−2 0.001 0.001
Ut−3 0.001 0.001
Ut−4 0.001 0.001
Ut−5 4.531 e-04 0.001
Ut−6 0.003*** 0.001
M2 -0.180 *** 0.014
M3 -0.090*** 0.020
M4 -0.039* 0.031
M5 0.020 0.038
M6 0.089*** 0.033
M7 0.088*** 0.032
M8 0.102 *** 0.025
M9 -0.012 0.030
M10 -0.012 0.030
M11 0.001 0.041
M12 0.009* 0.006
constant 0.950*** 0.059

So, the estimated markup of each gasoline station at time t is πt = pt −Dt. How-
ever, we randomly chose some gasoline stations to study their markup and found some
interesting markup patterns. For each day of the week, even if the markup πt is dif-
ferent for every t, it is always higher at the end of a week and lower at the beginning
of a week. Since it is not feasible to test each gasoline station’s markup, we make the
assumption from our comprehensive testing that gasoline prices at each gasoline station
have a weekly pattern; without loss of generalization, we calculate the average markup
for each weekday, providing us with seven average markups for each gasoline station.
We call this average markup for each weekday π̃n for n = 1, . . . , 7; i.e. for each day
of the week n, we calculate the average markup for n using historical data for n. For
example, to calculate π̃n for n = 1 (Monday), we take the average markup over all
Mondays (πt such that t is a Monday) in our historical data. Hence, we can predict the
gas price for any station one day in advance by

pt+1 = Dt+1 + π̃n, (4)
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where n = 1, . . . , 7 represents Monday through Sunday, respectively, for any day t.
When retail gas price for time t is not available for a specific station, we can also use
equation (4) to estimate the missing price.

To forecast the gasoline prices at one specific gasoline station more than one day
in advance, we can do so using pt+i = Dt+1 + ˜πn+i, for i = 1 to m, where m is the
number of days ahead for which the forecast is desired. Because we do not know the
wholesale or suppliers’ prices on days t+ i, when i > 1, the accuracy of the forecasting
results will decrease as i increases.

The graphs below show the prediction results from the simple price forecasting
model described above for gas purchases using 2007 daily data. Figure 3 and 4 dis-
play average daily retail gasoline prices (averages include prices for 931 stations) and
predicted gasoline prices in Michigan. Figure 3 shows the average daily retail gasoline
prices compared to the predicted gasoline prices based on the one-day ahead predic-
tion for Michigan over 2007. Figure 4 includes five predicted prices which are one-day
ahead, two-day ahead, three-day ahead, four-day ahead and five-day ahead, respectively,
for the month of November 2007. For example, when using the three-day ahead predic-
tions, we would use November 1, 2007 data to predict the price of gas on November 4,
2007. The mean of absolute residual values (i.e., the absolute difference between real
price and predicted price) for the one to five day ahead predictions are approximately
3.2 cents, 2.8 cents, 2.9 cents, 3.1 cents, and 3.3 cents; the standard deviation of the
absolute residual values is 2.3 cents, 2 cents, 2.1 cents, 2.2 cents and 2.4 cents, respec-
tively. Figure 5 show the predicted daily gasoline prices at one stations in Michigan as
an example to demonstrate the accuracy of predicted prices for an individual gas station.

Fig. 3. Average retail price compared to average predicted retail price for 931 gasoline stations.

Some papers discuss factors that impact daily or weekly gasoline price fluctuation
[4], but few researchers have studied forecasting models for daily gasoline prices. Com-
pared to those models, our approach for price prediction provides a simple way when
limited data is available to estimate daily gasoline price at each gasoline station with
forecasting results that are within a reasonable range to the retail prices. In future re-
search, we plan to develop a more advanced forecasting model that will require more
data, but will be able to include effects of other factors on retail gasoline prices, such
as a gasoline station’s brand, distance to competitors, station characteristics, regional
income level, etc. Moreover, we will use an autoregressive integrated moving average
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(ARIMA) model [12] to better understand the lag terms t−i (the number of days before
t that are considered) and their coefficients.

Fig. 4. Average retail price and 5 average predicted prices of 931 stations in November, 2007.

Fig. 5. Real retail price and predicted retail price at gasoline station 89765 in 2007

5 Solution Techniques

Once we have the forecasted gas prices, we are ready to use these as cost inputs to
the objective function in our optimization model. There are a number of different ap-
proaches for solving the optimal refueling strategy problem from heuristical approaches
to discrete optimization methods. In this paper, we first describe how to model the re-
fueling strategy optimization problem as a Mixed Integer Program (MIP) [21]. Next,
we briefly explore two simple heuristics: the first has the driver stop at the cheapest gas
station in the area whenever the driver runs out of gas, and the second recommends a
refueling stop within a certain tank capacity range.

5.1 Mixed Integer Program

We first describe the MIP optimization technique, introducing the input information,
discussing the variables, the objective function, and ending with a detailed description
of the constraints and overall model formulation.
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Input Information. In this section, we describe the parameters that are inputs to the
MIP model. We divide these inputs into the following categories: inputs obtained from
vehicle internal network, inputs implicit from route specifications, inputs defined by
user to specify preferences, and inputs from the forecasting model. We define a route to
be a multi-day trip plan of around one week. After a week, the accuracy of the forecasted
gas prices diminishes. However, the week can be a rolling horizon, where the model is
solved every day for a new week time period.

We get the following information from the vehicle internal network:

Max = maximum number of gallons the gas tank holds
MPG = miles per gallon (note that this could be different depending on the route)
G0 = initial amount of gas in the vehicle at the beginning of the route

As discussed in Section 3, driver routes are continually being collected on the vehicle
internal network to populate the user’s most frequently driven routes or can be set up
on the web portal by the driver for routes not previously driven.

Knowing these routes, we can determine the following inputs:
n = number of gas stations in route
S = set of gas stations in route = {1, 2, . . . , n}
m = number of driving days or time periods in the route
D = set of days = {1, 2, . . . ,m}
di = the distance from the starting point of the route to gas station i
ξi = the distance from each station i back to the original route
NPIt = the new period index ∀ t ∈ D. The gas stations are sorted in the order in

which the driver will encounter them along the route. NPIt identifies the
first gas station encountered on day t. For example, NPI1 = 1 is the index
for the first gas station in the first time period. If on the second day (t = 2)
the first gas station to visit is station 256, then NPI2 = 256.

In addition to the routes, the user specifies the following preferences through the
web portal:

Min = minimum number of gallons of gas the driver wants to have in the fuel tank
at any given time

MST = maximum number of stops over the entire route (note that this
should take into consideration the number of miles driven so that the
problem does not become infeasible)

MSD = maximum number of stops in one day of the trip (note that this
should take into consideration the number of miles driven so that the
problem does not become infeasible)

The last input involves the cost of gas at each station. If the gas station occurs along
the route on the current day, then the cost of gas is the current gas price. If the gas
station occurs along the route on a future day or the current day’s price is not available,
then it comes from the forecasting model.

ci = cost of gas at station i.
We keep track of the first station in each time period, so we get the corresponding
forecasted gas prices pt+i−1 for days i = 2, . . . , m for each station.
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Variables. This model contains both binary and continuous variables. The binary vari-
ables help make choices of when to stop, whereas the continuous variables determine
how much gas to get at a station.

