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Abstract: This paper presents an efficient state estimation algorithmfor hybrid systems based on a least-squares Interact-
ing Multiple-Model setup. The proposed algorithm is shown to be computationally efficient when compared
with the Moving Horizon Estimaton algorithm that is a brute force optimization algorithm for simultaneous
discrete mode and continuous state estimation of a hybrid system. The main reason has to do with the fact
that the proposed algorithm is able to disregard as many discrete mode sequence estimates as possible. This is
done by rapidly computing good estimates, separating the constrained and unconstrained estimates, and using
some auxiliary coefficients computed off-line. The successof this state estimation algorithm is shown for a
fault detection problem of the benchmark AMIRA DTS200 three-tanks system experimental setup.

1 INTRODUCTION

In the last decade hybrid systems have become a ma-
jor research topic in Control Engineering (Antsaklis,
2000). Hybrid systems are dynamical systems com-
posed by both discrete valued and continuous valued
states. The dynamics of a hybrid system is governed
by a mode selector that determines, at each time in-
stant, which discrete mode is active from endogenous
and/or exogenous variables. The continuous state is
then updated through a dynamic relation that is se-
lected from a set of possible dynamics according to
the value of the active discrete mode. In fact, the pres-
ence of physical components such as on/off switches
or valves, gears or speed selectors, or behaviors de-
pendent on if-then-else rules imply explicitly or im-
plicitly the discrete/continuous interaction. This in-
teraction can be found in many real world applica-
tions such as automotive control, urban and air traffic
control, communications networks, embedded control
systems, and in the control of complex industrial sys-
tems via the combination of classical continuous con-
trol laws with supervisory switching logic.

The hybrid nature has attracted the interest of
mathematicians, control engineers and computer sci-
entists, therefore leading to different modeling lan-
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guages and paradigms that influenced the line of re-
search on hybrid systems in several different ways.
For instance, the computer science research commu-
nity is more focused on systems whose variables take
values in a finite set, so adopted the discrete events
modeling formalism to model hybrid systems, us-
ing finite state machines, Petri nets, temporal logic,
etc. On the other hand, the control systems commu-
nity typically considers a continuous valued world,
where time is continuously changing, thus consider-
ing a hybrid system as described by a differential (or
difference) equation with some switching mechanism.
Examples of such hybrid models include Piece-Wise
Affine (PWA) (Sontag, 1981) and Mixed Logical Dy-
namical (MLD) (Bemporad and Morari, 1999) mod-
els. A PWA model is the most intuitive representation
of a hybrid system since it provides a direct relation to
linear systems while still capturing very complex dy-
namical behaviors. However, a MLD representation
is most adequate to be used in optimization problems
since it is able to embed both propositional logic state-
ments (if-then-else rules) and operating constraints in
a state linear dynamics equation by transforming them
to mixed-integer linear inequalities. Despite these
differences, PWA and MLD are equivalent models
of hybrid systems in respect to well-posedness and
boundness of input, state, output or auxiliary variables
(Heemels et al., 2001). This fact allows to interchange
analysis and synthesis tools between them.
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Research on hybrid systems spans to a wide range
of topics (and approaches), from modeling to sta-
bility analysis, reachability analysis and verification,
study of the observability and controllability proper-
ties, methods of state estimation and fault detection,
identification techniques, and control methodologies.
Typically, hybrid tools rely on the solution of opti-
mization problems. However, due to the different na-
ture of the optimization variables involved (integer
and continuous) the main source of complexity be-
comes the combinatorial (yet finite) number of possi-
ble switching sequences that have to be considered. A
hybrid optimal solution thus requires solving mixed-
integer non-convex optimization algorithms with NP-
complete complexity (Torrisi and Bemporad, 2001).

