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Abstract: Synchronization of distributed clocks is a critical task in many real time applications over Ethernet. The 
Ethernet protocol, due to its non-deterministic nature, is not suitable for real-time applications with very 
strict synchronicity requirements. However, the limit is continuously being pushed outwards by current 
research. The Precision Time Protocol (PTP), delivered by the IEEE 1588 standard, provides high 
synchronization accuracy and has been adopted in many real time applications in the areas of industrial 
automation, measurement & control, communications etc. This paper will discuss several issues aimed at 
improving the synchronization performance. 

1 INTRODUCTION 

Ethernet (IEEE 1997), due to its cheap cabling and 
infrastructure costs, high bandwidth, efficient 
switching technology and better interoperability, has 
been adopted in various areas to provide the basic 
networking solution. Many Ethernet-based 
applications require the networked clocks to be 
precisely synchronized. Typical examples include 
base station synchronization for handover or 
interference cancellation in telecommunication 
networks (Nieminen 2007), distribution of 
audio/video streams over Ethernet based networks 
(IEEE 2007a), and motion control in industrial 
Ethernet (Chen 2005). Standard Network Time 
Protocol (NTP) (Mills 1989, 1994) synchronization 
over Ethernet provides synchronization accuracy at 
the millisecond level, which is appropriate for 
processes that are not time critical. However, in 
many applications, for example base station 
synchronization or motion control, where only sub-
microsecond level synchronization errors are 
allowed, a more accurate synchronization solution is 
needed. The Precision Time Protocol (PTP) of the 

IEEE 1588 standard (IEEE 2002) published in 2002, 
is a promising Ethernet synchronization protocol, in 
which messages carrying precise timing information, 
obtained by hardware time stamping in the physical 
layer, are propagated in the network to synchronize 
the slave clocks to a master clock. 

Factors that affect the synchronization quality 
achievable by PTP include the stability of 
oscillators, the resolution of message time stamping, 
the frequency of synchronization message 
transmission, and the propagation delay variation 
caused by the jitter in the intermediate elements. The 
synchronization error can be reduced by carefully 
studying the sources that contribute to the error, by 
choosing the most suitable implementation of PTP 
for a specific application and by designing efficient 
synchronization algorithms that make use of all 
available information provided by the PTP protocol.  

Some work has been done to enhance the 
performance of IEEE 1588 taking the mentioned 
factors into consideration. The authors of 
(Jasperneite 2004) introduced the transparent clock 
(TC) concept to replace the so-called boundary clock 
(BC). BCs adjust their own clock to the master clock 
and then serve as master clocks for the next network 
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segment. Cascaded control loops are generated, 
which might lead to instabilities and deviation of the 
distributed clocks. Using TCs, intermediate bridges 
are treated as network components with known 
delay, which is compensated in the carried timing 
information. By doing this the synchronization at the 
time client is not dependent on the control loop 
design in the intermediate bridges. Hence 
performance is improved. The TC concept has been 
adopted in the new draft of IEEE 1588 published in 
2007, and is used in this paper. In (Na 2007) we 
analyzed the influence of jitters and frequency drift 
and made suggestions for designing the parameters 
for higher synchronization accuracy. This study was 
extended in (Na 2008), where an algorithm to reduce 
the error was introduced. 

In this paper, we discuss how to efficiently use 
the PTP messages to improve the synchronization 
performance, i.e. convergence speed and error. 
Problems arise when there is non-negligible 
frequency drift. In this case, clocks should first be 
syntonized, i.e. their frequency difference should be 
estimated and appropriate control applied to remove 
it. We study and compare different syntonization 
methods, and propose an improved solution for the 
syntonization and synchronization. Appropriate 
simulation results verify our analytic study. 

The paper is organized as follows: Section 2 
introduces the system model and briefly describes 
the PTP protocol. Section 3 introduces two methods 
for syntonization, master and peer frequency ratio 
estimation. In Section 4 we compare these methods 
and propose a synchronization algorithm which is 
based on both methods in section 5. Simulation 
results are presented in Section 6.   

2 SYSTEM MODEL  

Fig. 1 illustrates the time synchronization in a 
system with cascaded bridges. 1+N elements are 
connected in a line topology. The first element is the 
time server, also called (grand)master, which 
provides the reference time to the other N elements, 
called slave elements, via time-aware bridges (TCs). 
The master element periodically sends Sync 
messages which carry the counter state of the master 
clock stamped at the time of transmission. The 
interval between two consecutive Sync messages is 
T . The ith Sync message, generated by the master 
element at time it , consecutively passes through all 
slave elements. Quantities, certain or uncertain, 
linked with the Sync message transmitted by the 

master at time it  are labelled by the superscript i . 
We call the propagation time between the nth slave 
and its preceding element line delay and denote by 

i
nLD  (also known as peer-to-peer delay in PTP). 

