Distributed Mission and Contingency Management for
the DARPA Urban Challenge

Tichakorn Wongpiromsarn and Richard M. Murray

Division of Engineering and Applied Science
California Institute of Technology, Pasadena, CA, U.S.A.
nok@al t ech. edu, nurray@ds. cal tech. edu

Abstract. We present an approach that allows mission and contingermcy m
agement to be achieved in a distributed and dynamic maniieowtiany central
control over multiple software modules. This approach cases two key el-
ements: a mission management subsystem and a planningstrhsgased on
a Canonical Software Architecture (CSA). The mission manant subsystem
works in conjunction with the planning subsystem to dynaifyaeplan in reac-
tion to contingencies. The CSA provides for consistencyhefdtates of all the
software modules in the planning subsystem. System faudtglantified and re-
planning strategies are performed distributedly in thenpilag and the mission
management subsystems through the CSA. The approach hasimemented
and tested on Alice, an autonomous vehicle developed byali#oia Institute
of Technology for the 2007 DARPA Urban Challenge.

1 Introduction

One of the major challenges in urban autonomous drivingastility of the system to
reason about complex, uncertain, spatio-temporal enwigstts and to make decisions
that enable autonomous missions to be accomplished safdlgféiciently, with reac-
tive replanning in case of contingencies. Due to the conifylexthe system and a wide
range of environments in which the system must be able toatean unpredictable
performance degradation of the system can quickly cautieatrsystem failure. In a
distributed system such as Alice, an autonomous vehicleldped by the California
Institute of Technology for the 2007 DARPA Urban Challengerformance degra-
dation of the system may result from changes in the environnardware failures,
inconsistencies in the states of different software magjwdad faulty behaviors of a
software module. To ensure safety and mission success, itharneed for the system
to be able to properly detect and respond to these unexpeeteds which affect the
vehicle’s operational capabilities.

Mission and contingency management is often achieved usingntralized ap-
proach where a central module communicates with nearlyyes@ftware module in
the system and directs each module sequentially througfatitsus modes in order to
recover from failures. Examples of such a central moduletlaeebehavior manage-
ment module of the TerraMax Autonomous Vehicle [1] and theesuisory controller
(SuperCon) module of Alice previously developed for the 2ORARPA Grand Chal-
lenge [2]. A drawback of this approach is that the central ob@dsually has so much

20

functionality and responsibility that it easily becomesnamageable and error prone as
the system gets more complicated. In fact, Team Caltecligdan the 2005 DARPA
Grand Challenge was mainly due to an inability of the Supar@odule to reason and
respond properly to certain combinations of faults in th&tem [2]. This resulted from
the difficulty in verifying this module due to its complexity

The complexity and dynamic nature of the urban driving peabmake centralized
mission and contingency management impractical. A missianagement subsystem
and a planning subsystem based on a Canonical Softwaretéetire (CSA) [3] have
therefore been developed to allow mission and contingeranagement to be achieved
in a distributed manner. The mission management subsystemprising the mission
planner, the health monitor and the process control modubeks in conjunction with
the planning subsystem (the trajectory planner, the fatoand the drive control) to
dynamically replan in reaction to contingencies. As shawhigure 1, the health mon-
itor module actively monitors and estimates the health efftrdware and software
components to dynamically assess the vehicle’s operatapabilities throughout the
course of mission. It communicates directly with the misgdanner module which re-
plans the mission goals based on the current vehicle’s ddjgsh The process control
module uses the health estimates of individual softwareutesdo automatically restart
a software module that quits unexpectedly and a softwareutadtat identifies itself
as unhealthy. An unhealthy hardware component is powdedysy the software that
communicates with it. The CSA provides for consistency efdtates of all the software
modules in the planning subsystem. System faults are ftlghind replanning strate-
gies are performed distributedly in the planning and thesinismanagement subsys-
tems through the CSA directive/response mechanism. Teg#tese mechanisms make
the system capable of exhibiting a fail-operational/tgife and intelligent responses to
a number different types of failures in the system.