Analysis and synthesis procedures for hybrid sys-
tems when disturbances are present either on the con-
tinuous dynamics or on the discrete mode of the hy-
brid system, is still an open research topic that has
being tackled by several authors using distinct ap-
proaches. In the state estimation problem two distinct
approaches are usually followed, the main difference
being the knowledge of the active mode: some ap-
proaches consider only continuous state uncertainty
with known discrete mode, while others assume that
both the discrete mode and the continuous state are
unknown. The combination of both uncertainties
(state and mode) on the estimation process of a hybrid
system presents a very difficult problem for which a
global solution is not yet found. When the discrete
mode is known in advance, the problem is greatly
simplified and the state estimation methodologies for
linear systems can be applied with very little modi-
fications. For example in (Böker and Lunze, 2002)
a bank of Kalman filters is used and in (Alessan-
dri and Coletta, 2003) an LMI based algorithm com-
putes the stabilizing gains for a set of Luenberger
observers. If, on the other hand, the discrete mode
must also be estimated the estimation problem be-
comes much more complex and every discrete mode
sequence (dms) must be checked to choose the one
that provides the best fit for the observed data. The
continuous state estimates are then computed for the
estimateddms. Several works address this problem,
see (Balluchi et al., 2002) where a location observer is
used to estimate the discrete mode and a Luenberger
observer is then used to estimate the continuous state.
In (Ferrari-Trecate et al., 2002) and (Pina and Botto,
2006) a Moving Horizon Estimation (MHE) scheme
simultaneously estimates the discrete mode and the
continuous state, differing in the fact that the latter
can also estimate the input disturbances.

The derivation of the truly optimal filter for sys-
tems with switching parameters was first presented in

(Athans and Chang, 1976). The objective was to per-
form simultaneous system identification and state es-
timation for linear systems but the derivation is quite
general and is directly applicable to the hybrid state
estimation problem. This method requires the con-
sideration of all admissibledmsstarting from the ini-
tial time instant, being obviously unpractical since the
number ofdms grows exponentially in time, and so,
suboptimal methods were developed. From the var-
ious possibilities, considering all the admissibledms
of a given length is usually the preferred methodol-
ogy. In view of this, suboptimal multiple model esti-
mation schemes where then developed and applied for
tracking maneuvering vehicles, as surveyed in (Mazor
et al., 1998), and systems with Markovian switching
coefficients, (Blom and Bar-Shalom, 1988), proving
their efficiency for state estimation in multiple model
systems. Multiple model estimation algorithms use
a set of filters, one for each possible dynamic of the
system. In this paper an efficient state estimation al-
gorithm for stochastic hybrid systems, based on the
Interacting Multiple-Model (IMM) estimation algo-
rithm, is proposed. The method is applicable to most
of the existing models of hybrid systems subject to
disturbances with explicitly known probability den-
sity function, so being rather general. This estima-
tion method will be further compared to the Moving
Horizon Estimation (MHE) algorithm and tested in
the benchmark AMIRA DTS200 three-tanks system
experimental setup.

The paper is organized as follows. Section 2 pro-
vides a description of the considered PWA model and
in section 3 the proposed Interacting Multiple-Model
estimation algorithm is presented. Section 4 presents
an experimental application of the proposed algo-
rithms to the AMIRA DTS200 three-tanks system ex-
perimental setup. First the experimental setup is pre-
sented and modelled, including a full characterization
of all uncertainties. Then the proposed algorithms are
tested and their performance is compared. Finally,
in section 5 some conclusions are drawn along with
some possible future developments.

2 SYSTEM DESCRIPTION

The proposed estimation algorithm is developed for
PWA systems which were introduced in (Sontag,
1981). The following stochastic PWA model will be
considered:
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x(k+1) = Ai(k)x(k)+Bi(k)u(k)+ fi(k)+Li(k)w(k)

(1a)

y(k) = Ci(k)x(k)+Di(k)u(k)+gi(k)+v(k) (1b)

iff

[

x(k)
u(k)
w(k)

]

∈ Ωi(k) (1c)

wherek is the discrete time,x(k)∈X⊂R
nx is the con-

tinuous state,u(k) ∈ U ⊂ R
nu is the input,y(k) ∈ R

ny

is the output,i(k) ∈ I = {1, . . . ,s} is the discrete
mode, ands is the total number of discrete modes.
The matrices and vectorsAi , Bi , fi , Li , Ci , Di , gi
depend on the discrete modei(k) and have appro-
priate dimensions. The input disturbancew(k) and
the measurement noisev(k) are modelled as inde-
pendent identically distributed random variables, be-
longing to the setsWi andVi , with expected values
E{w(k)} = 0, E{v(k)} = 0 and covariancesΣwi and
Σvi , respectively. These conditions are not restrictive
at all since the zero mean can be imposed by sum-
ming a constant vector to the disturbances and com-
pensated in the affine term of the system dynamics
(1) and, the setsWi andVi can be considered large
enough to contain all possible disturbances relevant
for practical applications, for instance 99.99% of all
admissible values. Notice that the input disturbance
and measurement noisepdfs may depend on the ac-
tual mode of the systemi(k). The setsWi andVi are
respectively defined for each modei(k) by:

HWi(k)
w(k) ≤ hWi(k)

, ∀k∈N0 (2)

HVi(k)
v(k) ≤ hVi(k)

, ∀k∈N0 (3)

The discrete modei(k) is a piecewise constant func-
tion of the state, input and input disturbance of the
system whose value is defined by the regionsΩi :

Ωi : Si x(k)+Ri u(k)+Qi w(k) ≤ Ti (4)

Some helpful notation regarding the time-compressed
representation of (Kamen, 1992) for system (1) will
now be introduced. The time-compressed represen-
tation of a system defines the dynamics of the sys-
tem over a sequence of time instants in opposition to
the single time step state-space representation. Con-
sider the time interval[k,k+T−1], the sequence of
discrete modes over this interval is represented as
iT = iT(k) , {i(k), . . . , i(k+T−1)}. To simplify the
notation, the time indexk is removed from the discrete
mode sequence (dms) whenever it is obvious from the
other elements in the equations. In view of this, the
output sequence over the same interval can be com-
puted by:

YT(k) = CiT x(k)+DiT UT(k)+giT +LiTWT(k)+VT(k)
(5)

Figure 1: Interacting Multiple-Model Estimation Algo-
rithm.

where the input, input disturbance and measurement
noise sequencesUT(k), WT(k) andVT(k) respectively
are defined in the same way as the output sequence
YT(k) , [y(k)T

, . . . ,y(k+T−1)T]T. The matrices and
vectorsCiT , DiT , giT andLiT are computed from the
system dynamics (1a-1b) according to what is pre-
sented in (Kamen, 1992). The same reasoning can
be applied to the constraintsΩiT :

ΩiT : SiT x(k)+RiT UT(k)+QiT WT(k)≤ TiT (6)

where the matricesSiT , RiT , QiT andTiT can be com-
puted from the system dynamics (1a) and partitions
(4). The inequalities that define the disturbance and
noise sets over adms iT , WiT andViT respectively,
can also be easily found from equations (2) and (3):

HWiT
WT(k) ≤ hWiT

(7)

HViT
VT(k) ≤ hViT

(8)

3 INTERACTING MULTIPLE
MODEL ESTIMATION

The proposed Interacting Multiple-Model (IMM) Es-
timation algorithm is composed of three parts; the Un-
constrained Filter Bank (UFB), the Constrained Filter
Bank (CFB) and, the Discrete Mode Sequence Es-
timator (DMSE). A schematic representation is pre-
sented in figure 1.
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The estimation algorithm works as follows: first
the continuous state estimates are computed in the
UFB without considering the constraints. Then, the
DMSE computes the squared errors of these estimates
and ranks them. Finally, starting with the estimate
with the lowest squared error, the estimates are re-
computed in the CFB considering the presence of
constraints. When the most accurate estimate is al-
ready a constrained estimate the whole process stops.

As the estimation is based on sequences of mea-
surementsYT(k) and discrete modesiT(k), two dis-
tinct time instants must be considered: the time in-
stant at the beginning of the sequences,k, and the
time instant at the end of these sequences, which is
the present time instantt = k+T−1. The state esti-
mates will be computed at time instantk, and can be
propagated to the present time instant according to the
estimated dynamics.

3.1 Unconstrained Filter Bank

The UFB computes the unconstrained state estimates.
It is composed by a set of unconstrained least-squares
filters, one for each possibledmsjT :

x̂u
jT (k|t) = x̂jT (k|t−1)+ (9)

KjT
(k|t−1)

[(

YT(k)−DjT
UT(k)−gjT

)

−CjT
x̂jT

(k|t−1)
]

wherex̂jT (k|t−1) is thea priori continuous state es-
timate for mode sequencejT using measurements up
to time instantt−1. KjT (k|t−1) is the filter gain:

KjT(k|t−1)=
(

Σ−1
xjT

(k|t−1)+CT
jT Σ−1

YjT
CjT

)−1
CT

jT Σ−1
YjT
(10)

ΣYjT
=

[

LjT IT.ny

]

[

ΣWjT
0

0 ΣVjT

]

[

LjT IT.ny

]T
(11)

The covariance of the obtained unconstrained esti-
mate can also be computed:

ΣxjT
(k|t) =

(

Σ−1
xjT

(k|t−1)+ CT
jT Σ−1

YjT
CjT

)−1
(12)

This covariance matrix not only provides some in-
sight on the accuracy of the continuous state estimate
x̂u

jT
(k|t), but also defines the confidence on the past in-

formation at the subsequent time instant ˆxjT (k+1|t):

ΣxjT
(k+1|t)=A j(k)ΣxjT

(k|t)AT
j(k)+L j(k)Σw j(k)L

T
j(k)
(13)

When computing the unconstrained state estimate, no
a priori information may be available or one may be
interested in discarding it, thenΣ−1

xjT
(k|t−1) should

be set to 0. The corresponding unconstrained state
estimate is referred to as ˆxu∗

jT
(k|t).

3.2 Constrained Filter Bank

The CFB will recompute the state estimates but now
considering the constraints (6), (7) and (8). The con-
strained least-squares filter is somehow more compli-
cated. First the least-squares state vector must be aug-
mented to incorporate both the input disturbance and
measurement noise vectors, since there exist explicit
constraints on these variables:





xjT (k)
WjT (k)
VjT (k)



 (14)

Notice that by explicitly considering the input distur-
bance and measurement noise sequences, all the un-
certainty is removed from the observation equation
(5) and it becomes an equality constraint:

He .





xjT
(k)

WjT
(k)

VjT
(k)



= he ⇔ (15)

⇔
[

CjT
LjT

InY

]

.





xjT
(k)

WjT
(k)

VjT
(k)



=
[

YT(k)−DjT
UT(k)−gjT

]

The constraints of thedms (6) and the bounds on the
input disturbance and measurement noise vectors de-
fined by the setsWjT andVjT described by equations
(7) and (8) compose the inequality constraints of the
least-squares problem, according to:

Hi .





xjT (k)
WjT (k)
VjT (k)



≤ hi ⇔ (16)

⇔







SjT QjT 0

0 HWjT
0

0 0 HVjT






.







xjT (k)

WjT (k)

VjT (k)






≤







TjT −RjT UT (k)

hWjT
hVjT







Having defined the constraints matrices, the con-
strained least-squares filter corresponding to the mode
sequencejT is given by:





x̂jT
(k|t)

ŴjT
(k|t)

V̂jT
(k|t)



 =





x̂jT
(z,k|t−1)

ŴjT
(k|t−1)

V̂jT
(k|t−1)



+

KjT
(k|t)





[

he
hi

]

−

[

He
Hi

]

.





x̂jT
(k|t−1)

ŴjT
(k|t−1)

V̂jT
(k|t−1)









(17)

The constrained least-squares filter gain is defined as:
KjT (k|t) = (18)















ΣxjT
(k|t−1) 0 0

0 ΣWjT
0

0 0 ΣVjT







−1

+

[

He
Hi

]T
ZjT (k|t)

[

He
Hi

]









−1
[

He
Hi

]T
ZjT (k|t)
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whereΣxjT
(k|t−1) is the covariance matrix associated

with thea priori state estimate ˆxjT (k|t−1). ZjT (k|t) is
the diagonal matrix that defines the active constraints.

There are several methods, most of them itera-
tive, for determining the matrixZjT (k|t), or equiva-
lently the set of active constraints. Here, the active set
method presented in (Fletcher, 1987) will be used.

As in the unconstrained case,a priori information
may be discarded by settingΣ−1

xjT
(k|t−1) to 0. The

corresponding constrained state estimate is referred to
asx̂c∗

jT
(k|t).

3.3 Discrete Mode Sequence Estimator

The DMSE deals with the estimation of the discrete
mode sequence and, consequently, selects the filter
which will provide the final continuous state estimate.

According to the least-squares philosophy, an ap-
proximation of the measured output sequence is com-
puted for every possibledms and then, the one pro-
viding the smallest squared error should be selected
as the least-squares estimate.