 

 
(a) Network topology 

 
(b) System parameters 

Figure 1: System Model. 

The message will be forwarded to slave element 
1+n  via a time-aware bridge after the  bridge delay 
i
nBD . We define i

nLB  to be the sum of line delay 
plus bridge delay of Sync message i  at slave n . As 
the line delays and bridge delays are not necessarily 
constant in time, we define 1, −−= i

n
i
n

ni
LB LBLBδ  to be 

the difference between the true LB value at slave n  
that affected Sync messages i and 1−i . All the 
delays we have mentioned up to now are defined in 
the absolute time. A delay D measured by a local 
clock takes the form fD ⋅ where f is the clock 
frequency (this product is replaced by an integral in 
the case of frequency drift). 

The transparent clock synchronization protocol is 
depicted in Figure 2.   

slave n-1 slave n slave n+1

Sync message i i
nS

Sync message i 1
1

−
+

i
nS

i
nBD

i
nLD

Follow_up i

slave n-1 slave n

Pdelay_request

Pdelay_response

j
outreqnS _,

j
inreqnS _,1−

j
outrespnS _,1−

j
inrespnS _,

Line delay estimation Propagation of Sync messages  
Figure 2: Illustration of PTP with transparent clocks. 

The PTP has a master/slave structure. Timing 
information is packaged in special telegrams and 
propagated along the network. The synchronization 
relies on two processes, the delay estimation process 
and the timing propagation process. The delay 
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estimation process relies on 4 time-stamps, 
j

outreqnS _, , j
inreqnS _,1− , j

outrespnS _,1−  and j
inrespnS _, : 

slave n  sends a delay request message to slave 
1−n  (which is the master in the case of slave 1) and 

records its time of departure (1st). Slave 1−n  (or 
master) replies with a delay response message which 
reports the time-stamps of receiving the delay 
request message and sending the delay response 
message (2nd and 3rd). 

Slave n  records the time it receives the response 
message (4th). If slave n  and 1−n  have the same 
clock frequency or the frequency drift is negligible, 
the line delay can be calculated by: 

( ) ( )
2

)(ˆ _,1_,1_,_,
j

inreqn
j

outrespn
j

outreqn
j

inrespnj
n

SSSS
LDS −− −−−

=  (1) 

where )(ˆ LDS j
n is the jth estimated line delay using 

slave n ’s local clock (and equal uplink and 
downlink line delays are assumed).  The true line 
delay, measured in slave n ’s local clock ticks, is 

nS
j

n
j

n fLDLDS ⋅=)(  for constant frequency. 
In the timing propagation process each slave 

propagates the timing information of the master and 
uses that information to adjust its own clock. The 
master sends out a Sync message which contains the 
timestamp M  when this message was sent. A more 
precise timestamp of the transmission of the Sync 
message will be sent by a so-called “follow-up 
message”. Slave 1 forwards the Sync message to 
Slave 2, augmenting its content by the sum of its line 
and bridge delays (converted to master time – it will 
be explained presently how this is done), effectively 
transmitting its estimate of the master time for the 
time-instant of forwarding. This process is repeated 
in each slave until the message reaches the time 
client.  

Consider for the moment that all the clocks have 
the same frequency. Then the updating of the 
content in slave n  (i.e. his estimate of the master 
time) follows: 

)(ˆ)(ˆˆˆ
1 BDSLDSMM i

n
i
n

i
n

i
n ++= −

 (2) 

where )(ˆ LDS i
n comes from the line delay estimation 

in (1). The bridge delay )(ˆ BDS i
n  is taken to be 

precisely known by using the time stamped at the 
reception and the forwarding of the Sync message. 

Equation (2) can be used for proper time 
synchronization only if all clocks have the same 
frequency for all the time. If there is frequency 
difference between the clocks, the last two terms in 
(2), corresponding to the slave’s counter increase 
during the two delays, are not equal to the counter 
increase during this time of the master clock. 

Therefore, it is not suitable to use local time to 
update the master clock estimate, as shown in (2). 
To solve this problem, it is necessary to estimate the 
frequency offsets, i.e. syntonize the clocks.  

