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Abstract: This paper presents an efficient state estimation algofitihimybrid systems based on a least-squares Interact-
ing Multiple-Model setup. The proposed algorithm is showmé computationally efficient when compared
with the Moving Horizon Estimaton algorithm that is a brutede optimization algorithm for simultaneous
discrete mode and continuous state estimation of a hybgtesy The main reason has to do with the fact
that the proposed algorithm is able to disregard as manyadesmode sequence estimates as possible. This is
done by rapidly computing good estimates, separating thst@ined and unconstrained estimates, and using
some auxiliary coefficients computed off-line. The sucagsthis state estimation algorithm is shown for a
fault detection problem of the benchmark AMIRA DTS200 thtaeks system experimental setup.

1 INTRODUCTION guages and paradigms that influenced the line of re-
search on hybrid systems in several different ways.

In the last decade hybrid systems have become a maFor instance, the computer science research commu-
jor research topic in Control Engineering (Antsaklis, Nity is more focused on systems whose variables take
2000). Hybrid systems are dynamical systems com- values in a finite set, so adopted the discrete events
posed by both discrete valued and continuous valuedmodeling formalism to model hybrid systems, us-
states. The dynamics of a hybrid system is governeding finite state machines, Petri nets, temporal logic,
by a mode selector that determines, at each time in-€tc. On the other hand, the control systems commu-
stant, which discrete mode is active from endogenousnity typically considers a continuous valued world,
and/or exogenous variables. The continuous state iswhere time is continuously changing, thus consider-
then updated through a dynamic relation that is se- ing & hybrid system as described by a differential (or
lected from a set of possible dynamics according to difference) equation with some switching mechanism.
the value of the active discrete mode. In fact, the pres- Examples of such hybrid models include Piece-Wise
ence of physical components such as on/off switchesAffine (PWA) (Sontag, 1981) and Mixed Logical Dy-
or valves, gears or speed selectors, or behaviors denamical (MLD) (Bemporad and Morari, 1999) mod-
pendent on if-then-else rules imply explicitly or im- els. APWA model is the most intuitive representation
plicitly the discrete/continuous interaction. This in- Of a hybrid system since it provides a direct relation to
teraction can be found in many real world applica- linear systems while still capturing very complex dy-
tions such as automotive control, urban and air traffic hamical behaviors. However, a MLD representation
control, communications networks, embedded control iS most adequate to be used in optimization problems
systems, and in the control of complex industrial sys- Since itis able to embed both propositional logic state-
tems via the combination of classical continuous con- Ments (if-then-else rules) and operating constraints in
trol laws with supervisory switching logic. astate Imgar dynam|cs equation py transformmg them
The hybrid nature has attracted the interest of 10 Mixed-integer linear inequalities. Despite these
mathematicians, control engineers and computer sci-differences, PWA and MLD are equivalent models

entists, therefore leading to different modeling lan- Of hybrid systems in respect to well-posedness and
boundness of input, state, output or auxiliary variables
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Research on hybrid systems spans to a wide range(Athans and Chang, 1976). The objective was to per-
of topics (and approaches), from modeling to sta- form simultaneous system identification and state es-
bility analysis, reachability analysis and verification, timation for linear systems but the derivation is quite
study of the observability and controllability proper- general and is directly applicable to the hybrid state
ties, methods of state estimation and fault detection, estimation problem. This method requires the con-
identification techniques, and control methodologies. sideration of all admissibldmsstarting from the ini-
Typically, hybrid tools rely on the solution of opti- tial time instant, being obviously unpractical since the
mization problems. However, due to the different na- number ofdmsgrows exponentially in time, and so,
ture of the optimization variables involved (integer suboptimal methods were developed. From the var-
and continuous) the main source of complexity be- ious possibilities, considering all the admissiblas
comes the combinatorial (yet finite) number of possi- of a given length is usually the preferred methodol-
ble switching sequences that have to be considered. Aogy. In view of this, suboptimal multiple model esti-
hybrid optimal solution thus requires solving mixed- mation schemes where then developed and applied for
integer non-convex optimization algorithms with NP-  tracking maneuvering vehicles, as surveyed in (Mazor
complete complexity (Torrisi and Bemporad, 2001). et al., 1998), and systems with Markovian switching
coefficients, (Blom and Bar-Shalom, 1988), proving
their efficiency for state estimation in multiple model
systems. Multiple model estimation algorithms use
a set of filters, one for each possible dynamic of the
system. In this paper an efficient state estimation al-
gorithm for stochastic hybrid systems, based on the
Interacting Multiple-Model (IMM) estimation algo-
rithm, is proposed. The method is applicable to most
of the existing models of hybrid systems subject to