Thedms estimate is then selected as the one that
presents the lowest constrained squared error,αc

jT
:

îT(k|t) = arg min
jT

αc
jT (k|t) (19)

The squared error associated with thedmsjT is given
by:

αjT (k|t) =
∥

∥Ŷ∗
jT (k|t)−YT(k)

∥

∥

2
Σ−1

YjT

=

=
[

Ŷ∗
jT (k|t)−YT(k)

]T
Σ−1

YjT

[

Ŷ∗
jT (k|t)−YT(k)

]

(20)

where:

Ŷ∗
jT (k|t) = CjT x̂∗jT (k|t)+ DjTUT(k)+ gjT (21)

andx̂∗jT (k|t) is the estimated state of thedmsjT when

all past information is discarded,
(

Σ−1
xjT

(k|t−1) = 0
)

.
The squared errors computed by equation and (20)

are useful when comparing continuous state estimates
from the samedms. However, when the covariance
matrices are different, an additional factor,ᾱjT , must
be considered to allow a meaningful comparison be-
tween squared errors. Recalling the relation between
least-squares and the maximization of the Gaussian
likelihood function (or its logarithm), the value of̄αjT
should be defined as:

ᾱjT = −
1
2

ln
(

(2π)nY det
(

ΣYjT

)

)

(22)

Equation (20) should be modified to:

αjT (k|t) = ᾱjT +
∥

∥Ŷ∗
jT (k|t)−YT(k)

∥

∥

2
Σ−1

YjT

(23)

Equation (23) can be used to compute the squared er-
rors of both the unconstrained estimates,αu

jT
(k|t), and

the constrained estimates,αc
jT

(k|t), usingx̂u∗
j (k|t) and

x̂c∗
j (k|t), respectively.

3.4 Computational Issues

Concerning computational requirements, it is noticed
that there can be as many asnT

s dms, which becomes
an extremely large number even for relatively smallns
andT. So, computationally demanding calculations
should be preformed for the minimum number ofdms
possible.

Analyzing the required computations one con-
cludes that ˆxu∗

jT
(k|t) can be determined by simple

matrix sums and multiplications if the filter gain
KjT (k|t−1) is computed off-line, since there are no
varying terms as can be seen in equation (9). The cor-
responding squared errorαu

jT
(k|t), computed through

equation (23), can also be determined using simple
matrix sums and multiplications from ˆxu∗

jT
(k|t). The

continuous state estimate ˆxu
jT

(k|t) on the other hand,
requires a matrix inversion to determine the corre-
sponding filter gain using equation (10) since the ma-
trix Σ−1

xjT
(k|t−1) is not known in advance.

The constrained estimates require much more
complex computations in the solution of the inequal-
ity constrained least-squares problem. An iterative
algorithm has to be preformed online, and involves
one matrix inversion at each iteration which is com-
putationally heavy. There is the possibility that the
solution corresponding to the truedms is the same
as the unconstrained solution and the iterative algo-
rithm stops at the first iteration. In general, how-
ever, this will not be the case. So, the computation
of constrained solutions should only be done in cases
of absolute necessity. The squared error of the con-
strained estimatesαc

jT
(k|t) can be determined using

simple matrix sums and multiplications from ˆxc∗
j (k|t).

The proposed algorithm should take these knowl-
edge into account and arrive at the final estimates in
the most efficient way possible.

To avoid the computation of the constrained least-
squares estimates from all discrete mode sequences,
the following relation between the constrained and
unconstrained squared errors for a given discrete
mode sequence is used:

αu
jT (k|t) ≤ αc

jT (k|t) (24)

An efficient reduction on the number of constrained
estimates that have to be computed can be achieved
by computing all unconstrained estimates ˆxu∗

j (k|t) and
the corresponding squared errorsαu

jT
(k|t) and then,

start replacing the unconstrained solutions with the
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corresponding constrained ones, from the lower val-
ues of the squared error. Whenever the lowest squared
error corresponds to a constrained solution, the algo-
rithm stops since no further reduction of the squared
error can be done. The discrete mode sequence and
continuous state estimates are the ones corresponding
to that lowest squared error.

This algorithmic procedure may provide a sub-
stantial reduction in the number of inequality con-
strained least-squares problems to be solved since the
increase in the squared error should be small, or even
zero, for the truedms. However, the unconstrained
solutions of incorrectdmsmay have low squared er-
rors, which rise substantially only when the respective
constrained solutions are computed. An efficient pro-
cedure to detect these incorrectdms before comput-
ing the respective constrained estimates would reduce
the computational requirements even more.