3 SYNTONIZATION AND 
SYNCHRONIZATION IN PTP 

As discussed in the previous section, if there are 
clock frequency drifts or the clocks have different 
frequencies, (1) and (2) are unsuitable for time 
synchronization. The problem with the line delay 
estimation in (1) is that j

outrespnS _,1− and 
j

inreqnS _,1− are measured by the clock in slave 1−n , 

whereas j
inrespnS _, and j

outreqnS _, are measured by the 
clock in slave n . To convert all into the same 
metric, the frequency difference between slave 1−n  
and n , i.e. neighboring slaves, needs to be known. 
And in (2), the last two terms should be translated 
into master time, i.e. the frequency difference of 
grandmaster and the slave needs to be known.  

We define the rate compensation factor (RCF, 
also called rate ratio, (IEEE 2007b)) to be the ratio 
between the frequencies of two different clocks. We 
use YXRCF /  to denote the frequency ratio between 
X and Y, i.e. YXYX ffRCF =/ . Then the correction 
of (1) is: 

( )

( )
2

2
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_,_,

−
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−
−

=

−− nn SS
j
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j
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SS
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(3) 

The master counter estimation equation of (2) 
should be changed to: 

( )
( )
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i
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i
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1)(ˆ)(ˆˆ
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=⋅++=

−

−  
(4) 

To compute RCF, observe that a time interval 
measured by two different clocks will result in 
different clock counter values. RCF can be 
calculated as the ratio of the clock counter values. 
The same time interval tΔ  is measured by clock 1 as 

11 ftC ⋅Δ=Δ , and by clock 2 as 22 ftC ⋅Δ=Δ . 
Then, if the propagation time (latency) of messages 
was always the same, RCF could be precisely 
computed as 12 CC ΔΔ  of two consecutive messages, 
since then their inter-departure and inter-arrival 
interval would be the same. In reality this is not the 
case, so a number of obtained RCF values have to 
averaged, to remove as far as possible the zero-mean 
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error due to the latency variation. The effects of 
congestion are minimized by assigning highest 
priority to the IEEE 1588 messages. 

In the rest of this section, we introduce two 
methods which estimate

1/ −nn SSRCF and MS n
RCF /  

respectively
nSMRCF / . Both methods are based on the 

timing information carried in PTP messages, but use 
it in different ways.  

3.1 Peer RCF Estimation 

The RCF of neighboring elements can be estimated 
using two consecutive delay estimation messages, as 
depicted in Fig. 3.   

slave n-1 slave n

Pdelay_request j

Pdelay_response j

j
outreqnS _,j

inreqnS _,1−

j
outrespnS _,1−

j
inrespnS _,

Local RCF estimation

Pdelay_request j-1

Pdelay_response j-1

1
_,

−j
outreqnS1

_,1
−
−

j
inreqnS

1
_,1

−
−

j
outrespnS

1
_,

−j
inrespnS

 
Figure 3: Peer RCF estimation. 

1/ −nn SSRCF  can be calculated as: 

1
_,1_,1

1
_,_,

/ 1 −
−−

−

−

−
=

− j
outrespn

j
outrespn

j
inrespn

j
inrespn

SS SS

SS
RCF

nn

 (5) 

Since the RCF calculated in (5) reflects the 
frequency difference of the neighboring elements 
and the estimation is only based on the message 
between neighboring elements, we call it peer RCF. 

For the master time estimation, we need 
MSn

RCF / (or
nSMRCF / ), which can e.g. be 

calculated by using the peer RCFs calculated in the 
previous elements, i.e. slave 1 to 1−n :  

∏
=

−

−

⋅=

⋅⋅==

n

i
SSMS

S

S

S

S

M

S

M

S
MS

ii

n

nn

n

RCFRCF

f
f

f
f

f
f

f
f

RCF

2
//

/

11

11

21 …  
(6) 

We call the RCF calculated this way cumulative 
RCF. To calculate MSn

RCF / , slave n  needs to 
collect all the peer RCFs in its uplink. This can be 
achieved recursively by modifying the Sync 
messages so that they contain not only the time 
information but also the cumulative RCF. So slave 
n  calculates MSn

RCF /  by multiplying the cumulative 

RCF contained in the Sync message from slave 
1−n with its peer RCF, i.e.: 

11 /// −−
⋅=

nnnn SSMSMS RCFRCFRCF  (7) 

3.2 Master RCF Estimation 

The RCF can also be estimated using exclusively the 
timing information contained in the Sync messages. 
This is illustrated in Fig. 4. 

slave n-1 slave n

Sync message i-1 

1
1

ˆ −
−

i
nM

Sync message i 

i
nM 1

ˆ
−

Follow_up i-1 

Follow_up i

1−i
nS

i
nS

 
Figure 4: Master RCF estimation. 