Analysis and synthesis procedures for hybrid sys-
tems when disturbances are present either on the con
tinuous dynamics or on the discrete mode of the hy-
brid system, is still an open research topic that has
being tackled by several authors using distinct ap-
proaches. In the state estimation problem two distinct
approaches are usually followed, the main difference
being the knowledge of the active mode: some ap-
proaches consider only continuous state uncertainty . . e -
with known discrete mode, while others assume that d!sturbanpes with gpr|C|tIy known probab!llty dgn—
both the discrete mode and the continuous state are>? function, SO being rather general. This estima-
unknown. The combination of both uncertainties tO" method will be further compared to the Moving

At . (Horizon Estimation (MHE) algorithm and tested in
(state and mode) on the estimation process of a hybrid
system presents a very difficult problem for which a the bgnchm?rk AMIRA DTS200 three-tanks system
global solution is not yet found. When the discrete €XPerimentalsetup. _
mode is known in advance, the problem is greatly |N€ Paperis organized as follows. Section 2 pro-
simplified and the state estimation methodologies for Vides & description of the considered PWA model and

linear systems can be applied with very little modi- in section 3 the proposed Interacting Multiple-Model

fications. For example in (Boker and Lunze, 2002) estimatiorj algorithm i§ pre_zsented. Section 4 presents
a bank of Kalman filters is used and in (Alessan- @0 experimental application of the proposed algo-
dri and Coletta, 2003) an LMI based algorithm com- fithms to the AMIRA DTS200 three-tanks system ex-
putes the stabilizing gains for a set of Luenberger perimental setup. FlrsF the gxperlmental setup'ls pre-
observers. If, on the other hand, the discrete mode Sented and modelled, including a full characterization
must also be estimated the estimation problem be.of all uncertaint.ies. Then the prpposed algorithms are
comes much more complex and every discrete modet€Sted and their performance is compared. Finally,
sequencedms must be checked to choose the one in section 5 some conclusions are drawn along with
that provides the best fit for the observed data. The SOMe possible future developments.

continuous state estimates are then computed for the

estimateddms Several works address this problem,

see (Balluchi et al., 2002) where a location observeris 2 SYSTEM DESCRIPTION

used to estimate the discrete mode and a Luenberger
observer is then used to estimate the continuous state
In (Ferrari-Tr_ecate et al., 20(.)2) qnd (Pina and Botto, by, systems which were introduced in (Sontag,
2.006) a Moving qulzon Estlma.t|on (MHE) scheme 1981). The following stochastic PWA model will be
simultaneously estimates the discrete mode and theconsidered:

continuous state, differing in the fact that the latter

can also estimate the input disturbances.

he proposed estimation algorithm is developed for

The derivation of the truly optimal filter for sys-
tems with switching parameters was first presented in
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(1a) —f’ Discrete Mode Sequence Estimator - Q .
y( k) - CI <k) X( k) + DI <k) U(k) +g| (k) +V( k) (1b) ‘L: Discrete Mode Sequence Ranking Algorithm | > E‘L
G -

iff | u | € Qigg () IR I S IO B

w(k) ' ! ' :
wherek is the discrete timeg(k) € X C R" is the con- Uheanstramed | || Constiained