– The first variable, xi, is a binary variable that determines whether or not the driver
should stop at gas station i. In other words,

xi =
{

1 if stop at gas station i
0 otherwise ∀i ∈ S.

Recall that the time period is embedded in this variable as we keep track of it by
the value NPIt.

– The second variable, yi, is the amount (in gallons) of gas purchased from station i
for every i ∈ S.

Objective Function. The objective is to minimize the total amount spent on gas when
traveling on a specific route over a certain number of days. The user preferences of how
many times they are willing to stop also comes into play by adding a weighted penalty
to the number of stops. If the user does not set a preference for the number of stops, then
we let α = 0; that is, we don’t impose a penalty. The objective function is as follows

min
∑

i

(ciyi + αxi) (5)

Constraints. In this section, we will discuss the constraints that are involved in guar-
anteeing that the driver does not run out of gas, that the driver does not get more gas
than the fuel tank can hold, and if the driver stops at a station than the driver must get
gas.

The first constraint specifies that the vehicle must never run out of gas. So, when the
vehicle gets to station i, the amount of gas that the vehicle had at station i− 1 needs to
be enough to get to station i and still have the minimum gallons required. Note that we
add the distance ξj to account for the distance that the driver takes if they stop at some
station j < i to get back to their route.

Min ≤ G0 − di

MPG
+

∑

j<i

yj −
∑

j<i

ξj

MPG
xj ∀ i ∈ S. (6)

The second constraint guarantees that the vehicle will never have more gas than the
amount held by the fuel tank. So, for every station visited,

G0 − di

MPG
+

∑

j≤i

yj −
∑

j<i

ξj

MPG
xj ≤Max ∀ i ∈ S. (7)

We also constrain the number of stops per route; this accounts for how much gas the
vehicle’s tank can hold so that the problem does not become infeasible.

∑

i∈S

xi ≤ MST (8)
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Or, if we only want a maximum number of stops per day, we address it by the
following two constraints. The first constraint is for all time periods except for the last
one, and the second constraint covers the last time period:

∑

i∈S:i≥NPIt−1&i<NPIt

xi ≤ MSD ∀ t ∈ D \ 1,
∑

i∈S:i≥NPIm&i≤n

xi ≤ MSD. (9)

The last two constraints are linking constraints that guarantee if the driver does not
stop at station i to get gas then no gallons should be purchased; that is,

yi ≤ (Max−Min)xi ∀ i ∈ S and xi ≤ yi ∀ i ∈ S. (10)

Bounds. The variable xi is a binary variable. The variable yi is a real number that must
be greater than or equal to zero, but less than or equal to the size of the fuel tank minus
the preference of how much fuel should always be left in the tank. Note that the upper
bound on the yi variable is implied by the first linking constraint in (10). The bounds
are as follows: xi ∈ B ∀ i ∈ S and 0 ≤ yi ≤Max−Min such that yi ∈ < ∀ i ∈ S.

Problem Formulation.

min
xi, yi ∀i ∈ S

∑

i

(ciyi + αxi)

s.t.
Min ≤ G0 − di

MPG +
∑

j<i yj −
∑

j<i
ξj

MPGxj ∀ i ∈ S
G0 − di

MPG +
∑

j≤i yj −
∑

j<i
ξj

MPGxj ≤Max ∀ i ∈ S∑
i∈S xi ≤ MST∑

i∈S:i≥NPIt−1&i<NPIt
xi ≤ MSD ∀ t ∈ D \ 1

∑
i∈S:i≥NPIm&i≤n xi ≤ MSD

yi ≤ (Max−Min)xi ∀ i ∈ S and xi ≤ yi ∀ i ∈ S
xi ∈ B ∀ i ∈ S and 0 ≤ yi ≤Max−Min

5.2 Heuristics

Two different heuristic approaches are considered as possible solution techniques. The
first approach has the driver stop for gas whenever the fuel gage hits a minimum allow-
able fuel level. For example, if this minimum level is 2 gallons then the driver will stop
at the gas station right before the fuel level drops to 2 gallons. When stoping for gas
the driver always refuels to the maximum tank capacity. This method may not give the
lowest total fuel cost over a trip, however it will result in the minimum number of stops
possible to complete the trip. The second method is a Greedy heuristic where the driver
continues along their given route until the fuel gage registers a predetermined amount.
As an example, let this predetermined amount be half a tank of gas. At this point, the
heuristic checks all of the given gas stations between half a tank and the minimum al-
lowable fuel level. The station with the lowest gas price in this range is selected as the
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refueling point, and when the driver stops, they fill their tank to the maximum capac-
ity. The driver then continues along the route until the fuel level reaches half a tank,
at which point the process repeats itself. This method should show some improvement
in fuel costs compared with the previous heuristic and will eliminate the possibility of
purchasing small amounts of gas at any given stop.

6 Example Scenario

A sample scenario was created to demonstrate the various solution techniques and to
compare resulting MIP solutions when user preferences are considered. In this scenario,
a five day trip has been planned in which there are 1532 possible gas stations to stop at
along the route. For each gas station, the forecasted price of gas and the distance from
the starting point is known. The driver’s vehicle averages 22 miles per gallon, holds a
maximum 15 gallons of gas, and is starting the trip with 5 gallons of fuel. The driver
preferences are not to let the fuel level drop below 2 gallons and no stopping for gas
more than twice in one day or more than six times over the entire trip.

Table 2. Scenario Results for Optimization Methods.

Optimization Optimization with Penalty
Day ID Distance Price ($) Buy Day ID Distance Price ($) Buy
1 28 15.571 2.799 10.708 1 41 26.685 2.799 11.213
1 171 115.498 2.799 4.542 2 367 284.007 2.837 10.544
3 484 373.707 2.821 6.507 4 853 544.649 2.719 8.098
4 853 544.649 2.719 8.098 5 1240 722.803 2.698 7.539
5 1240 722.803 2.698 7.539 N/A

Total Trip Fuel Cost: $ 103.398 Total Trip Fuel Cost: $ 103.655

Table 2 displays the following results for the scenario: a listing of on which days
to stop, at which gas stations to stop, the price of gas at each station, and how much
gas should be purchased at each station. The first column (Optimization) provides the
solution when the objective function is to minimize to cost of fuel over the trip and α
is set to zero such that there is no penalty for the number of stops. The second col-
umn (Optimization with Penalty) provides the results for the optimization model that
includes a penalty in the objective function each time the driver has to stop for gas;
this enforces user preferences on how many times a day and per trip they are willing
to stop (see equation 5). Here we set α = 1, but the value of α could vary depending
on the number of gas stations considered in the route. If we compare the results for the
optimization models with different objective functions, we see the difference caused by
the penalty in the objective function: it eliminates an additional stop on the first day for
a slight increase in overall cost of around $.25.