To further improve the algorithm, the followingB
matrix must be introduced. Each coefficientβiT ,jT of
the matrixB is defined as the maximum value ofαc

iT
under whichαc

iT
is always smaller thanαc

jT
, or in an

even more restrictive way, under whichjT is never
the estimated sequence. The coefficientsβiT ,jT can
be computed off-line by the following optimization
problem, which falls in the general class of Second-
Order Cone Programs for which efficient solvers have
already been developed, for instance, by (Alizadeh
and Goldfarb, 2001):

βiT ,jT = min
YT ,UT

αc
iT (YT ,UT)

subject to :

UT ∈ U
T

îT = jT

(25)

By this definition ofβiT ,jT , when the constrained so-
lution of adms iT is computed, alldms jT such that
βiT ,jT is greater thanαc

iT
(k|t) can be discarded. This

algorithmic procedure provides an even greater re-
duction on the number of constrained problems to be
solved. Notice that this procedure does not even re-
quire the computation of the unconstrained solutions
of thedms to be discarded.

Both previous modifications to the algorithm re-
quire the existence of one constrained solution to dis-
card any otherdms. Furthermore, the number of
discardeddms depends on the quality of the con-
strained solution. In the following, some attention
will be given to the recursiveness of the DMSE and
the methodology to determine thedms that will most
likely provide good constrained estimates.

At a given time instantt+1 the following quanti-
ties have been computed at the previous time instant:
the discrete mode sequence estimate,îT(k|t), the
squared errors (or lower bounds) of alldms, αc

jT
(k|t)

and, the continuous state estimates ˆxc∗
jT

(k|t) and the

values of the estimated input disturbancesŴjT (k|t) for
the dms whose squared errors have been computed,
including thedms estimate. These quantities allow
the computation of thea priori continuous state es-
timate corresponding to the discrete mode sequence
estimate at the following time instant:

x̂∗jT (t+1|t) =
(

A j(t) . . . A j(k)

)

x̂∗jT (k|t)+
[

A j(t) . . .A j(k+1)B j(k), . . . ,B j(t)

]

UT(k)+
[

A j(t) . . .A j(k+1)Wj(k) , . . . , Wj(t)

]

ŴjT (k|t)+
(

A j(t) . . .A j(k+1) f j(k) + . . .+ f j(t)

)

(26)

This estimate can be used to obtain some insight on
the likelihood of the discrete mode at the next time
instant j(t+1). The discrete modesj(t+1) can be
sorted by ascending values of:

γjT , j(t+1|t) =

max
(

Sj x̂∗jT (t+1|t)+Rju(t+1)+Q jŵ(t+1|t)−Tj

)

(27)

The value of ˆw(t+1) should be set to E{wj}.
The discrete modesj(t+1) that provide the lower

values ofγjT , j(t+1|t) correspond the discrete mode
sequencesjT =

{

j(k+1), . . . , j(t), j(t+1)
}

at time in-
stantt +1 most likely to succeed tojT at time instant
t.

Applying this methodology to the discrete mode
sequence estimate at the previous time instant,îT(k|t),
should providedmswith very low squared errors that
discard most of the other candidatedms. The same
reasoning should be applied to all other discrete mode
sequences of the previous time instant that have not
been discarded yet, starting from the ones that present
lowest squared errors and then the ones with the low-
est bounds.

4 EXPERIMENTAL
APPLICATION

To demonstrate the applicability of the hybrid estima-
tion algorithms, the laboratory setup of the DTS200
three-tanks system from AMIRAr (Amira, 2002)
will be used to simulate different situations common
in hybrid estimation. A photo of the three-tanks sys-
tem is presented in figure 2 showing the different
components of the experimental setup. The plant con-
sists of three plexiglas cylinders or tanks,T1, T2 and
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T3 with similar cross section. These are connected in
series with each other by cylindrical pipes with cross
sectionSn. Located atT2 is the single so called nom-
inal outflow valveV0 which also has a circular cross
sectionSn. The outflowing liquid (colored distilled
water) is collected in a reservoir, which supplies the
pumpsP1 and P2. Here the water circuit is closed.
hmaxdenotes the highest possible liquid level in any of
the tanks. In case the liquid level ofT1 or T2 exceeds
this limit the corresponding pump will be switched
off automatically.Q1 andQ2 are the flow rates from
pumpsP1 andP2, respectively.

Figure 2: The three-tanks setup.