The estimation of 
nSMRCF / can be achieved by: 

1

1
11

/

ˆˆ
−

−
−−

−
−

= i
n

i
n

i
n

i
n

SM SS
MMRCF

n

 (8) 

Since (8) calculates directly the ratio of the clock 
frequencies of the grand master and a slave, we call 
it master RCF calculation. 

The frequency ratio of two neighboring slaves 
i.e. 

1/ −nn SSRCF  is then obtained as the quotient of 
the two master RCF values: 

n

n
nn

SM

SM
SS RCF

RCF
RCF

/

/
/

1
1

−

−
=

 
(9) 

4 MASTER VERSUS PEER RCF  

In this section, we will compare the two RCF 
calculation methods introduced in the previous 
section based on two criteria: convergence speed of 
the synchronization and the synchronization 
performance in the case of constant frequency drift. 

4.1 Evaluation of Convergence Speed 

Next we ask how much time a slave element needs 
to get the first correct timing information of the 
master since the start of the synchronization. Eq. (4) 
shows that an element has to have correct estimates 
of line delay and 

nSMRCF /  in order to provide its 
downlink slave the correct master clock estimate. 
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Master RCF, 
nSMRCF / , is calculated using (8), 

and at least two Sync messages are needed. For 
correct line delay estimation, 

1/ −nn SSRCF is 

necessary. It is calculated via (9) after 
nSMRCF / and 

1/ −nSMRCF are available. So, line delay estimates are 
correct after at least two Sync messages are 
received, and therefore a slave gets a correct master 
time estimate at the earliest after 3 Sync messages. 

For peer RCF we first calculate 
1/ −nn SSRCF using 

line delay estimation messages. Once 
1/ −nn SSRCF is 

available, line delay can be calculated. Since 

1/ −nn SSRCF and line delays are calculated locally, 
the estimation can be done in parallel, which 
accelerates the convergence speed. If the first Sync 
message is sent out when the first line delay is 
finished, it can carry all correct information to the 
slaves so that the slaves can estimate the master time 
correctly. Another advantage of peer RCF is its 
invariance to a change of (grand)master. The 

1/ −nn SSRCF  and line delay estimations are not 
affected, whereas in the master RCF calculation 
case, two Sync messages from the master are needed 
for the line delay estimation. So it always takes more 
time for synchronization via master RCF methods to 
converge if a new master is elected in the network. 

4.2 Synchronization Performance for 
Constant Frequency Change 

Next we compare the two RCF estimation methods’ 
ability to track the frequency drift in the master. 

We investigate the scenario where the master 
frequency is uniformly changing, e.g. due to heating, 
and the clock frequencies at the slaves stay constant. 
For analytic simplicity transmission and reception 
jitter is neglected, and hence the line delays can be 
perfectly determined. They are not neglected in our 
simulation in Section 6. Fig. 5 plots the frequency of 
each element as a function of the absolute time. 

fM

fS1

fS2

freq

timet0  
Figure 5: Frequency profile in master heating scenario. 

The frequency of all elements is constant until 
0t , then the frequency of the master element 

increases linearly. In the case where the frequency 
change depends nonlinearly of the underlying cause, 
our analysis can be seen as a local first order 
approximation. 

Let the slope of the frequency change of the 
master clock be MΔ . So the master’s frequency 
follows: 

0111  with )()()( ttttttftf iiiiMiMiM >>−⋅Δ+= −−−
 (10) 

where it is the time when the ith Sync message is 
transmitted by the master. The counter value 
increase of each element from time 1−it  to it  is 
obtained by integrating the element’s frequency over 
the interval ( )ii tt ,1− . For the slave element, whose 
frequency is constant, the counter value evolves as: 

)()()( 11 −− −⋅+= iiSii ttftStS  (11) 
For the master element, the counter value 

increase is calculated as: 

[ ]

2
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2

)()(

)()()()()(
11

−−−

−−−

−⋅
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t

t
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t
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i

i

i

i

 
(12) 