tinuous statey(k) € U C R™ is the inputy(k) € R™
is the output,i(k) € I = {1,...,s} is the discrete 0
mode, ands is the total number of discrete modes.
The matrices and vectowd;, B;, fi, Li, G, Di, 0
depend on the discrete modigk) and have appro- F
priate dimensions. The input disturbaneék) and
the measurement noisgk) are modelled as inde-
pendent identically distributed random variables, be-
longing to the setdV; andV;, with expected values
E{w(k)} = 0, E{v(k)} = 0 and covariances,, and -
2y, respectively. These conditions are not restrictive
at all since the zero mean can be imposed by sum- . ] o
ming a constant vector to the disturbances and com-Figure 1: Interacting Multiple-Model Estimation Algo-
pensated in the affine term of the system dynamics rithm.
(1) and, the setdV; andV; can be considered large
enough to contain all possible disturbances relevantWhere the input, input disturbance and measurement
for practical applications, for instance 99.99% of all noise sequencesy (k), Wr (k) andVr (k) respectively
admissible values. Notice that the input disturbance are defined in the same way as the output sequence
and measurement noigelfs may depend on the ac- YT (k) £ [y(K)T,...,y(k+T—1)T]". The matrices and
tual mode of the systeitk). The setsW; andV; are ~ vectorsCi, Di;, gi; andL;; are computed from the
respectively defined for each moik) by: system dynamics (1la-1b) according to what is pre-
H K < h v 2 sented in (Kamen, 1992_). The same reasoning can
wigg WK) < Py, Vieno @ be applied to the constraing; :

Hvigg VK) < iy Vierig ) Qi S x(K+Ri; Ur(k)+Qi; Wi (K) <Ti; (6)
The discrete modgk) is a piecewise constant func-
tion of the state, input and input disturbance of the

vl vV oyt

where the matriceS;,, Ri;, Qi; andT;; can be com-
puted from the system dynamics (1a) and partitions

system whose value is defined by the regiOnms (4). The inequalities that define the disturbance and
Q  SxK+Ruk+Qwk <Ti (4) noise sets over dmsit, Wi, andV;; respectively,

Some helpful notation regarding the time-compressed can also be easily found from equations (2) and (3):

representation of (Kamen, 1992) for system (1) will Hu;, Wr (K) < by, @

now be introduced. The time-compressed represen-
tation of a system defines the dynamics of the sys-
tem over a sequence of time instants in opposition to
the single time step state-space representation. Con-
sider the time intervalk, k+T —1], the sequence of
discrete modes over this interval is represented as3 |INTERACTING MULTIPLE
it =it(k) £ {i(K),...,i(k+T—1)}. To simplify the MODEL ESTIMATION
notation, the time indekis removed from the discrete
mode sequencelnsg whenever it is obvious from the

Huy, Vi (K) <y, (8)

. ) ; . The proposed Interacting Multiple-Model (IMM) Es-

other elements in the equations. In view of this, the timation algorithm is composed of three parts; the Un-

output sequence over the same interval can be com-.,,qirained Filter Bank (UFB), the Constrained Filter

puted by: Bank (CFB) and, the Discrete Mode Sequence Es-

Y1 (K) = Ci; X(K)+Dj; Ut (K)+0i7 +Lir Wr (K)+Vr (K) timator (DMSE). A schematic representation is pre-
(5) sented in figure 1.
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The estimation algorithm works as follows: first 3.2 Constrained Filter Bank
the continuous state estimates are computed in the
UFB without considering the constraints. Then, the The CFB will recompute the state estimates but now
DMSE computes the squared errors of these estimatesonsidering the constraints (6), (7) and (8). The con-
and ranks them. Finally, starting with the estimate strained least-squares filter is somehow more compli-
with the lowest squared error, the estimates are re-cated. First the least-squares state vector must be aug-
computed in the CFB considering the presence of mented to incorporate both the input disturbance and
constraints. When the most accurate estimate is al-measurement noise vectors, since there exist explicit
ready a constrained estimate the whole process stopsconstraints on these variables:

As the estimation is based on sequences of mea- %7 (K)
surementsrT (k) and discrete modes (k), two dis- W (K) (14)
tinct time instants must be considered: the time in- Vi (K)

stant at the beginning of the sequendesand the ) o - ) .

time instant at the end of these sequences, which isNotice that by explicitly considering the input distur-
the present time instatt= k+T—1. The state esti- Pance and measurement noise sequences, all the un-
mates will be computed at time instagtand can be certainty is removed from the observation equation
propagated to the present time instant according to the(5) and it becomes an equality constraint:

estimated dynamics. x;. (K)
o He | W00 [= he & @5
3.1 Unconstrained Filter Bank Vi, (K)