Table 3 shows the results for both heuristic methods when applied to this scenario.
The first column gives the solution when the driver stops for gas right before their fuel
gage registers the minimum gas allowed (2 gallons in this scenario). The second column
gives the results of the greedy heuristic, which looks for the lowest priced gas between
when the fuel gage registers half a tank and 2 gallons.

70



Table 4 compares the results of the four approaches. The heuristic, which has the
driver stop at the closest gas station when they reach 2 gallons of gas in their tank, results
in the fewest stops and eliminates only partially filling up the gas tank when stoping.
However, this technique does result in the highest total fuel cost which is 6.44% higher
than the original optimization technique.

Table 3. Scenario Results for Heuristic Methods.

Stop At 2 Gallons Greedy Heuristic
Day ID Distance Price ($) Buy Day ID Distance Price ($) Buy
1 101 65.892 2.999 12.995 1 41 26.685 2.799 11.213
2 432 350.930 2.946 12.956 2 381 290.172 2.837 11.977
4 1061 636.879 2.877 11.442 4 924 563.492 2.719 12.424

N/A 5 1446 829.094 2.698 1.78
Total Trip Fuel Cost: $ 110.06 Total Trip Fuel Cost: $ 103.945

Table 4. Technique Comparison.

Optimization Optimization with Penalty Stop at 2 Gallons Greedy
# Stops 5 4 3 4
Stops Fill < 10 Gallons 4 2 0 1
Total Cost ($) 103.398 103.655 110.06 103.945
% Over Lowest Cost N/A 0.25% 6.44% 0.53%

7 Conclusions

With fuel prices on the rise in the United States, drivers are increasingly concerned with
their refueling strategy. This paper presented a model to assist drivers with decisions
regarding where and when to refuel along with how much fuel to purchase. The model
takes into account various factors, such as user preferences (e.g. how often the driver
is willing to stop for gas) and vehicle specific information (e.g. the current fuel level).
Gas stations along a specified route can be identified and gas prices corresponding to
future days of the route can be determined using the forecasting method discussed in
Section 4. Once this information has been aggregated, it is used by the Mixed Integer
Programming model presented in Section 5.1 to provide the driver with an optimal
refueling strategy. As shown in section 5.2 heuristical approaches can also be used to
determine a refueling strategy.

Future versions of this model can be extended to include additional driver prefer-
ences or economic factors. For example, by considering flex-fuel vehicles, the refueling
decision becomes even more complex as the analysis would include tradeoffs between
the price per gallon of fuel, average miles per gallon associated with a particular route
and vehicle, and possibly the CO2 effects for multiple fuel types. In addition, we could
move towards a more advanced forecasting model and provide a refueling strategy that
would take into consideration multiple routes for a single origin destination pair.

The proposed model offers substantial benefits over existing approaches. First, it
provides an optimal refueling strategy using forecasted fuel prices over multiple time
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periods and locations as opposed to a local strategy based on a small geographical
region and the current fuel prices in that area. In addition, the vehicle internal network
can be used to monitor the current fuel level and consumption to offer proactive advice
instead of waiting for the driver to request help from the system. Finally, over time the
system can learn a driver’s regular routes and associated fuel consumption to provide
more accurate recommendations in the proposed refueling strategy.
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Abstract. In this paper a predictive controller for real-time target tracking in 
mobile robotics is proposed based on adaptive/evolving Takagi-Sugeno fuzzy 
systems, eTS. The predictive controller consists of two modules; i) a 
conventional fuzzy controller for robot motion control, and ii) a modelling tool 
for estimation of the target movements. The prediction of target movements 
enables the controller to be aware and to respond to the target movement in 
advance. Successful prediction will minimise the response delay of the 
conventional controller and improve the control quality. The model learning 
using eTS is fully automatic and performed ‘on fly’, ‘from scratch’. Data are 
processed in ‘one-pass’ manner, therefore it requires very limited computational 
resource and is suitable for on-board implementation on the mobile robots. 
Predictions are made in real-time. The same technique also has the potential to 
be used in the process control. Two reference controllers, a controller based on 
the Mamdani-Type fuzzy rule-base, and a controller based on the simple linear 
model, are also implemented in order to verify the proposed predictive 
controller. Experiments are carried out with a real mobile robot Pioneer 3DX. 
The performance of the three controllers is analyzed and compared. 

1 Introduction 

The main objective of the object tracking is controlling the robot to maintain a 
constant distance and heading to the mobile object being tracked [1]. A simple first 
priciple controller can be used for this purpose based on the linearisation of the 
problem [2]. Alternatively, in a pursuit of more accurate tracking, a fuzzy controller 
can be applied. A fine tuned fuzzy controller [3] can achieve higher accruacy 
comparing to the simple linear controllers. However, one problem that the 
conventional controllers are facing is that the controller generates the manipulated 
value (control command) according to the observation of system status at the current 
and the past time instants while the purpose of the control is to minimise the observed 
error in the forthcoming (future) time instant. Taking into account the dynamic nature 
of the target system, this delay, in response may lead to larger errors. For this reason, 
a predictive controller which is able to predict the behavour of the target system is 
recommended in such cases [4]. Instead of a response to the directly observed 
measurements, the so called model-based predictive controller (MBPC) makes the 
control decision based on the predicted values. Therefore, a predictive model is an 
indispensable part of any MBPC scheme [4]. In [5] a Takagi-Sugeno (TS) fuzzy 



model has been used as a model predictor. This model, however, was pre-trained off-
line and was with a fixed strtucture. The eTS concept introduced recently [6]-[8] 
allows the TS fuzzy model to be designed on-line, ‘on fly’ during the process of 
control and operation. This is especially suiatble and convenient for applications such 
as robotics where the autonomous mobile robots may be required to operate in a 
completely unknown, dynamic, or harsh environment [9]. 
 
The main problems in controllers design [10] are; i) their stability; ii) their tuning. 
The former problem is not treated in this paper. The latter one is usually approached 
in off-line mode and also from the point of view of adpative control theory [2] which 
is well developed for the linear case [11]. In a dynamcially changing environment 
eTS fuzzy systems have their advantage of flexibility and open structure. Moreover, 
they have been used in conjunction with so called indirect learning proposed by 
Psaltis in 1998 [12] described in [6] and [12]. While Psaltis and Anderson et al. [14] 
used off-line pre-trained and with fixed structure neural networks for their indirect 
learning scheme in [6] and [13] evolving FLC is used that learns ‘on fly’, ‘from 
scratch’ based on the operational data alone and no pre-training. 
 