Due to the linearity of the frequency change, (12) 
can be alternatively expressed as the product of the 
frequency in the middle of the time interval times 
the interval length, which is sometimes a more 
useful form: 

( )1
1

1 2
)()( −

−
− −⋅⎟

⎠
⎞

⎜
⎝
⎛ −

−=− ii
ii

iMii tttttftMtM  (13) 

The error study for the synchronization with 
master RCF calculation can be found in (Na 2007, 
2008), where we derive the general expression for 
the error in the master counter estimate of slave N , 
at the time when it forwards the Sync message to 
slave 1+N . For simplicity of derivation, here we let 
all line delays and bridge delays be constant in time 
(the general expression can be found in (Na 2008)). 
Then in the time period of unchanged frequency 
gradient the error in the master counter estimate of 
slave N takes the form: 

⎥⎦
⎤

⎢⎣
⎡

∑+∑⋅⋅
Δ

≈−
==+∑

=

2

11
)(

2
ˆ

1

N

n

i
n

N

n

i
n

M

LBt
outS LBLBTMM N

n

i
ni

N

 
(14) 

where )(tM is the true counter value at time t , and 

M̂ is the estimated one. 
We use Fig. 6 to illustrate the error in (14). The 

area under the linearly rising master frequency Mf  
corresponds to the true master counter. The white 
portion thereof is the estimated master counter value 
at slave 2, which is the sum of the master counter 
value in the original Sync message plus the product 
of local delay times RCF estimate at each slave. It is 
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based only on the master frequency curve between 
2−it  and it , shown solid, and holds regardless of the 

further gradient, shown dotted. The gray area is the 
estimation error in (14), which has two parts. The 1st 
is proportional to the time elapsed between Sync 
messages, and to the total delay (grey rectangles in 
Fig. 6); the 2nd is the sum of squares of local delays 
(grey triangles in Fig. 6). We see that the 
propagation of Sync messages let the slave elements 
partially follow the recent-past frequency change of 
the master. As the calculation of RCF uses two 
consecutive Sync messages, slave elements learns 
the trend of the frequency change of the master from 
the counters delivered in these two Sync messages. 

fM

fS1

fS2

freq

timet0

T

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +⋅++⋅

Δ
=

2
22

2
112

iiiiM LBLBTLBLBTError

iLB1

iLB2

estimation error

ti-1

ti

 
Figure 6: Sync error at the second slave (using master 
RCF). 

For the synchronization with peer RCF, the Sync 
messages carry the cumulative RCF which is a 
product of the peer RCFs. Since the frequencies of 
all slaves stay constant, their peer RCFs, i.e. 

1/ −nn SSRCF (n=2 … N) don’t change and are: 

1
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−
=
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n

nn
S

S
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(15) 

A Sync message sent at time it  by the grand 

master arrives at slave 1 at time i
i LDt 1+ . To 

estimate the master time, slave 1 needs the latest 
peer RCF and line delay estimates. Suppose that for 
some j with ijj tttt ≤<< −10 , the estimation was 
done based on the delay response message received 
at 1

11
−

− + j
j LDt  and j

j LDt 1+ . Then the peer RCF 
between slave 1 and the grandmaster is estimated as 
in (11) and (13): 
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(16) 

The error in this estimation is due to the small 
variation in line delays due to jitter. Inserting (15), 
(16) in (7),  the cumulative RCF for each slave is: 
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(17) 

The master counter value estimated at each slave 
when it forwards the Sync message according to (4) 
with the help of cumulative RCF is: 
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(18) 

We have assumed that the line delay estimation 
is correct. The true master counter value 
corresponding to this time point is: 
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Comparing (18) with (19), the estimation error 
using cumulative RCF is: 
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and is shown in Fig. 7 (grey area) for the 2nd slave.  
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Figure 7: Sync error at the second slave (using peer RCF). 

Compare the error expressions in (20) and (14): 
since 1−− jj tt (interval of delay messages) is usually 

greater than 1−−= ii ttT (interval of Sync messages), 
the 1st term in (20) is greater than the first term in 
(14). So are the 2nd terms. Our study shows that 
master RCF calculation performs better than peer 
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RCF calculation in estimating the master counter in 
the case of constant frequency drift in the master. 

5 IMPROVED SYNTONIZATION 
AND SYNCHRONIZATION  

In the previous section we have evaluated the 
performance of synchronization algorithms with 
peer RCF calculation and master RCF calculation. 
Peer RCF makes the convergence of synchronization 
faster, while master RCF tracks the frequency drift 
better. To improve the overall performance of PTP 
synchronization, we propose a method which 
combines both estimation methods.  