The UFB computes the unconstrained state estimates. N

. . < |Ci; L. In,/ |- k) | =|Yr(k)—Dj. Ut (k)—gi
It is composed by a set of unconstrained least-squares [Cir Lir tnv] [V\f:( ) [T( ) =Dy Ur ()-g;;
filters, one for each possibténsj:

The constraints of thdms(6) and the bounds on the

RJ!JT (K[t) = %7 (Klt=1)+ (©) input disturbance and measurement noise vectors de-
fined by the setdV;, andV;, described by equations
Kj; (kit—1) [ (Y7 (k)—Dj, Ut (k) —gj; ) —Cj; %7 (KIt—1)] (7) and (8) compose the inequality constraints of the

wherexj; (kjt—1) is thea priori continuous state es- least-squares problem, according to:

timate for mode sequengg using measurements up

to time instant—1. K, (k|t—1) is the filter gain: X1 (K)
. Hi .| W(k) | < h < (16)
KJ-T(k|t—1):(ZX’jTl(k|t—1)+CjTTZ§j:C,-T) Cf 2yt Vir (k)
s o (10) St Q0 ][ %M | [ Tr-ReUr
W T 0 Hy o . hyy.
o S 1 P00 LcE R (N N | it B
IT iT T iT

The covariance of the obtained unconstrained esti- Having defined the constraints matrices, the con-
mate can also be computed: strained least-squares filter corresponding to the mode

B B -1 sequencegr is given by:
% (Kt) = (thl(k|t—1) +chTijic,-T) (12)

This covariance matrix not only provides some in- V)A?[ ((Iﬂ\tt)) _ %(Z(’kk“tt__ll)) n
sight on the accuracy of the continuous state estimate v T(k\t) v T(k|t—1)
R (Kit), butalso defines the confidence on the pastin- T T o (k-1 17)

i ime inst : h H T
formation at the subsequent time instgtK+1|t) K;, (kIt) ({ h? }_{ H? }{ \\/7\4T((L<‘\t—11)) D

T T jr (Klt—
Ty (KHLJt) = Aj i 2 (KA 0 L0 Zwjo L 3 o
(13) The constrained least-squares filter gain is defined as:

When computing the unconstrained state estimate, no Ky (K1) = 18)

a priori information may be available or one may be .
interested in discarding it, thel;* (k|t—1) should B (-n 00 97 T T
AT . 0 Sy, O +[ He } 2 (k\t)[ He ] [ He ]z. (Kt)
be set to 0. The corresponding unconstrained state 0 o 3 B JOT Hi Hi T
;

estimate is referred to a$;(k|t).
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wherezxj (kt—1) is the covariance matrix associated Equation (23) can be used to compute the squared er-

with thea priori state estimatg(k|t—1). Zj; (k|t) is

rors of both the unconstrained estimatg$,(k|t), and

the diagonal matrix that defines the active constraints. the constrained estimates; (K|t), usmgx“*(k|t) and
There are several methods, most of them itera- xJC*(k|t) respectively.

tive, for determining the matri¥;, (k|t), or equiva-

lently the set of active constraints. Here, the active set 3.4 Computational |ssues

method presented in (Fletcher, 1987) will be used.

As in the unconstrained casepriori information

may be discarded by settir@Tl(kh—l) to 0. The

Concerning computational requirements, it is noticed
that there can be as manyrs dms which becomes

corresponding constrained state estimate is referred toan extremely large number even for relatively small

asx (K[t).

3.3 Discrete Mode Sequence Estimator

andT. So, computationally demanding calculations
should be preformed for the minimum numbeulofis
possible.