Related work includes a holistic contingency managemexinelogy [4], a Mis-
sion Effectiveness and Safety Assessment (MENSA) teclgydB], real-time fault
detection and situational awareness [6], the high levetrotiar of the Intelligent Off-
Road Navigator [7] and a model-based approach [8]. Theseapbpes rely on having
a subsystem, similar to our mission management subsysggrabte of monitoring and
assessing unexpected, mission-related events that #ffecverall system operation
and mission success. This subsystem may also be capablggesding a new strategy
or operation mode for the planning subsystem or reconfiguthia system in response
to these events. The CSA, however, is intended to facilita#se responsibilities of
the mission management subsystem. By exploiting the luleical structure and in-
tegrating the directive/response mechanism into the phgnsubsystem, the mission
management subsystem can assess most of the missiort®latas by only reason-
ing at the level of failure or completion of its directivesthtine health of the hardware
and software components.

The contributions of this paper are: (1) a framework for gméting mission and
contingency management into a planning system so that beachieved distributedly
and dynamically; (2) a complete implementation on an auttngs vehicle system ca-
pable of operating in a complex and dynamic environment; @hdn evaluation of
the approach from extensive testing and some insight intorduresearch directions.

21

—— Directive/response
= = = » State knowledge Route Network
""" #* Process health Definition File

Mission Management

Subsystem
- Wordmap _/ _ _ _ _______ -

it Mission Planner

esponse] Segment-level goal

Mission Data File

Sensing and

\I Planning Subsystem

Fig. 1. Alice’s mission management and planning subsystems in #dmo@ical Software Archi-
tecture. Boxes with double lined borders are subsystensitide broken up into multiple CSA
modules.

Applanix
(GPSand [Res
IMU)

Vehicle
State
Estimator

disconnect
command

The remainder of this paper is organized as follows. Se@ioriroduces the concept
of the Canonical Software Architecture. Section 3 dessrihe mission management
subsystem in more detail. Section 4 explains how systentsfaah be identified and
handled distributedly through the CSA. Section 5 presdrasr¢sults from the 2007
DARPA Urban Challenge’s National Qualifying Event and pd®s a discussion about
the advantages and disadvantages of the approach. Seatmckides the paper and
discusses some future work.

2 Canonical Software Architecture

In many complex systems, the software modules that makeeupléimning system are
responsible for reasoning at different levels of abstemctHence, the planning system
can be decomposed into a hierarchical framework. A CanbS8ufware Architecture
has been developed to support this decomposition and sigpeséfunctionality, while
maintaining communication and contingency managemeris. drichitecture builds on
the state analysis framework developed at the Jet Propulsiooratory (JPL) and takes
the approach of clearly delineating state estimation amdroebdetermination as de-
scribed in [9], [10], [11] and [12]. To prevent the inconsisty in the states of different
software modules due to the inconsistency in the state letye, we require that there
is only one source of state knowledge although it may be deavin different abstrac-
tions for different modules.

There are two types of modules in CSA: estimation modulescandtiol modules.
For modularity, each software module in the planning sulesgsnay be broken down
into multiple CSA modules. An example of the planning subsysin CSA we have
implemented on Alice is shown in Figure 1. An estimation medzstimates the sys-
tem state and provides an abstraction of the system statbdarorresponding con-
trol module(s). A control module gets inputs, performs @ui based on the inputs,
and delivers outputs. As shown in Figure 2, the inputs comdistate information,
directives/instructions (from other modules wishing totrol this module) and re-

22

Same interface with

Controlling module other controlling modules

Response:
acceptedirejected, P
completed/failed [

A generic
control module

State information

Controlled module and/or Estimator or Hardware

Fig. 2. A generic control module in the Canonical Software ArcHitee.

sponses/status reports (from other modules receivinguictgins from this module).
The outputs are the same type as the inputs, but in the redigestion (status reports
from this module and directives/instructions for othertcohmodules).

For each directive that a control module is designed to dctep following must
be specified: (1) entry condition; (2) exit condition; (3)nstraints that must be satis-
fied during the execution of the directive; and (4) perforo®criteria (performance or
other items to be optimized). The entry and exit conditioefine, respectively, what
must be true before starting to execute this directive anat wtust be true to complete
the execution of this directive. For each directive recgj\eeresponse which indicates
rejection, acceptance, failure or completion of the divecand the reason for rejection
or failure must be reported to the source of the directivge®m®n or failure of a di-
rective occurs when the entry or exit condition is not readidhievable, the deadlines
aren’t met, or one of the constraints cannot be satisfied.