In this tracking problem, the desired velocity of the two side wheels of the robot is 
controled. The distance, d and the angle to the moving target, θ are measured at each 
sampling time, Figure 1. The objective of the control is to maintain a predefined 
distance to the target so that the target is closely followed without a collison 
(reference distance, dref). A heading angle of 0o to the target is also required.  

 

Fig. 1. Target tracking by a mobile robot. 

The structure design of the conventional controller used as a basis benchmark for this 
test of target tracking by the mobile robot is illustrated in Figure 2. The current state 
described by the distance to the target, velocity of both wheels of the mobile robot 
(left and right) measured by the sensors mounted on the mobile robot Pioneer 3DX is 
fed back to the controller. The controller has a fixed structure and parameters that are 
determined based on common knowledge of the problem.  
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Fig. 2. Controller schematic. 

1.1 First Principles-based Controller  

The first principles-based controller used for this task is based on the explicit linear 
description of the problem. In order to follow the moving target, the acceleration of 
the robot is assumed to be proportional to the distance to the target, d. Due to the 
inertia of the real systems it takes a short period of time after a velocity command is 
received by the motor the desired velocity to be reached. Therefore, the velocities of 
both wheels (left and right) are selected as control values.  The turning of the robot is 
achieved by control of the velocity difference between the left and right wheels. 
When the velocity of the left wheel is higher than the velocity of right wheel, the 
robot makes a right turn and vice versa.  Based on these principles, the wheel velocity 
control model is described by the following equations: 

rfright

lfleft

VVV

VVV

+=

+=

     (1) 

It consists of two components; Vf, the component for maintaining dref and the pair of 
velocities, Vl, and Vr which determine the heading of the mobile robot. The two 
components are defined by equations (2)-(3) below, also illustrated in Figure 3. 
Figure 3a) and 3b) illustrate the linear components which describes the control 
response in proportion to the distance and heading difference to the target 
respectively. When the distance to the target is Far the velocity component, Vf  is set 
to High, which leads to a larger acceleration of the robot. While the distance is below 
dref (set in our experiments to 400mm), the velocity component, Vf  is set to Negative.  

  
Fig. 3a. Distance component.    Fig. 3b. Angle component. 
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Where θ , θ are threshold values; k1 and k2 are coefficients. 

1.2 Fuzzy Controller 

In an attempt to achieve a more flexible and accurate tracking, a Mamdani type fuzzy 
logic controller (FLC) has also been implemented [10]. It consists of five fuzzy rules:   
 

The fuzzy rule base of the Mamdani type FLC: 
 

Rule 1:  
IF (d is Crash) AND (θ is Negative)  

THEN (Vl is Quick Back) AND (Vr is Quick Back) 
Rule 2:  

IF (d is Close) AND (θ is Straight)  
THEN (Vl is Slow Back) AND (Vr is Slow Back) 

Rule 3:  
IF (d is proper) AND (θ is Small Positive)  

THEN (Vl is Hold) and (Vr is Hold) 
Rule 4:  

IF (d is Not Far) AND (θ is Small Negative)  
THEN (Vl is Slow Forward) AND (Vr is Hold) 

Rule 5:  
IF (d is Far) AND (θ is Positive)  

THEN (Vl is Slow Forward) AND (Vr is Quick Forward) 
 

Each rule describes a typical situation during the tracking task. Real-time readings are 
obtained to form an input vector. The closeness from the measured input vector to the 
prototypes (focal points) of each fuzzy rule is calculated based on triangular 
membership functions illustrated in Figure 4. The result is aggregated to form the 
degree of firing for each rule and normalised and aggregated further to form the 
overall output of the FLC [10]. The antecedent part of the fuzzy rules is defined by 
linguistically interpretable terms that describe the distance (Figure 4) and angle; the 
consequent fuzzy sets are defined in respect to the velocity. 
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Fig. 4. Fuzzy Sets for Distance. 

The fuzzy controller is tuned by an off-line optimization testing a group of randomly 
chosen fuzzy sets settings. 

1.3 Predictive Controller 

 
Fig. 5. System Structure of the predictive controller. 

In the design of the MBPC, a prediction module is added to the FLC described above.  
The prediction module is based on eTS [6-8] and aims to predict the distance and 
angle to the moving target one time instant ahead based on the information of current 
distance, angle, and velocity of both wheels. These predicted values are then fed to 
the FLC instead of the readings of the distance and angle at current step. The MBPC 
then determines the control values in the same way, but based on the predicted values. 
This leads to minimisation of the tracking error caused by the delay in the response in 
velocity due the time required by acceleration. The evolving Takagi-Sugeno predictor 
is described in more details elsewhere [6-8] and is sketched in the following diagram. 
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Fig. 6. Flow chart of the evolving Takagi-Sugeno (eTS) Predictor Algorithm. 

2 Experimental Study 

2.1 The Robots 

The experiment is carried out with a Pioneer3 DX mobile robot [15] equipped with an 
onboard PC and a laser ranging device. The laser scans a fan area of 180 degrees and 
returns the distance and headings to the closest obstacle in this fan area. The 
detectable range of the laser is [150mm, 10,000mm]. In the experiment, another 
mobile robot played the role of the moving object to be tracked, following 
automatically a predefined routine (see Figures 7 and 8). There is no external links 
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such as GPS and the wireless data connection is used only to download data. Thus, 
the task is performed fully unsupervised by the mobile robot.  
 

 
Fig. 7. The robots and the experiment. 

 
Fig. 8. Route of the target object. 

2.2 Experimental Settings 

Four variables were measured in real-time:  
1 distance to the object; 
2 angle to the object; 
3 the real velocity of the left wheel 
4 the real velocity of the right wheel of the robot being controlled. 

The sampling frequency is about 10Hz (100ms per sample). The control values are 
generated at each sampling interval. 

Table 1. An example of the data collected in real-time with the control outputs. 

Time d, mm θ,o Real Left, 
mm/s 

Real Right, 
mm/s 

Ctrl Left, 
mm/s 

Ctrl Right, 
mm/s 

0 205.295 -5.04 -110 -118 -763.923 -799.234 
200 201.297 -5.53 -42 -10 -773.8 -812.551 
400 207.336 -16.9 -43 -88 -716.216 -835.137 
600 216.334 0.068 -93 -133 -750.034 -749.551 
801 207.263 10.47 -107 -167 -739.24 -812.532 

1001 246.715 3.49 -282 -274 -676.127 -651.682 
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The experiment was carried out outside Infolab21, Lancaster University, UK. For 
each of the tested controllers a group of ten tests were carried out along the same test 
route as shown in Figure 8. During the test the target object performed a series of 
behaviours including acceleration, deceleration, turning, reversing, etc.  The mobile 
robot that is performing the tracking task has the controllers uploaded on its on-board 
PC written in C language. The tracking task is performed fully automatically. Only 
the laser ranging device was used to measure both the angle and the distance. The 
velocity is measured by the tachometer (odometer) of the robot [15].An example of 
the measured distance and angle difference to the target is illustrated in figure 9a) and 
9b). Several pre-tests were also carried out to find the suitable parameters for the 
FLC. The distance and the angle to the target were measured in real-time. The 
discrepancy between the real observation and the target values of distance and angle 
has been used to calculate the errors. The mean absolute error (MAE), the standard 
deviation (STD) and the root mean square (RMSE) are used as the criteria for the 
comparison of the three controllers.  
 