The improved synchronization algorithm 
contains two phases: initial phase and steady phase. 
The initial phase starts at a restart. Each slave 
estimates peer RCF, i.e. 

1/ −nn SSRCF and line delay 
locally using (5) and (3). The 1st Sync message is 
generated by the master.  

Between the 1st and the 2nd Sync message there 
are 2 options. Either cumulative RCF is transmitted 
in the 1st Sync message, in which case the slave 
elements calculate the cumulative RCF using (7) and 
then estimate the master counter value using (4). 
This has the advantage of a convergence sped up by 
one Sync interval, at the cost of allowing for 
transmission of cumulative RCF, for which there is 
however enough free space in the Sync message. Or, 
nothing is done until the 2nd Sync message.  

The steady phase begins with the 2nd Sync 
message. Since two Sync messages are now 
available, master RCF can be estimated as in (8). 
From the 2nd Sync message onward, master RCF 
will be used in (4) for the estimation of master 
counter value and the cumulative RCF will not be 
propagated any more. For the line delay estimation, 
we still use peer RCF calculation.  

By using peer RCFs and possibly cumulative 
RCFs in the initial phase, the time for convergence 
is shortened. In the steady phase, using master RCF 
provides higher synchronization accuracy.  

6 SIMULATION RESULTS 

We have developed a MATLAB simulation tool to 
test and analyze the synchronization performance of 
IEEE 1588 in a line with cascaded bridges. We have 
used this tool to simulate PTP in PROFINET 
(Jasperneite 2005). The model parameters, 
summarized in Table 1, are given by the Siemens 

Automation & Drive department. Comparative runs 
with other parameters have yielded similar results. 
In the simulation, the master temperature increases 
with a speed of 3K/s, resulting in a frequency drift of 
3ppm/s. The temperature change starts at 20s, 
increases from 25°C to 85°C in the next 20s, then 
stays constant again. The frequency of slave 
elements never changes. 

Table 1: Simulation settings. 

Parameter Value 
Number of elements 80 
Nominal Frequency 100MHz 

Cable delay 100ns 
Bridge delay Uniform [5 15]ms 

Temperature change 3K/s 
Frequency Change 1ppm/K 

Interval of Sync Message 32ms 
Interval of Pdelay_request 8s 
Interval of RCF calculation 200ms 
Number of RCF averaging 7 

 
In Fig. 8 we test the PTP synchronization with 

master RCF calculation, showing the 
synchronization errors for slaves 19, 39, 59 and 79. 
We observe large errors at the beginning of the 
synchronization. As discussed in Sect. 4.1 each 
element doesn’t get the correct master counter value 
until the 3rd Sync message arrives. There is a biased 
error between 20 and 40s, which is caused by the 
constant frequency change in the master clock. 
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Figure 8: Synchronization error when using master RCF. 

In Fig. 9 we repeat the simulation with peer RCF 
calculation. We see that the synchronization using 
peer RCF has a very smooth initial phase as the 1st 
Sync message already contains the correct 
information of RCF (by cumulative RCF) and line 
delay estimate. However, if we look at the time 
period between 20s and 40s when the frequency drift 
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in the master clock takes place, we observe a larger 
error (deviation from 0) than for the same slave in 
Fig. 8, which validates our analysis in Sect. 4.2.  
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Figure 9: Synchronization error when using peer RCF.  
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Figure 10: Synch. error with peer RCF and master RCF.  

In Fig. 10 we simulate the algorithm where peer 
RCF and master RCF are combined. We see a better 
initialization compared with the result in Fig. 8 and 
smaller error during the frequency drift compared to 
Fig. 9. This confirms the improved performance we 
expect for the combination of peer and master RCF 
calculation. 

7 CONCLUSIONS 

In this paper, we have introduced two methods that 
calculate the frequency ratio of two elements based 
on the information contained in PTP messages. The 
peer RCF calculation utilizes delay messages locally 
and leads to fast convergence. The master RCF 
calculation use Sync messages to calculate the 
frequency ratio between the grandmaster and the 
slave. It performs better when there is constant 
frequency drift in the master clock. It has been 

shown both through analysis and simulation results 
that a combination of both methods improves 
synchronization performance. Future work could 
illuminate the optimal combination of master RCF 
and peer RCF estimation for widely different system 
parameters or system requirements. 
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