A CSA module consists of three componersbitration, Control and Tactics. It
communicates with its neighbors through directives angamlses, as shown in Figure
2. Arbitrationis responsible for (1) managing the overall behavior of thretiol module
by issuing a merged directive, computed from all the recktlisectives, to th€ontrol;
and (2) reporting failure, rejection, acceptance and cetigpi of a received directive
to theControl of the issuing control module. We have implemented a simytdigration
scheme, similar to that of the subsumption architecturg [&Bere the merged direc-
tive is simply the received directive with the highest pitiprAs a future work, one can
implement a more complicated arbitration scheme that irastlealing with multiple
received directives simultaneousGontrol is responsible for (1) computing the output
directives to the controlled module(s) or the commands ¢chiardware based on the
merged directive, received responses and state informatitd (2) reporting failure
and completion of a merged directive to thebitration. Tactics provides the core func-
tionality of the control module and is responsible for pding the logic used by the
Control for computing output directives.

3 Mission Management Subsystem

3.1 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that comtiisly gathers the health
of the software and hardware (GPS, sensors and actuatanpoceents of the vehicle

23

and abstracts the information about these devices intora fmable for the mission
planner. This form can most easily be thought of as vehictabgity. For example,
we may start the mission with perfect functionality, but swhere along the line lose
a right front sensor. The intelligent choice in this sitoativould be to try to limit the
number of left turns at intersection due to the inability $s@ss oncoming traffic from
the right and slow down the vehicle. Another example arig¢isei vehicle becomes
unable to shift into reverse. In this case we would not likpuoposely plan paths that
require a three-point turn.

From the health of the sensors and sensing modules, thdnmeattitor estimates
the sensing coverage. The information about sensing cgpeaired the health of the GPS
unit and actuators allow the health monitor to determindahewing vehicle capabili-
ties: (1) turning right at intersection; (2) turning leftiatersection; (3) going straight at
intersection; (4) nominal driving forward; (5) stoppingthehicle; (6) making a three-
point turn; (7) driving in an unstructured region; and (8Yyigation in unmapped areas.

3.2 Mission Planner

The mission planner module receives a Mission Data File (MiD&t is loaded before
each mission, vehicle capabilities from the health monitodule, position of obsta-
cles from the mapper module and status reports from thectoajeplanner module and
sends segment-level goals to the trajectory planner modidegment-level goal spec-
ifies the road/zone Alice has to navigate and the constraiepsesented by the type
of segment (road, zone, off-road, intersection, U-turugea backup, end of mission)
which basically defines a set of traffic rules to be imposedhduhe execution of this

goal.

The mission planner is broken up into one estimation and t®a €ontrol modules:
the traversibility graph estimator, the mission contral #me route planner. The mission
control module has three main functions: (1) computing imisgoals which specify
how Alice will satisfy the mission specified in the MDF; (2)deal on the vehicle ca-
pabilities, determining conditions (including the maximspeed) under which we can
safely continue the mission; and (3) detecting the lack of&rd progress and replan-
ning the mission goals accordingly. The route planner madatermines segment-level
goals to satisfy the mission goals based on the travetgibilaph which represents the
connectivity of the route network and is determined by thedrsibility graph estimator
module. Since vehicle capabilities are also taken into et the determination of
the mission goals and the traversibility graph, for examipthe capability for making
a left turn decreases due to the failure of the right fronsserthe route involving the
least number of these maneuvers will be preferred or if thecleis not able to shift
into reverse, routes that require a three-point turn wilabeided.

4 Fault Handling in the Planning Subsystem

In the CSA framework, fault handling is embedded into alliedules and their com-
munication interfaces in the planning subsystem hierargElagh module has a set of
different control strategies which allow it to identify anelsolve faults in its domain

24

and certain types of failures propagated from below. Ifta#l possible strategies fail,
the failure will be propagated up the hierarchy along with #ssociated reason. The
next module in the hierarchy will then attempt to resolveftiire. This approach al-
lows each module to be isolated so it can be tested and venifigzh more fully for
robustness.