Analyzing the required computations one con-

The DMSE deals with the estimation of the discrete cludes thatx™(k|t) can be determined by simple
mode sequence and, consequently, selects the filtematrix sums and multiplications if the filter gain
which will provide the final continuous state estimate. Kj; (k|t—1) is computed off-line, since there are no
According to the least-squares philosophy, an ap- varying terms as can be seen in equation (9). The cor-
proximation of the measured output sequence is com-responding squared erroE (k|t), computed through

puted for every possibldmsand then, the one pro-

equation (23), can also be determined using simple

viding the smallest squared error should be selectedmatrix sums and multiplications fronf’Tk|t). The

as the least-squares estimate.

continuous state estimatg (k|t) on the other hand,

The dmsestimate is then selected as the one that requires a matrix inversion to determine the corre-

presents the lowest constrained squared ermfgr
i (Kt) =

The squared error assomated with thasj is given
by:

arg mlna - (KIt) (29)

ayr (Kl = 1%, () ¥r (09 3.
“ T
- [Y;; (lt) —YT(k)} ! [Y,—i;(k|t) —YT(k)}
(20)
where:
Yir (KIt) = Cir % (ki) + DUt (K +g;; - (21)

andx’, (k[t) is the estimated state of tiunsjt when
all past information is discarde(iZng(kh—l) =0).

The squared errors computed by equation and (20)
are useful when comparing continuous state estimates
from the sameaims However, when the covariance
matrices are different, an additional factay, , must
be considered to allow a meaningful comparison be-
tween squared errors. Recalling the relation between
least-squares and the maximization of the Gaussian

likelihood function (or its logarithm), the value of .
should be defined as:

_ 1
a, = —3In(@n™det(zy,))  (22)
Equation (20) should be modified to:
2
atjr (KJt) = 0+ [ (Kit) — YRz (23)
IT

spondlng filter gain using equation (10) since the ma-
trix Zy (k|t 1) is not known in advance.

The constrained estimates require much more
complex computations in the solution of the inequal-
ity constrained least-squares problem. An iterative
algorithm has to be preformed online, and involves
one matrix inversion at each iteration which is com-
putationally heavy. There is the possibility that the
solution corresponding to the tru#msis the same
as the unconstrained solution and the iterative algo-
rithm stops at the first iteration. In general, how-
ever, this will not be the case. So, the computation
of constrained solutions should only be done in cases
of absolute necessity. The squared error of the con-
strained estimatesf (Kt) can be determined using
simple matrix sums and multiplications froxft (k|t).

The proposed algorithm should take these knowl-
edge into account and arrive at the final estimates in
the most efficient way possible.

To avoid the computation of the constrained least-
squares estimates from all discrete mode sequences,
the following relation between the constrained and
unconstrained squared errors for a given discrete
mode sequence is used:

a, (Klt) < of, (K1) (24)

An efficient reduction on the number of constrained
estimates that have to be computed can be achieved
by computing all unconstrained estimax#é(mt ) and

the corresponding squared errm‘#(kh) and then,
start replacing the unconstramed solutions with the
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corresponding constrained ones, from the lower val- and, the continuous state estimai5Kjt) and the

ues of the squared error. Whenever the lowest squared,a|yes of the estimated input disturbandgs(k|t) for
error corresponds to a constrained solution, the algo-the gmswhose squared errors have been computed,
rithm stops since no further reduction of the squared jncluding thedms estimate. These quantities allow
error can be done. The discrete mode sequence andhe computation of tha priori continuous state es-

to that lowest squared error. . estimate at the following time instant:
This algorithmic procedure may provide a sub-

stantial reduction in the number of inequality con- R (t+1]t) = (Aj<t) ,,,Aj(k))ﬁj*T(k|t)+
strained least-squares problems to be solved since the

increase in the squared error should be small, or even [Aj(t) Ajks1)Bis -+ Bj(t)} Ut (K)+

zero, for the truedms However, the unconstrained R

solutions of incorrecims may have low squared er- [Aj(t) AWk 5 V\/j(t)}V\éT(k“)-‘r

rors, which rise substantially only when the respective

constrained solutions are computed. An efficient pro- (Aj - Ajr) fjag +--+ fj(t))

cedure to detect these incorretins before comput- (26)

ing the respective constrained estimates would reduce . ] o

the computational requirements even more. This estimate can be used to obtain some insight on
To further improve the algorithm, the followirg f[he Ilke_Ilhood of the Q|screte mode_ at the next time

matrix must be introduced. Each coeffici@ntj, of ~ instantj(t+1). The discrete modegt+1) can be

the matrix3 is defined as the maximum valueaf sorted by ascending values of:

under whichaf. is always smaller thaoy; , or in an Vi (t+1]t) =

even more restrictive way, under whigh is never

the estimated sequence. The coefficights, can maX<Sj X (t+1|t)+Rju(t+1)+QjW(t+1|t)—Tj)
be computed off-line by the following optimization (27)
problem, which falls in the general class of Second-