  
   Fig. 9a) Distance measured in real-time.        Fig. 9b) Angle measured in real-time. 

  
Fig. 10. Control values versus real observations for velocity of the wheels. 
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3 Results Analysis and Conclusions 

The results are tabulated in table 2. They show that the prediction module in the 
predictive controller has assisted the fuzzy controller to achieve better control 
precision in terms of the distance and to some extent in terms of the tracking angle 
minimising the delay in control response. Note that as shown in table 1 and Figure 10, 
there is some overshot (the control values generated by the fuzzy controller and the 
predictive controller are larger than the desired velocity of the wheels). This is 
because it has already taken into account the response delay in time required for the 
acceleration/deceleration.  

Table 2. Result Comparison. 

d, mm θo  
RMSE MAE STD RMSE MAE STD 

First Principles Controller 83.3 129.2 110.1 4.8 9.35 8.14 
FLC 70.2 120.3 113.7 4.9 7.43 7.34 
MBPC 65.2 112.5 119.9 4.8 7.53 7.09 

 
In table 2, on can see that the angle tracking by the FLC is worse than that of the First 
principles-based controller. To improve on this aspect, more rules describing the 
response to different observation in angles can be added to the fuzzy controller to 
achieve higher control accuracy. Off-line techniques such as ANFIS [16] can be used 
in order to get the optimal parameters of the fuzzy controller for the task.  
 
In the future, real time image classification [9] and tracking techniques [17] can be 
integrated with the proposed predictive controller. In this way, image-based 
information can be used by the prediction module of the MBPC which is expected to 
further improve the precision. 
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Abstract. For traffic management systems, the knowledge of urban traffic con-
ditions is essential. The strategy of the Floating Car Observer (FCO) is to col-
lect traffic data via moving traffic sensors. The data of oncoming cars and 
trucks is detected using a travelling public transport vehicle. Different acquisi-
tion strategies are evaluated to establish a low cost application, capable of real 
time usage. Using the reflection of the infra-red emitter on number plates, traf-
fic data information about the speed and the average density of oncoming traf-
fic is acquired. The properties of the hardware prototype and the implementa-
tion of the software strategies are discussed and first research results are pre-
sented. 

1 Motivation 

Today knowledge of the inner-city traffic state is a prerequisite for a functioning traf-
fic management both in private and public transport. Data as speed and traffic density 
is more and more used for applications on IT systems in public traffic management. 
These services provide dynamic arrival time prognosis for passengers or sophisticated 
traffic management strategies for public and private transport. Therefore widespread 
acquisition methods for spatial and temporal traffic data are desired. The core prob-
lem offering such information services is the absolute knowledge of current and fu-
ture traffic conditions. Traffic processes can be described by several parameters, such 
as the time headway τ, the traffic flow q and the local speed vl. The spatially and 
temporarily complete automatic acquisition of these parameters is desirable, however 
due to economical and technical reasons it is often not achievable.  

1.1 Current Methods of Measuring Traffic Data 

Currently the acquisition methods for traffic management systems rely on local detec-
tors such as induction loops, infra-red and video detectors at fixed cross sections ([1] 
[2]) of a road (see  in Fig. 1). Unfortunately, these local measurements do not allow 
the clear determination of traffic states. A second method is the instantaneous obser-
vation (see  in Fig. 1), however except for observation flights (see  in Fig. 1) this 
method has only little practical relevance. 
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Fig. 1. Path time diagram of traffic course parameters. 

An alternative to measuring traffic parameters with stationary devices is the use of 
Floating Car Data (FCD). A vehicle is used as a mobile traffic sensor for permanently 
transferring its own traffic data such as speed and position. As shown in  in Fig. 1, 
kinematical parameters of single vehicles such as path x, velocity v and acceleration a 
can be measured and travel times along road sections can be determined directly. 
Thus FCD receives a small amount of information because the data only describes the 
vehicle’s own driving course and does not represent traffic conditions in a broad 
spectrum. If stuck in a traffic hold-up, the usage of a FCD vehicle can not offer in-
formation about the length of the hold-up and the estimated time lag for the travel 
time prognosis. FCD is dependent on the traffic situation which it is going to meas-
ure. 

1.2 Floating Car Observer 

A broader data acquisition method will be the automatic observation of oncoming 
traffic in order to obtain traffic data. The main idea is that public transport vehicles 
shall carry devices which can observe traffic conditions on the opposite oncoming 
lanes. Equipped with low-cost devices, vehicles will be used as Floating Car Observ-
ers (FCO) monitoring their road environment and traffic flows along the public trans-
port route network [3]. The advantage of the FCO approach is shown in Fig. 1. The 
ongoing course  shows that traffic density k(x) and speed v(x) can be measured 
directly. The FCO measures the traffic data without being part of the traffic situation. 
For example the starting points and the length of traffic hold-ups on the oncoming 
traffic lanes can be observed and used to improve arrival time prognosis of the public 
transport distributed by various services. 

By using this data, traffic diversions can be adapted for present traffic situations. 
In the future the traffic data acquired by the FCO module will be sent by GPRS to 

a traffic management control centre. Additionally the FCO’s geographical position, 
driving direction and speed will be used to generate a continuous overview of the 
network`s current traffic conditions. In thefollowing, the simulation set up to evaluate 
various potential FCO devices is presented. It will be tested if the device data can be 
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used for signal processing algorithms for speed and traffic density calculation. The 
most promising technical strategy will be used for a hardware and software prototype 
of a FCO.  
In this paper, methods of observing vehicle flows in order to gain information about 
traffic conditions will be outlined. In Section 2 the theoretical background of a system 
observing oncoming traffic using a Floating Car Observer (FCO) is describes. The 
simulation framework to evaluate different sensors to set up a hardware prototype is 
outlined. Furthermore it can be shown that the theory of observing oncoming traffic 
can be realised.  In Section 3, a description of the FCO’s hardware design is pre-
sented. The strategy of using an infra red (IR) emitter combined with a camera to 
capture specific traffic observing images will be described.  The currently developed 
image processing algorithms to detect traffic vehicles will be described along with the 
expected results. A conclusion and an outlook at the upcoming steps will conclude 
the article. 