Trajectory Planner. The trajectory planner accepts directives from the misglanner
module and generates trajectories for Alice to follow. lingises four components: the
logic planner, the path planner, the velocity planner ardpitedictor. The logic plan-
ner guides the vehicle at a high level by determining thesesursituation and coming
up with an appropriate planning problem (or strategy) toeol he path planner is re-
sponsible for finding a feasible path, subject to the comgg@amposed by the planning
problem. If such a path cannot be found, an error will be getieelr Since Alice needs
to operate in both structured and unstructured regions awe tieveloped three types of
path planner to exploit the structure of the environmerréil planner (for structured
regions such as roads, intersections, etc) offiecad rail planner (for obstacle fields
and sparse waypoint regions) and thethoid planner (for parking lots and obstacle
fields). All the maneuvers available to thel planner are pre-computed; thus, thail
planner may be too constraining. To avoid a situation where Alicesgaick in a struc-
tured region (e.g. when there is an obstacle between theefimed maneuvers), the
off-road rail planner or theclothoid planner may also be used in a structured region.
This decision is made by the logic planner. The velocity pertakes the path from
the path planner and the planning problem from the logicieamand generates a time
parameterized path, or trajectory. The predictor is resjda for predicting the future
location and behavior of other vehicles.

The logic planner is responsible for fault handling insitie trajectory planner.
Based on the error from the path planner and the followerlabie planner specifies
a different planning problem such as allowing passing oergng, using theff-road
rail planner, or reducing the allowable distance from obstacles. The Ifay dealing
with these failures can be described by a two-level finiteestaachine (FSM). First,
the high-level mode (road region, zone region, off-roatkrsection, U-turn, failed and
paused) is determined based on the directive from the miggdanner and the current
position. Each of the high-level modes can be further deas®g to completely spec-
ify the planning problem described by the drive state, thenalble maneuvers, and the
allowable distance from obstacles.

— Road Region, Zone Region and Off-RoadThe logic planner transitions to the
road region, zone region or off-road mode when the type ahssd specified by the
mission planner is road, zone or off-road, respectively odes and transitions
for the road region mode are shown in Figure 3. In the zon®regid the off-road
modes, passing and reversing are allowed by default. Faathe region mode, the
clothoid planner is the default path planner and the trajectory is plannet Huet
Alice will stop at the right distance from the closest obkaso the only decision
that needs to be made by the logic planner is the allowablardie from obstacles
For the off-road mode, the drive state (drive or stop) alsedsdo be determined.
As a result, only three and six modes are necessary withizdhe region mode

25

passing finished or obstacle

passing finished or obstacle

path exists Alice has been stopped for long

|
|
|
‘Collision-Tree path is found |
no collision-fiee path exists
and the numier of times Alice
has switched|o the DRER |
state near th¢ current position
isfess than sprme threshold |

collision-free path is-fenet
no collision-free path exists and the

number of times Alice has switched
tothe DR PR state near the current
position s less than some threshold

STOPRS
—F

collision-free path is found

backup finished
or failed and the

no collision-free
number of times Alice

path exists and
there is more.
than one lane

no collision-fred
path exists

o colision-free path exists and the number
of times Alice has switched to the DR PR

state near the current position exceeds somg
BACKUP _[threshold and there is more than one lane

no collision-free path exists
—| DRA

— collision-free path is found
colifsion-free path
with DR A is found

o collision-ree path exists and the number of times Alice has switched (0 the DR.P.R
state near the current position exceeds some threshold and there is only one lane.

o collision-free path exists

no collision-free path exists

no collision-free path exists
OFF-ROAD
mode

I there is more than one lane

FAILED

collision-free path with DR,P.R is found

PAUSED

Fig. 3. The logic planner FSM for the road region. Each mode defiredtike state (DR= drive,
BACKUP = reverse, and STE&: stop for obstacles), the allowable maneuvers é\Ro passing
or reversing allowed, B= passing allowed but reversing not allowed, BRboth passing and
reversing allowed), and the minimum allowable distancenfabstacles (S safe or nominal, A
= aggressive, and B= bare or very aggressive).

and the off-road mode, respectively. The transitions caedmly deduced from
those shown in Figure 3.

Intersection. The logic planner transitions to the intersection mode whAbce
approaches an intersection. Passing and reversing maseareenot allowed and
the trajectory is planned such that Alice stops at the stap [Dnce Alice is within
a certain distance from the stop line and is stopped, thesetéon handler, an
FSM comprising five modes (reset, wait for precedence, vaaitnierging, wait
for the intersection to clear, jammed intersection, and gid) be reset and start
checking for precedence [14]. The logic planner transgtiont of the intersection
mode when the intersection handler transitions to the gaminjed intersection
mode. If the intersection is jammed, the logic planner walsition to the mode
where passing is allowed.