Order Cone Programs for which efficient solvers have The value ofa{t+1) should be set to fw;}.

already been developed, for instance, by (Alizadeh  The discrete modeft+1) that provide the lower

and Goldfarb, 2001): values ofy;; j(t+1|t) correspond the discrete mode
Birjr = min af (Yr,Ur) sequencefy = {j(k+1),....j(t), j(t+1)} attime in-
. ’ yrUur T stantt + 1 most likely to succeed - at time instant
subjectto : o5 t
Ur e UT (25) Applying this methodology to the discrete mode

sequence estimate at the previous time instack|t),
should providedmswith very low squared errors that
By this definition off3j; j;, when the constrained so- discard most of the other candidaies The same
lution of admsiy is computed, aldmsjt such that  reasoning should be applied to all other discrete mode
Birjr is greater thamf (k|t) can be discarded. This sequences of the previous time instant that have not
algorithmic procedure provides an even greater re- been discarded yet, starting from the ones that present
duction on the number of constrained problems to be Jowest squared errors and then the ones with the low-
solved. Notice that this procedure does not even re- est bounds.
quire the computation of the unconstrained solutions
of thedmsto be discarded.

Both previous modifications to the algorithm re-
quire the existence of one constrained solution to dis- 4 EXPERIMENTAL
card any otherdms Furthermore, the number of APPLICATION
discardeddms depends on the quality of the con-
strained solution. In the following, some attention To demonstrate the applicability of the hybrid estima-
will be given to the recursiveness of the DMSE and tion algorithms, the laboratory setup of the DTS200
the methodology to determine ta@sthat will most  three-tanks system from AMIRA (Amira, 2002)
likely provide good constrained estimates. will be used to simulate different situations common

At a given time instant+1 the following quanti- in hybrid estimation. A photo of the three-tanks sys-
ties have been computed at the previous time instant:tem is presented in figure 2 showing the different
the discrete mode sequence estimatgk|t), the components of the experimental setup. The plant con-
squared errors (or lower bounds) of dlhs cijT (k) sists of three plexiglas cylinders or tanKg, T, and

ir=jr
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Tz with similar cross section. These are connected in
series with each other by cylindrical pipes with cross f@:\
sectionS,. Located afT; is the single so called nom-
inal outflow valveVy which also has a circular cross
sectionS,. The outflowing liquid (colored distilled
water) is collected in a reservoir, which supplies the
pumpsP; andP,. Here the water circuit is closed.
hmaxdenotes the highest possible liquid level in any of
the tanks. In case the liquid level ®f or T, exceeds
this limit the corresponding pump will be switched
off automatically.Q; andQ; are the flow rates from
pumpsP; andP,, respectively.

Q“l
|
—

Figure 3: Final model of the three-tanks system.

valve with no possible faults, while Valvéég, Vo3
andVp will remain closed and so can be considered to
be nonexistent.

The system can exhibit a large number of differ-
ent dynamics, depending on the state of each discrete
variable. The full hybrid model description of the sys-
tem can be found in (Pina, 2007).