2 FCO Design - Simulation and Evaluation  

In preparation for running a computer simulation of the FCO, a model of a public 
transport vehicle can be equipped with simulated FCO devices such as laser scanner, 
ultrasonic and video camera systems. These simulated and evaluated devices are al-
ready broadly used applications for supporting driver-assistance ([4][5]) and safety 
applications [6] for example in nighttime situations [7]. However so far they are 
hardly used for oncoming traffic detection and observation. By altering the configura-
tion of the FCO devices, the different detection rates of the sensors are measured 
while the vehicle travels through a virtual public transport network, built using a mi-
croscopic traffic model of a real existing traffic scenario. Based on empirical values, 
the simulation evaluates whether the resolution of the devices is appropriate to 
achieve a detection of the oncoming traffic. For example it was measured to which 
quantity and distance the FCO sensor types could capture the oncoming vehicles due 
to the frame rate, detection field and measure values.  

In order to equip vehicle fleets of public transport companies with FCO devices, 
also economical aspects of the systems have to be considered. In this evaluation the 
sensor types are simulated in a FCO simulation and evaluated as follows:  
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Table 1. Tested sensor types simulated and evaluated on usability for FCO development. 

FCO-
sensor 
type 

Function 

Field of 
detection 

and measure 
values (Hz) 

Range 
(m) 

Disadvantages 
for FCO usage 

Advantages 
for FCO usage 

Light 
scanner  

The sensor sends 
a directed laser 
light beam.  The 
reflection is used 
to calculate dis-
tance 

 

 
 

1, 4, 16, 64 

20 Discrimination 
of traffic vehi-
cles hardly 
achievable  
 
Only 1-D resolu-
tion 

Low acquisi-
tion costs 
 

Laser 
scanner 

The laser scanner 
contains a rotat-
ing unit, which 
sends pulsed laser 
beams 

 
 

19, 38, 75  

150 Discrimination 
of traffic vehi-
cles hardly 
achievable  
 

High acquisition 
costs 

Wide range of 
150m 
 
High spatial 
and temporal 
resolution 

Ultra-
sonic/ 
Radar  

The ultrasonic 
sensor sends 
sound/ electro-
magnetic waves 
where the detec-
tion field forms a 
club. The reflec-
tion is used to 
calculate dis-
tances 

 

 
10 

10 / 50 Discrimination 
of traffic vehi-
cles hardly 
achievable  
 
Calibration of 
measuring field 
required 

Low acquisi-
tion costs 
 
Much experi-
ence of this 
technology in 
traffic moni-
toring 

Active 
video 
camera 

The camera sys-
tem uses pulsed 
IR lights to rec-
ognise retro-
reflecting materi-
als, e.g. number 
plates.  

 

 
30 to 60 

NN 
(weather 
condi-
tions) 

Detection range 
depending on 
weather condi-
tions 

Low acquisi-
tion costs 
 
Discrimination 
of traffic vehi-
cles  achiev-
able  

 
The evaluation showed that the ultrasonic system has an insufficient usability due to 
the limited range and specific formed detection field. The laser and ultrasonic sensors 
may need a second sensor to enable a sufficient range and detection accuracy for traf-
fic data capturing. Due to high acquisition costs, the laser scanner can also not be 
used for broad traffic monitoring. The camera approach uses positions and sizes of 
detected objects for data reconstruction. Due to better discrimination of detected ob-
jects, a camera system is higher rated than a laser or an ultrasonic system. 

The camera based system has been rated to be the most promising system due to 
its technical properties, low cost and mounting capabilities. The main advantage of 
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the camera system is its potential for detecting particular objects, cars in this case. 
However image streams received by a camera system normally are not very signifi-
cant: but by using an active exposure system the images’ quality and therefore the 
initial position for object recognition can be improved. The usage of such camera 
systems for traffic monitoring has been proposed, for example for automatic number 
plate recognition systems [8]. A special system using a similar strategy was originally 
developed for the recognition and safety improvement of non-motorised, vulnerable 
road users such as pedestrians or cyclists [9][10]. Equipped with special coated retro-
reflectors they could be recognised in IR exposed image streams by object detecting 
algorithms. Normally cars and trucks are not equipped with such special coated retro-
reflectors of this quality, but they provide a slightly retro-reflecting number plate. 
These number plates have proportions from height to width which are in most coun-
tries unique among road signs and other reflecting objects in the road environment. It 
is essential to identify these reflecting number plates because their shapes will be 
used for traffic data calculation. By scanning the image streams of the camera, the 
size and movement of the detected number plates are used for vehicle monitoring and 
speed reconstruction using geometrical strategies such as intercept theorems.  

The following section describes the set up of a hardware and software prototype of 
a FCO device for visual traffic observation. The usage of embedded infra-red light for 
detecting number plates of cars in video streams will be dealt with. The set up and 
configuration of the specified camera system is also described. The current research 
strategy of the vehicle detecting image processing and speed reconstruction algorithm 
will be described and implementation methods will be outlined. First results based on 
images of the simulation are presented. 

3 Technical Design of the FCO Prototype 

The architecture of the FCO prototype is described in Fig. 2 and contains the follow-
ing modules: 

• CMOS-camera with optical filter for achieving the raw image stream 
• Infra-red-emitter for lighting the scenery 
• Micro controller 

 
Fig. 2. FCO camera module for recognizing number plates. 
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The low cost camera module is based on CMOS technology and includes a 12 bit 
ADC (analogue-to-digital converter). 30 monochrome 12 bit raw images with a reso-
lution of 648*488 pixels can be captured per second. The emitted IR light has a nar-
row-banded spectrum with a central wavelength of 950 nm. This compact spectrum 
of the IR emitter enables the usage of a special optical filter in order to improve the 
quality of the images received by the camera system. As pointed out in Fig. 3 the opti-
cal filter reduces the receivable spectrum of the camera to the wavelength from 900 
nm to 1000 nm. That reduces the distracting sun light in order to improve the signal-
to-noise ratio and therefore makes it easier to detect objects which reflected the IR 
light.. 

 
Fig. 3. Spectral sensibility of CMOS sensor with and without optical filter. 

The 32 bit ARM microcontroller synchronises the switching and the power control of 
the IR LED emitter. Provided by the digital camera via a serial I²C interface, the 
micro controller also runs the image processing and object recognition and tracking 
algorithms. An overview of the software design and the main modules is described in 
the following section. 

4 Image Processing and Object Recognition Strategies 

In this section the basic image processing algorithm will be outlined. The algorithm 
uses a 12 bit raw data image for input provided by the camera system. During the 
exposure, the aperture of the camera and the IR emitter are synchronised with each 
other in order to create video images with good detectable objects. The on and off 
switching of the infra-red emitter can be synchronised to the camera in two different 
ways, shown in Table 2. 
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Table 2. Two methods of IR embedded image processing. 

 Function Image Advantages Disadvantages 

Stripe 
Algorithm 

Every second line of a frame is ex-
posed by the infra-red emitter.  
Generates bright and dark striped 
pattern for reflecting objects. 

 
Small amount 

of data 

Lower resolution. 
Distortion of 
reflections 
 possible. 