U-turn. The logic planner transitions to the U-turn mode when the yfsegment
specified by the mission planner is U-turn. Once the U-tunoiapleted, the logic
planner will transition to the paused mode and wait for the deective.

Failed. The logic planner transitions to the failed mode when allgtrategies in
the current high-level mode have been tried. In this mod&yréais reported to
the mission planner. The logic planner then transitiondhopgaused mode. The
mission planner will then replan and send a new directivé sisamaking a U-turn,
switching to the off-road mode, or backing up in order tolkhe route planner
to change the route. As a result, the logic planner will titteorsto a different high-

26

level mode. These mechanisms ensure that Alice will keepimyas long as it is
safe to do so.

— PausedThe logic planner transitions to the paused mode when it dogsave any
segment-level goals or when the type of segment specifiedebgnission planner
is pause or end of mission. In this mode, the logic plannexdstrand the trajectory
is planned such that Alice comes to a complete stop as socrsaite.

Follower. The follower module computes actuation commands that kdieg An the
reference trajectory [15]. Although these trajectoriesgararanteed to be collision-free,
since Alice cannot track them perfectly, she may get tooectrseven collide with an
obstacle if the tracking error is too large. To address 8uaé, we allow the follower to
request a replan from the trajectory planner through the @igctive/response mecha-
nism when the deviation from the reference trajectory idaoge. In addition, we have
implemented a reactive obstacle avoidance (ROA) compdoeateal with unexpected
obstacles. The ROA component can override the acceleredimmand if the projected
position of Alice collides with an obstacle. The projectitistance depends on the ve-
locity of Alice. The follower will report failure to the tragtory planner if the ROA is
triggered, in which case the trajectory planner can regiartrajectory.

Drive Control. The drive control module is the overall driving software fdice. It re-
ceives actuation commands from the follower, determin#dsely can be executed and,
if so, sends the appropriate commands to the actuators. fieeabntrol module also
performs checking on the health and operational state cdi¢heators, resets the actu-
ators that fail, and broadcasts the actuator state. Aldaded in the role of the drive
control module is the implementation of physical protextidor the hardware to pre-
vent the vehicle from hurting itself. This includes threadtions: limiting the steering
rate at low speeds, preventing shifting from occurring eltile vehicle is moving, and
transitioning to the paused mode in which the brakes areedspd and commands to
any actuator are rejected when any of the critical actuatoch as steering and brake
fail.

5 Results and Discussion

The 2007 DARPA Urban Challenge’s National Qualifying Eweas split into three test
areas, featuring different challenges. In this sectionpwesent the results from Test
Area B which was the most challenging test area from the orisand contingency
management standpoint. Test Area B consisted of approgiynatmiles of driving,
including a narrow start chute, a traffic circle, narrow, eliivg roads, a road with cars
on each side that have to be avoided and an unstructurechreffio an opening in a
fence, navigating and parking at a designated spot in anstlfully occupied parking
lot.

In our first attempt, a reasonably conservative vehiclerstioa distance was used.
As shown in Figure 4(a), the logic planner spent a consideramount of time in the
aggressive and bare modes where the allowable distance from obstacles is reduce
Given the size of Alice, the second largest vehicle in themetition, she had difficul-
ties finishing this course mainly due to the vehicle sepamnadistance problem which

27

Pausedr | 0.2% Paused| 1 ! 0.4%
0.0% U-turn) 0.0%
ionf |1 110 mun 5.8% Intersection|- I (LT} mE 1 B §__ NER D 167%

0.0%
Off-road o,

7777777777 W _03%
Zone region 26.4%
910N 0,305

' — 9.1%

" 3.4%
Ly i ma Road region ',

0.0%

0.0%
0.0%
1.4%

Zone region 00%
910N 0,055

— 8.5%

" 0.0%

Road region g o,

0.0%

1 05%
- = 109%
S I . H EE (SN EIEEIE W616%

(] 1 5.6%
[1 10.0%
" EE EE W —— 36.9%

0 500 1500 2000 0 200 400 600 800 1000 1200 1400
i d)