4.1 Estimation of the Fault in Valve Vg

Figure 2: The three-tanks setup. In this example, the estimation algorithm will have
to estimate the discrete mode that indicates a fault on
The pump flow rate®; andQ, and the positionof  valveVig. As the analysis will focus on val\ég, the
the valvesd/is, Vas, Vo, V1o, Voo, Vao, denote the con-  faults on valveV 13 and sensohs will be considered
trollable variables, while the liquid levels bf, hp and nonexistent. A single test will be performed where
hs are the output variables. The necessary level mea-various situations arise and are then analyzed sepa-
surements are carried out by piezo-resistive differencerately. The system is excited according to the discrete
pressure sensors. There are also potentiometric senvariables presented in table 1. Various positions for
sors that measure the position of each valve. The senthe valveV g are considered, corresponding to differ-
sor signals are preprocessed to the intef@al] and ent intensities of the fault.
so need to be adjusted 10;hnay for the water lev-

els. For the remainder of this section the three-tanks Table 1: Evolution of the discrete variables.
system will be adapted so that more realistic hybrid  —meg 525 T 5095 T 0135 T 501995 T 200289 T 750300
estimation problems can be studied while simultane- Vio | ok | Ty | faly | auy’ | fauy | o€
ously simplifying the presentation of results. The new N T B B S
model is presentin figure 3 where the elementsingrey oo —o—T—o
are assumed to be nonexistent, the elements in green 21— ——oor o —oser

are fully operational and the elements in red may be

subject to faults and will be used to model input dis- The measured outputs and the estimated water lev-

turbances. els are presented in figure 4, where the influence of the
PumpP; is considered to be a fully operational intensity of the fault can be clearly seen.

on/off valve. ValveVys will have two nominal values The real (observed) and estimated values of the

“on” and “off”, while Valve Vio will remain closed. fault using the IMM algorithm are shown in figure 5.
Both these valves are subject to a possible fault re- As the fault in valveV g takes one time instant to be
sulting in an unmeasurable flow to cross them and de-reflected in the water level measurements, only the
scribed as an input disturbance. The water level sen-value of fy,,(k — 1|k) is relevant. Note thafy,,(k —

sor of tank 3 can also be subject to a fault. The Valve 1|k) is a discrete variable that takes value 1 when a
V30 is considered to be a fully operational “on/off” leak occurs, and value 0 when there is no fault.
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Measured / Estimated water levels hl s h3 4.1.1 Case 1- Fault | nactive

61. —Observed
—IMM

sor MHE 1 For time intervalg0 ; 50[s and[ 250 ; 300 s valveV g

1 remained closed and the fault is considered inactive.
Despite being inactive, there is still a possibility of
a wrong estimate reflected on the value of the dis-
crete variablefy,,. However, as shown in figure 7,
the valve’s true state was correctly estimated during
0 20 300 these time periods.

0 50 100

150
Time k (s)

Figure 4: Water levels estimation using the IMM and MHE
estimation algorithms. 615

Measured / Estimated fault in valve V10
—— Observed 10
—IMM h3
1k ]

U 1] /I || B —
0

1
200 250 300 0.5

(k=1]k)

%

f

. .
0 50 100 150
Time k (s)

Figure 5: Estimation of the discrete mode sequence relative 08
to the fault in valveV . o5 o os:

10 61.5
h em

The corresponding estimated continuous input 1
disturbances by both algorithms are shown in figure Figure 7: Map of probability of correct mode estimation,
6. As the fault in valveV o takes one time instantto  with 1s delay, when valv¥/ 1 is fully closed. (Red - prob-
be reflected in the water level measurements, only theability of correct mode estimation 0, Blue - probability of
value ofwy,,(k— 1|k) is estimated. The variabiey,, correct mode estimation 1)
determines the leaking flow and is considered to be a
uniformly distributed random variable defined in the
interval [—0.4;0.4] cm, with zero mean and variance

2 H i
98 cn? for all k, where 08 is the maximum water

level change when the valWé is fully open.

Figure 7 shows that if the valwé,g is closed there is

no possibility of estimating a discrete mode sequence
corresponding to an open valve condition. Thus the
inactive fault is always correctly estimated.