Two 
Frame 
Algorithm 

Every second frame is exposed by 
the infra-red emitter. Generates 
bright patterns for reflecting objects  

 
Allows a 

more accurate 
calculation 

High amount  
of data 

Both algorithms are able to achieve specified video frames. The Stripe Algorithm 
allows a fast processing rate, but a lack of exposure can lead to an insufficient object 
recognition. The Two Frame Algorithm allows a more accurate calculation but needs 
double the amount of data of the first strategy. It has to be researched which strategy 
is the best for the following object recognition algorithm shown by the application 
flow in Fig. 4. The process flow starts with the exposure of traffic scenery to create 
raw data images to enable clearly visible highlighted areas based on IR reflection on 
vehicle number plates. These rectangular areas have to be detected by the algorithm 
in each frame. The next step is to track each of these rectangles from frame to frame. 
This is done using position and size of the rectangles as similarity measures. Traffic 
data of the detected cars can be computed using the number plates’ course through 
the images. It has been analysed for the image processing algorithm done by the mi-
cro controller, whether the usage of Java or the specified Open CV libraries for C++ 
can accomplish these tasks best. These steps are marked red in the application flow. 

 
Fig. 4. Vehicle detection and data reconstruction of FCO. 

The following pseudo code presents the steps of the rectangle detection in the raw 
data images, the number plate tracking and the measurement of the traffic data. For 
the following FCO algorithm in pseudo code, the following variables are to be men-
tioned: 
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• lrf, lrc – list of the rectangles found in the current frame, the rectangles’ course 
• h(NPfn), h(NPf1) – height of the rectangle in the first/ last captured frame 
• h(NPR) – real height of a number plate 
• fd – focal distance of the camera system used 
• hit - threshold condition fulfilled  

FCO algorithm describing the number plate detection, tracking and traffic data calculation. 

FCO ALGORITHM 
for (every recorded frame) do 
{ 
 while (the lower right corner of the frame is not reached) 
 { 
  browse image; 
  if (hit) 
  { 
   create rectangle with a dimension of 0; 
   while (new hit in the area of the rectangle) 
   { 
    rectangle increased until includes new hit             
  } 
  } 
  if (r NOT (ratio 52:11 OR 34:20)) 
  { 
   remove r; 
  } 
 } 
 store all remaining rectangles of frame as list lrf; 
 for (the last added rectangle (rlast in lrc)) do 
 { 
  for (every rectangle (r in lrf)) do 
  {  
   if ((dist(center of rlast and r)) < thresholddist) 
   { 
    add r to lrc; 
    remove r from lrf; 
   } 
  } 
 } 
 for (every rectangle remaining in lrf) do 
 { 
  create new list lrci with rectangle as first element; 
 } 
 for (every list lrci without a new rectangle added,  
       rectangle course is assumed as finished) do 
 {  
  s1 = h(NPf1) / h(NPR) * fd;  
  sn = h(NPfn) / h(NPR) * fd; 
  t = tn – t1 
  s = sn – s1 
  v = s/t;  
  print out v; 
  delete lrci; 
 } 
} 

In order to track the patterns in each image, previous knowledge about the movement 
of the number plates has to be used. Because of the high frame rate of up to 30 
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frames/sec, the position of a rectangle in one frame can be assumed similar in the next 
frame. While tracking the rectangles of the video frames, the change of size and posi-
tion of the rectangles from frame to frame is used to reconstruct the speed of the de-
tected vehicles using intercept theorems.  

Recent test results show that the algorithm works well for simulated streams and 
encouraging results for first captured images of the FCO hardware prototype could be 
achieved. 

Before the FCO module can be integrated into a public transport vehicle, broad 
field tests will be necessary. For this a test vehicle is equipped with the required 
measuring and computing technology. The equipped test vehicle will be used for 
broad test scenarios covering data acquisition in varying seasonal weather situations 
at selected places. 

5 Conclusions and Future Prospects 

This paper offers a new approach to acquire data of actual traffic situations using a 
Floating Car Observer (FCO). The FCO captures data of the traffic situation of on-
coming vehicles, such as positions and lengths of traffic hold-ups. The captured data 
will be used to enhance travel time prognosis for public traffic management systems. 
A simulation framework was used to evaluate different traffic observing devices (la-
ser, ultrasonic, camera) in order to to set up a traffic monitoring FCO prototype. The 
evaluation derives from detection rates, but also from real time capability of the com-
puting process and economical aspects of the devices. The system chosen to set up a 
FCO prototype comprises of video processing and infra-red emitting modules. The 
reflection of the infra-red beams on vehicles’ number plates shall be used to gain in-
formation about speed and average density of the oncoming traffic. The algorithm 
presented detects the highlighted patterns of reflection and tracks them. Using inter-
cept theorems, the courses of the number plate reflections are used to extract traffic 
data such as traffic density and speed. The algorithm is currently implemented and 
tested on various platforms. In future this traffic information will improve manage-
ment systems of the public transport to inform passengers about broad traffic situa-
tions and estimated arrival times. 

At present  the set up of the FCO prototype is used for image capturing of traffic 
scenarios. These real images have been used together with synthetic simulation im-
ages to develop the presented algorithm. In this respect currently different platforms 
and system frameworks are tested for the implementation of the algorithm. The soft-
ware has to be evaluated on different traffic road situations, seasonal and weather 
conditions. Analysis of the detection rates under different weather and seasonal con-
ditions will reveal their implementable capacities and limits. Additionally it will be 
examined as to which traffic condition the system can be best applied to and which 
kind of traffic data is the most significant for traffic management systems. Consoli-
dating the most effective data into global strategies will be the next step towards ad-
vanced public and private traffic management systems. 
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Abstract. Nowadays parts of a car have been designed form in which make us 
easy driving. One of the driving problems is parallel parking. This study gives a 
solution with an algorithm to the parallel parking problem. Simulation of the 
solution including all cases in the parallel parking has been made based on this 
algorithm. Implementation of the simulation has been made as a robot car. The 
approach has been integrated into an automated parking system, and 
implemented a modified car. It shows the potential to be integrated into 
automobiles. 

1 Introduction 

This work is related with a mobile robot car (MCR) solving parallel parking problem. 
Parallel parking is a method of parking a vehicle in parallel to the other car.  It is 
proposed to develop a parking helper system which is possible apply to the real car. 
Autonomous parking is necessary sensing environmental conditions, calculating the 
dynamic paths. In this work implementation of parallel parking algorithm on mobile 
robot car will be presented. The parallel parking involves many problems such as 
recognition of driving circumstances, maneveuring and vehicle control. In the litera-
ture there are some works related with this subject. Yasunobu and Murai have pur-
posed a controller based on hierarchical fuzzy control.[1] Jenkin and Yuhas have 
reported a simplified neural network controller.[2] These algorithms are based on the 
kinematics data to formulate intelligent controllers.Lo et.al have presented an auto-
mated parallel parking strategy for a vehicle like robot[3]  

In our system works in three step; scanning, calculating and parking. In scanning 
step the requiring parking area is scanned by infra red sensors. Then in second step 
the car is moved to a suitable parking area where the parking maneveurs can begin. 
The required maneveurs for the parking step are calculated dynamically. In the last 
step MCR follows the path to the suitable location. Parallel parking algorithm and 
implementation on the MCR is discussed in section 2. In the section 3.application of 
the algoritm is explained. The application consists of two steps. First,a visual com-
puter program running in PC environment is developed in order to simulate the ap-
proach above. In the second part, hardware implementation of the parallel parking 
algorithm on a MCR and modules that are used will be explained. 