1000
Time Eiapsed (seconds) ime Elapsed (seconds)

(a) (b)
Fig. 4. The logic planner mode during NQE Test Area B (a) run #1 andui)#2.

caused her to spend about five minutes trying to get out oftéiechute area and more
than ten minutes trying to park correctly while keeping teguired distance from ob-
stacles. Specifically, the problem was that in the startechtga, there were K-rails less
than one meter away from each side of Alice, resulting in dation of the obstacle
clearance requirement for tisafe or nominal mode, which was set in accordance with
the DARPA rules. Alice had to progress through a series @frivetl planning failures
before finally driving with reduced buffers on each side & #ehicle. In the parking
lot, there was a car parked right in front of our designatexd apd if Alice was to park
correctly, she would have to be within two meters of that ttaus, violating the obsta-
cle clearance requirement. Alice ran out of the thirty méntimne limit shortly after we
manually moved her out of the parking lot.

After the first run, we decided to decrease the required \@k¶tion distance
and relax the tolerance of reaching waypoints so Alice coatdplete the course faster.
Alice was then able to successfully complete the courseinvithenty three minutes
with only minor errors. The logic planner mode during theasetattempt is shown in
Figure 4(b).

Despite the failure in completing the first run within the éidimit, Alice demon-
strated the desired behavior, consistent with what we hega & over two hundred
miles of extensive testing, that she would keep trying dififé strategies to get closer to
completing the mission and she would never stop as long ay#tem is capable of op-
erating safely. Had she been given more time, the missiotraamould have detected
the lack of forward progress and decided to skip the parkimjantinue to complete
the rest of the mission.

Comparedto a centralized approach, our approach to miasinontingency man-
agementis a lot more modular. It allows independent devedoyt and testing of failure
handling in different software modules, which is importémta project with a short de-
velopment period and a large development team. Most of tgs ban be found at the
stage of module test, instead of system integration teshgdifferent levels of ab-
straction, our approach greatly simplifies the logic forlohgpawith failures and makes
it easier to identify all the combinations of failures in thgstem. A drawback of this
approach is that all the interfaces need to be clearly defthed, it requires putting a
substantial amount of effort in the design phase of the ptoje

28
6 Conclusions and Future Work

We described Team Caltech’s approach to mission and camaygnanagement for the
2007 DARPA Urban Challenge. This approach allows missiah@mtingency man-
agement to be accomplished in a distributed and dynamic eratinrcomprises two
key elements: a mission management subsystem and a plasutisgstem based on
a Canonical Software Architecture (CSA). The mission managnt subsystem works
in conjunction with the planning subsystem to dynamicadiglan in reaction to con-
tingencies. The CSA provides for consistency of the statedl the software modules
in the planning subsystem. System faults are identified apthnning strategies are
performed distributedly in the planning subsystem throtlgh CSA. These mecha-
nisms make the system capable of exhibiting a fail-openatiail-safe and intelligent
responses to a number different types of failures in theegysExtensive testing has
demonstrated the desired behavior of the system whichtgt tivdl keep trying differ-
ent strategies in order to get closer to completing the misand never stop as long as
it is capable of operating safely.

Extensions of this work include extending the CSA to theneation side of the sys-
tem. Incorporating the notion of uncertainty in the CSA diiee/response mechanism
is also important. Consider a scenario where spurious clestare seen such that they
completely block the road. Although the map may correctileat high uncertainty,
the logic planner will still progress through all its modedre finally concluding that
it cannot complete the segment-level goal. Failure wilhtbe reported to the mission
planner which will incorrectly evaluate the current sitaatas the road is completely
blocked and subsequently plan a U-turn. If the responseiatsyporates the notion
of uncertainty, the mission planner can use this inforrmatggether with the system
health and issue a pause directive instead so Alice will atmpwait for better accuracy
of the map.

Another direction of research is to formally verify thatiifiplemented correctly, the
directive/response mechanism will ensure the consistefittye states of all the soft-
ware modules in the system and that the CSA and the missioageament subsystem
guarantee that Alice will keep going as long as it is safe tealdJsing temporal logic,
we were able to formally verify the state consistency forftiiower and drive control
modules. For the rest of the system, we have only verifiedttite sonsistency and the
fail-operational/fail-safe capability through exteresiesting.