The pump flow ratesQ1 andQ2 and the position of
the valvesV13, V23, V0, V10, V20, V30, denote the con-
trollable variables, while the liquid levels ofh1, h2 and
h3 are the output variables. The necessary level mea-
surements are carried out by piezo-resistive difference
pressure sensors. There are also potentiometric sen-
sors that measure the position of each valve. The sen-
sor signals are preprocessed to the interval[0;1] and
so need to be adjusted to[0;hmax] for the water lev-
els. For the remainder of this section the three-tanks
system will be adapted so that more realistic hybrid
estimation problems can be studied while simultane-
ously simplifying the presentation of results. The new
model is present in figure 3 where the elements in grey
are assumed to be nonexistent, the elements in green
are fully operational and the elements in red may be
subject to faults and will be used to model input dis-
turbances.

PumpP1 is considered to be a fully operational
on/off valve. ValveV13 will have two nominal values
“on” and “off”, while Valve V10 will remain closed.
Both these valves are subject to a possible fault re-
sulting in an unmeasurable flow to cross them and de-
scribed as an input disturbance. The water level sen-
sor of tank 3 can also be subject to a fault. The Valve
V30 is considered to be a fully operational “on/off”

Figure 3: Final model of the three-tanks system.

valve with no possible faults, while ValvesV20, V23
andV0 will remain closed and so can be considered to
be nonexistent.

The system can exhibit a large number of differ-
ent dynamics, depending on the state of each discrete
variable. The full hybrid model description of the sys-
tem can be found in (Pina, 2007).

4.1 Estimation of the Fault in Valve V10

In this example, the estimation algorithm will have
to estimate the discrete mode that indicates a fault on
valveV10. As the analysis will focus on valveV10, the
faults on valveV13 and sensorh3 will be considered
nonexistent. A single test will be performed where
various situations arise and are then analyzed sepa-
rately. The system is excited according to the discrete
variables presented in table 1. Various positions for
the valveV10 are considered, corresponding to differ-
ent intensities of the fault.

Table 1: Evolution of the discrete variables.
Time(s) 0-49 50-99 100-149 150-199 200-249 250-300

V10 “ok” “faulty” “faulty” “faulty” “faulty” “ok”
med max med max

V13 “ok” “ok” “ok” “ok” “ok” “ok”
h3 “ok” “ok” “ok” “ok” “ok” “ok”
P1 “on” “on” “on” “on” “on” “on”

V13 “open” “open” “open” “open” “open” “open”
V30 “open” “open” “open” “open” “open” “open”

The measured outputs and the estimated water lev-
els are presented in figure 4, where the influence of the
intensity of the fault can be clearly seen.

The real (observed) and estimated values of the
fault using the IMM algorithm are shown in figure 5.
As the fault in valveV10 takes one time instant to be
reflected in the water level measurements, only the
value of fV10(k− 1|k) is relevant. Note thatfV10(k−
1|k) is a discrete variable that takes value 1 when a
leak occurs, and value 0 when there is no fault.
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Figure 4: Water levels estimation using the IMM and MHE
estimation algorithms.
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Figure 5: Estimation of the discrete mode sequence relative
to the fault in valveV10.

The corresponding estimated continuous input
disturbances by both algorithms are shown in figure
6. As the fault in valveV10 takes one time instant to
be reflected in the water level measurements, only the
value ofwV10(k−1|k) is estimated. The variablewV10

determines the leaking flow and is considered to be a
uniformly distributed random variable defined in the
interval [−0.4;0.4]cm, with zero mean and variance
0.82

12 cm2 for all k, where 0.8 is the maximum water
level change when the valveV10 is fully open.
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Figure 6: Estimation of the input disturbancewV10(k−1|k)
corresponding to the fault in valveV10.

The difference observed in both algorithms for the
estimation of the disturbancewV10(k−1|k) shows that
the MHE algorithm is not able to weight the distur-
bance with any prior value so allowing it to change
freely, which increases the variation of the input dis-
turbance estimates.

The estimation results presented in figures 4 and 5
will now be analyzed independently for the 3 consid-
ered valveV10 fault intensities.

4.1.1 Case 1 - Fault Inactive

For time intervals[0 ;50[s and[250 ;300]s valveV10
remained closed and the fault is considered inactive.
Despite being inactive, there is still a possibility of
a wrong estimate reflected on the value of the dis-
crete variablefV10. However, as shown in figure 7,
the valve’s true state was correctly estimated during
these time periods.
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Figure 7: Map of probability of correct mode estimation,
with 1s delay, when valveV10 is fully closed. (Red - prob-
ability of correct mode estimation 0, Blue - probability of
correct mode estimation 1)

Figure 7 shows that if the valveV10 is closed there is
no possibility of estimating a discrete mode sequence
corresponding to an open valve condition. Thus the
inactive fault is always correctly estimated.