2 Parallel Parking Algoritm 

A mechanical system consists of different compenents. In this case where the 
deformations of the body are significant compared to the motion of the body as a 
whole body is called a rigid body The idealization allows us to reduce the equations 
needed to describe a rigid body.[4] In this work the system has been assumed as a 
nonholonomic system.[5-7] In this method datas from the sensors and closed loops 
for dynamic circumstances are used. In this section  it is given an algorithm to solve 
parallel parking problemof MCR.There are three step in this method. 

a) Scanning Step 
In scanning step it is determined potential places using closed loop controls so that it 
does not hit around objects and borders. MCR is parallel y axis in initial case. Every 
action loop for parking is correspond to a displacement 1cm direction in +y axis. As 
the angle of the steering was zero degree, x axis and the angle of the position of the 
MCR do not change. The action of the MCR is forward. It seeks a convenient parking 
place acting in low velocity. Sensors mounted to the left and right side of MCR give 
necessary knowledge for seeking. The sensor in font of the MCR also gives some 
knowledge about a possible accident undesired will be done. After every action loop 
correspond to a scanning 1cm has been finished the variables of the parking area are 
updated. Distance between MCR and other parked vehicles are also noted in memory. 
When the variable of the parking area has exceeded a fixed value specified with 
dimensions of MCR, this fixed value is pointed as a potential target. The center of the 
circle C1 is settled on a line perpendicular to this point on the coordinate plane.The 
center of the circle C1 is calculated by following formulas: 

 

fyyC
RxfxxC

=
−Δ+=

1
1

    (1) 
Where xΔ displacement. If parking area has suitable dimensions it will be passed to 
the calculating step 
 

 

 
(a)     (b) 

Fig. 1. (a) The car is seeking a park place. (b) The center of the circle C1 is being calculated. 
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b) Calculating Step 
When the convenient parking area has been found the MCR passes to this step. The 
aim of the MCR is to arrive a good position for beginning car parking maneverous. 
This Position is the point specified as a target in the scanning step. Firstly, it is 
defined  a circle which is described points MCR be able to arrive on coordinate plane.  
Coordinates of the center of this circle are calculated as follows: 
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     (2) 
 

To find a point is an intersection of these circles MCR acts forward. Distance  
between two circles is 2R at this tangent point. Therefore tangent point is 
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(a)               (b) 

Fig.2. (a) The MCR has found the convenient park place.  (b) Parking Maneveurs are being 
calculated. 

Then MCR arrives to the tangent point acting backward with a specified steering 
angle. At tangent point following equations are satisfied 
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When MCR has reached to the tangent point  C1,C2 and F(fx,fy) are situated on the 
same line. Then MCR realizes steering maneverous inverse direction with same angle 
value. So it follows arc which is occurred by C1 and passes between the circles 
Finally the MCR is backed up with the determined steering angle until its orientation 
angle is again parallel to the y-axis. The sideways displacement obtained can be 
observed in the figure 2 (a) and (b). 
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c) Parking Step 
In the parking maneveurs the same approach is used that was explained calculating 
step with sideways displacement resulting in the final location where the MCR is 
desired to be lacated after the parking is completed. Different from the calculating 
step greater steering angle values are used during parking maneveurs to increase 
maneveuring capability of the car. The parking maneveurs for the given scenerio are 
shown in the following figure 3. 
 

             
(a)      (b) 

Fig.3. (a) The MCR is doing parking maneveurs. (b) The MCR is arriving to the final location. 

3 Application 

Application of the parallel parking algorithm on a MCR  consists of two steps. First, a 
visual computer program running in PC environment is developed in order to 
simulate the approach above. The program allows the user to generate random 
scenarios for parallel parking. In the first section of this chapter the simulation 
program is explained In the second part , hardware implementation of the parallel 
parking algorithm on a MCR and modules that are used will be explained. 

3.1 Simulation 

In the simulation program, physical model of a MCR is generated first. The 
coordinates of the reference point F(fx,fy) is the main control point. The corner points 
of the vehicle are generated with referencing to the reference point.The kinematic 
model is implemented on this model. After each cycle of the main program loop, 
coordinate parameters  of the reference point are calculated depending on the 
previous values and steering angle. On this car model four sensors were modelled 
which obtain the enviromental data from the simulation screen by checking color 
changes Which is an abstraction of the real world operation of sensors. 
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Fig.4. A screen shot from the from the simulator. 

A random scenario generator program has been developed in order to simulate the 
environment. For decision making tasks a program simulation te controller is 
generated which obtaines the enviromental data, makes decision and sends the control 
signals to the motion module Simulator. In the figure.4. a screen shot from the 
simulator running in PC enviroment is seen. 

3.2 Hardware 

Realizing the parallel parking algorithm on a MCR requires obtaining enviromental 
data, making decision and driving the car to perform the task.The requirements are 
satisfied using three modules of hardware: 

1.) The sensor module 
2.) The Microcontroller module 
3.) The motion module 

For the parallel parking of the MCR SharpGP2D120 distance measuring infra-red 
sensors were used  to obtain enviromental data.These IR sensors operate between 
4~30cm distances which is sufficient for our 20x50cm robot. The experiments 
showed that sensor data resolution  is sufficient in the interval 4-20cm which covers 
the critical ditances for the parallel parking problemof a MCR wit dimensions 
20x50cm. In this project Microchip PIC16F877 micro controllers were chosen 
because of their large memory size, built in ADC, low price and incircuit 
programming capability. The motion module consists of two stepper motors and their 
driver chips, the ULN2003A. Stepper motors are used for both steering and driving of 
the robot because accurate control on the motion of the robot is needed for the 
controller software to predict the displacements of the robot body. 

A MCR has been developed with 20x50 cm dimensions. This a four wheeled rear-
driven car with front-steering wheels. It is equipped with 2 stepper motors. One of the 
stepper motors is used for driving and the other is used for controlling the steering 
system. 4 IR sensors are placed on the robot. 
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4 Conclusions 

The parallel parking algorithm introduced in capter 2 has been realized on the car-like 
robot (MCR) using closed loop control and path following methods. The approach 
was verified with experimental studies. The method can be used in different sized 
cars by modifying relevant parameters (car length, width etc.) in the controller soft-
ware. 

The approach solves the parallel parking problem for a general case. The approach 
can be implemented on more complex scenarios which include various parking 
spaces with the use of hybrid sensor systems for better modeling of the environment. 
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