Lastly, it is also of interest to verify that this distribdtenission and contingency
management approach actually captures all the functiyrafla centralized approach
such as SuperCon and that it actually facilitates formaification of the system. We
believe that this is the case for many systems in which the@lemodule does not take
into account the uncertainties in the system and the enviemr.

Acknowledgements

The idea of the CSA came from discussions with Robert Raseniessd Michel Ingham
and was implemented by Josh Doubleday. The health monitdutaavas developed
by Chris Schantz. The following individuals have contrégmlito the development of the

29

planning subsystem: Joel Burdick, Vanessa Carson, St&a@airano, Noel duToit,
Sven Gowal, Andrew Howard, Magnus Linderoth, Christian toam, Kenny Oslund,
Kristian Soltesz. Special thanks go to the members of Tealrecawithout whose
contributions this work would not have been possible.

This work was supported in part by the Defense Advanced Reséxojects Agency
(DARPA) under contract HR0011-06-C-0146, the Califormatitute of Technology,
Big Dog Ventures, Northrop Grumman Corporation, Mohr Dawvid/entures and Ap-
planix Inc.

References

1.

2.

10.

11.

12.

13.

14.

15.

Braid, D., Broggi, A., Schmiedel, G.: The Terramax autanas vehicle. Journal of Field
Robotics 23, (2006) 693—-708

Cremean, L.B., Foote, T.B., Gillula, J.H., Hines, G.Hogdn, D., Kriechbaum, K.L., Lamb,
J.C., Leibs, J., Lindzey, L., Rasmussen, C.E., Stewart, ABDrdick, J.W., Murray, R.M.:
Alice: An information-rich autonomous vehicle for highesm desert navigation. Journal of
Field Robotics 23 (2006) 777-810

. Rasmussen, R.D., Ingham, M.D. personal communicatiodg
. Franke, J., Hughes, A., Jameson, S.: Holistic contingenanagement for autonomous

unmanned systems. In: Proceedings of the AUVSI’'s Unmannyste®is North America.
(2006)

. Franke, J., Satterfield, B., Czajkowski, M., Jameson,S&lf-awareness for vehicle safety

and mission success. In: Unmanned Vehicle System Techyyd@ogssels, Belgium (2002)

. Dearden, R., Hutter, F., Simmons, R., Thrun, S., VermaWilleke, T.: Real-time fault

detection and situational awareness for rovers: Repoti@miars technology program task.
In: Proceedings of the IEEE Aerospace Conference, Big SRy(2004)

. Chen, Q.Umit Ozguiner: Intelligent off-road navigation algorithms astchtegies of team

desert buckeyes in the DARPA Grand Challenge 2005. Joufiaét Robotics 23, (2006)
729-743

. Williams, B.C., Ingham, M.D., Chung, S.H., Elliott, P.HModel-based programming of

intelligent embedded systems and robotic space explorersProceedings of the IEEE:
Special Issue on Modeling and Design of Embedded Softwarené 9. (2003) 212—-237

. Dvorak, D., Rasmussen, R.D., Reeves, G., Sacks, A.: Satarchitecture themes in JPL’s

mission data system. In: Proceedings of 2000 IEEE Aerospacéerence. (2000)
Rasmussen, R.D.: Goal based fault tolerance for spatensy using the mission data sys-
tem. In: Proceedings of the 2001 IEEE Aerospace Conferéd661)

Barrett, A., Knight, R., Morris, R., Rasmussen, R.: Niasplanning and execution within
the mission data system. In: Proceedings of the Interratidforkshop on Planning and
Scheduling for Space. (2004)

Ingham, M., Rasmussen, R., Bennett, M., Moncada, A.:irfeeging complex embedded
systems with state analysis and the mission data systenerdspace Computing, Informa-
tion and Communication 2, (2005)

Jones, J.L., Roth, D.: 4. In: Robot Programming: A PcattGuide to Behavior-Based
Robotics. McGraw-Hill (2004)

Looman, C.: Handling of dynamic obstacles in autonomaiscles. Master’s thesis, Uni-
versitat Stuttgart (2007)

Linderoth, M., Soltesz, K., Murray, R.M.: Nonlineardal control strategy for nonholo-
nomic vehicles. In: Proceedings of the American Controlfémnce. (2008) Submitted.