4.1.2 Case 2 - Fault Active with Intermediate
Intensity

The valveV10 has an intermediate open position dur-
ing time intervals[50 ;100[s and[150 ;200[s allow-
ing an unmeasured flow to cross it. In this case, a fully
closed valve was estimated by the IMM algorithm in
several time instants. These wrong estimates are un-
derstandable since the effect on the water level of tank
1 is not too drastic and can be mistaken by any other
source of uncertainty, like measurement noise for in-
stance. This difficulty in discerning whether the valve
is slightly open or fully closed is patent in the map of
probability of correct mode estimation shown in fig-
ure 8. It can also be concluded that the probability
of an incorrect estimation of the valve’s condition in-
creases as the water level of tank 3 becomes lower.

The map of probability of correct mode estimation
is not able to show the existing dependence between
the probability of correctly determining the valve’s
condition and its real position. It is clear from figure
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Figure 8: Map of probability of correct mode estimation,
with 1s delay, when faultfV10 is active. (Red - probability
of correct mode estimation 0, Blue - probability of correct
mode estimation 1)

4 that the valveV10 is more closed during the time
interval [50 ;100[s than in[150 ;200[s. This fact
is reflected in a higher number of incorrect mode se-
quence estimations in case the valve remains closer to
its nominal closed position. The following case will
further explore this dependence.

4.1.3 Case 3 - Fault Active with Maximum
Intensity

If valve V10 is fully open it becomes much easier
to determine its position, thus allowing the IMM al-
gorithm to provide correct estimates for the discrete
mode sequence during time intervals[100 ;150[s and
[200 ;250[s. This is quite obvious since the effect on
the water level of tank 1 is very intense and can not
be mistaken by any other source of uncertainty. This
result is depicted in figure 9.

This map of probability of correct mode estima-
tion was computed considering an hypothetical model
for the system where valveV10 can only be fully open
or fully closed.

Figure 9 shows that when the faultfV10 has max-
imum intensity,wV10 = 0.4, it is always correctly es-
timated. However, further results have shown that for
very low water levels in tank 1 the difference between
a fully open or fully closed valve are reduced, being
even undetectable when the tank is empty. This is ex-
plained by the fact that the maximum fault intensity
allowed by the model,wV10 = 0.4, can not be achieved
in practice when tank 1 is almost empty but rather
when it is full.
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Figure 9: Map of probability of correct mode estimation,
with 1s delay, considering that faultfV10 has maximum in-
tensity,wv10 = 0.4. (Red - probability of correct mode es-
timation 0, Blue - probability of correct mode estimation
1)

5 CONCLUSIONS

This paper presented an efficient hybrid estimation al-
gorithm based on an IMM setup composed by a set
of least-squares filters. The computational efficiency
is obtained by some algorithmic procedures that dis-
card many candidatedms before performing heavy
computations. These procedures rely on the early de-
termination of good estimates, on the separation of
constrained and unconstrained estimates and on some
bounding parameters for the squared errors.

The IMM was able to provide accurate online es-
timates for both continuous states and discrete vari-
ables when applied to the hybrid model of the bench-
mark AMIRA DTS200 three-tanks system experi-
mental setup. The potential of the IMM algorithm
was demonstrated when comparing its computational
efficiency with the MHE with unknown inputs algo-
rithm for a fault detection problem.

One of the most relevant issues that influence the
computational efficiency of hybrid methodologies has
to do with the high number of discrete modes that
are tipically involved in a medium size hybrid system
model. This fact eventually turns most of the prob-
lems untractable. For the case of the three-tanks sys-
tem experimental setup, it was noticed that the con-
sideration of all three tanks in the same hybrid model
requires huge computational resources. Thus, authors
believe that a multi-agent modeling architecture can
significantly simplify the all model complexity while
being able to retain its full hybrid dynamical flavour.
As the size of the problems to be solved with hy-
brid systems grows exponentially with the number
of discrete modes involved, multi-agent architectures
may be the solution to the huge complexity of hybrid
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methodologies, thus being a very interesting and pos-
sibly fruitful research topic.
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