Estimated input disturbance w,

Vio 412 Case?2 - Fault Activewith Intermediate
04 ‘ : : {—mm Intensity
= MHE
gec vi WFVUW‘WWAV'V"W"'"!‘M . . "
* The valveV g has an intermediate open position dur-
o 50 w0 150 200 250 300 ing time intervalg 50 ; 100's and[150 ;200 's allow-
fime @ ing an unmeasured flow to cross it. In this case, a fully
Figure 6: Estimation of the input disturbanag,,(k — 1|k) closed valve was estimated by the IMM algorithm in
corresponding to the fault in valéq. several time instants. These wrong estimates are un-

derstandable since the effect on the water level of tank
The difference observed in both algorithms for the 1 is not too drastic and can be mistaken by any other
estimation of the disturbane®,,(k— 1|k) shows that  source of uncertainty, like measurement noise for in-
the MHE algorithm is not able to weight the distur- stance. This difficulty in discerning whether the valve
bance with any prior value so allowing it to change is slightly open or fully closed is patent in the map of
freely, which increases the variation of the input dis- probability of correct mode estimation shown in fig-
turbance estimates. ure 8. It can also be concluded that the probability
The estimation results presented in figures 4 and 5 of an incorrect estimation of the valve’s condition in-
will now be analyzed independently for the 3 consid- creases as the water level of tank 3 becomes lower.
ered valveV g fault intensities. The map of probability of correct mode estimation
is not able to show the existing dependence between
the probability of correctly determining the valve's
condition and its real position. It is clear from figure
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Figure 9: Map of probability of correct mode estimation,
with 1s delay, considering that fauly,, has maximum in-
tensity,wy,, = 0.4. (Red - probability of correct mode es-
timation 0, Blue - probability of correct mode estimation
1

Figure 8: Map of probability of correct mode estimation,
with 1s delay, when faulfy,, is active. (Red - probability
of correct mode estimation 0, Blue - probability of correct
mode estimation 1)

4 that the valveV1g is more closed during the time

interval [50 ;100(s than in[150 ;200s. This fact 9 CONCLUSIONS

is reflected in a higher number of incorrect mode se-

guence estimations in case the valve remains closer toThis paper presented an efficient hybrid estimation al-
its nominal closed position. The following case will gorithm based on an IMM setup composed by a set

further explore this dependence. of least-squares filters. The computational efficiency
. . . is obtained by some algorithmic procedures that dis-

4.1.3 Case3- Fault Activewith Maximum card many candidateéms before performing heavy
Intensity computations. These procedures rely on the early de-

termination of good estimates, on the separation of
If valve V1o is fully open it becomes much easier constrained and unconstrained estimates and on some
to determine its position, thus allowing the IMM al- bounding parameters for the squared errors.
gorithm to provide correct estimates for the discrete The IMM was able to provide accurate online es-
mode sequence during time intervgl90;150s and  timates for both continuous states and discrete vari-
[200;25(s. This is quite obvious since the effect on aples when applied to the hybrid model of the bench-
the water level of tank 1 is very intense and can not mark AMIRA DTS200 three-tanks system experi-
be mistaken by any other source of uncertainty. This mental setup. The potential of the IMM algorithm
result is depicted in figure 9. was demonstrated when comparing its computational
This map of probability of correct mode estima- efficiency with the MHE with unknown inputs algo-
tion was computed considering an hypothetical model rithm for a fault detection problem.
for the system where valvé;o can only be fully open One of the most relevant issues that influence the
or fully closed. computational efficiency of hybrid methodologies has
~ Figure 9 shows that when the faul,, has max- o do with the high number of discrete modes that
imum intensity,w;, = 0.4, it is always correctly es- gy tipically involved in a medium size hybrid system
timated. However, further results have shown that for ,odel. This fact eventually turns most of the prob-
very low water levels in tank 1 the difference between |ems untractable. For the case of the three-tanks sys-
a fully open or fully closed valve are reduced, being tem experimental setup, it was noticed that the con-
even undetectable when the tank is empty. This is ex- sigeration of all three tanks in the same hybrid model
plained by the fact that the maximum fault intensity requires huge computational resources. Thus, authors
allowed by the modelm,, = 0.4, can notbe achieved  pejieve that a multi-agent modeling architecture can
in practice when tank 1 is almost empty but rather sjgnjficantly simplify the all model complexity while
whenitis full. being able to retain its full hybrid dynamical flavour.
As the size of the problems to be solved with hy-
brid systems grows exponentially with the number
of discrete modes involved, multi-agent architectures
may be the solution to the huge complexity of hybrid
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methodologies, thus being a very interesting and pos-

sibly fruitful research topic.
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