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Abstract: The first difficulty when trying to evaluate with accuracy the video watermarking capacity is the lack of a 
reliable statistical model for the malicious attacks. The present paper brings into evidence that the attack 
effects in the DCT domain are stationary and computes the corresponding pdfs. In this respect, an in-depth 
statistical approach is deployed by combining Gaussian mixture estimation with the probability confidence 
limits. Further on, these pdfs are involved in capacity computation. The experimental results are obtained on 
a corpus of 10 video sequences (about 25 minutes each), with heterogeneous content. 

1 INTRODUCTION 

For property right identification purposes, the 
watermarking techniques insert a mark into some 
original media (e.g. a video). If the mark insertion 
does not result in visual artefacts, the method 
features transparency. If a pirate cannot eliminate 
the mark without damaging the marked video, the 
method features robustness (Cox & others, 2002).  

In practice, the better the robustness, the worse 
the transparency. In order to reach a balance 
between these two constraints, the mark is inserted 
into some spectral representations of the original 
data, e.g. in the DCT (Discrete Cosine Transform). 

A crucial issue is to compute the watermarking 
capacity, i.e. the largest amount of information 
which can be inserted into a video, for prescribed 
transparency and robustness. The watermarking 
capacity is computed as the capacity of the noisy 
channel modelling the watermarking method, 
Figure 1. According to this model, the mark is 
sampled from the information source. The detection 
is impaired by the noise sources: the original video 
itself and the attacks. The side information 
watermarking exploits the fact that the original video 
is known at the insertion but unknown at the 
detection. As such a noise source should not 
decrease the channel capacity (Costa, 1983), the 
attacks remain the restricting factor and their 
intimate knowledge would grant accuracy in 
capacity evaluation. The present paper focuses on 
some real life attacks and models their effects in the 

DCT domain. Note that attack modelling is not a 
trivial task. Actually, any mathematical approach 
should properly answer at least the following 
questions: 
1. Does a general statistical model for the 

considered attack effects, independent with 
respect to the video sequence, really exist?  

2. When considering an individual video sequence, 
does a reliable model exist for any (intra)frame 
content and any (inter)frame dependency? 
Positive answers at these first questions mean a 
proof of stationarity concerning the attacks. 

3. In case such a model exists, which is its pdf 
(probability density function)? Although the 
Gaussian law is generally considered, previous 
studies rejected this popular assumption. 

 
Figure 1: The watermarking model. 

The paper has the following structure. After 
having defined a set of random variables 
corresponding to the attack effects, Section 2 
presents the statistical investigation procedure. 
Section 3 describes the experimental results. The 
capacity evaluation is dealt with in Section 4 while 
Section 5 concludes the paper. The Appendix 
summarises some theoretical bases. 
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2 INVESTIGATION PROCEDURE 

2.1 Attack Effect Representation 

Be there an L  frame colour video. Each frame is 
represented in the HSV space. The following steps 
are applied to each frame (Mitrea & others, 2006): 
 Compute the DCT on the original V component. 
 Decreasingly sort the coefficients and record the 

largest R  values in a vector on ; record their 
corresponding locations in a vector l . 

 Apply the DCT to the attacked V component and 
record the coefficients at the l locations into the 
new vector, denoted by an .  

 Compute the vector: oa nndifference −= . 
A set of L vectors of the same type as difference  

(each of them with R components) is thus obtained. 
Be noise a vector with L  components, 

containing the values corresponding to an arbitrarily 
chosen rank r in the set of difference  vectors: 

],...,,[ 21 Lnnnnoise = . Such a vector is sampled 
from a random variable modelling the attack effects 
in the thr  rank of the DCT hierarchy. To model the 
attacks means to obtain the pdf for the corresponding 
random variable (a model for each rank). 

2.2 Pdf Estimation for Attacks 

There are many pdf estimation tools based on iid 
(independent and identically distributed) data, but 
thiey do not apply here. The noise  vector is 
computed on successive (dependent) frames and the 
a priori lack of support for attack stationarity can 
raise suspicions about the data identical distribution. 
Hence, a general estimation procedure should be 
considered (Mitrea & others, 2007):  
 Eliminate the data dependency. Sample the 

],...,,[ 21 Lnnnnoise =  vector with a D  period. 
Shift the sampling origin and get D  iid data sets 

],...,,[],...,,[ )1(21 iDNiDiNiii nnnxxx +−+= , 

where Di ,...,2,1=  and DLN /= . 
 Extract partial information from each iid data 

set. Obtain )(ˆ xpi  ( Di ,...,2,1= ) by Gaussian 
mixture estimation (Appendix). 

 Extract global information. Apply the Gaussian 
mixture estimation to the noise vector and obtain 

)(ˆ xpav  (an average model).  
 Define   the   model.   First,   define  a   similarity 

measure between two pdfs, eq. (1): 
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where sI , Ss ,...2,1=  is a subdivision of the 
];[ maxmin xx  interval on which the u  and v  

pdfs take non-zero values. Secondly, define the 
attack model as (.)p̂  which is the iid estimate 
closest to the (.)ˆavp  in the (.)m  sense: 

))(ˆ),(ˆ(minarg)(ˆ xpxpmxp i
av

i
= . (2) 

 Evaluate the model accuracy. Calculate the 
average similarity measure between each of the 
D pdfs and the (.)p̂  model, eq. (3):  

∑
=

=
D

i

i xpxpm
D

Error
1

))(ˆ),(ˆ(1 . (3) 

 If this procedure is successful when applied to an 
individual video (Section 3.1), then positive answers 
to the last two questions in the Introduction are 
obtained. A positive answer to the first question is 
obtained iff. the same model is obtained for different 
video sequences (Section 3.2). 

3 EXPERIMENTAL RESULTS 

The corpus contains 10 video sequences (64 Kbit/s), 
each of them of 35000=L  frames (about 25 
minutes each). The content is heterogeneous, 
combining film, news, and home video excerpts. 

The frame size is 80192×  pixels. The V 
component is normalised to the ]1,0[  interval. The 
DCT is individually applied to whole frames, and 
the largest 360=R  coefficients are investigated.  

3.1 Model Computation 

The model is computed for an arbitrarily chosen 
video sequence. The following parameters are 
considered: 250=D frames (i.e. 10s); 10=K  pdfs 
in the mixture; 200=iterN  iterations in the EM 
algorithm; 20=S  evenly distributed intervals. 

Table 1 presents the models for three ranks (1, 
150, 300) and three attacks (Gaussian filtering, 
sharpening, and StirMark). In each case, the )(ˆ xp  
model is computed according to (2), its the 
parameters ( kkkP σμ ,),( ) according to (A3) and 
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the corresponding errors to (3). Notice that each and 
every time, the Error values are lower than 0.04. 

In order to illustrate the results in Table 1, 
Figure 2 depicts in continuous line the models for 
one rank ( 300=r ) and the three attacks. For 
comparison, Figure 2 also represents (in dashed line) 
the  Gaussian  pdf  with  the  same  mean  values and 
variances as the computed models. 

The same results were obtained for each of the 
10 video sequences in the corpus and for each 
investigated attack: the parameters were slightly 
different but the errors were lower than 0.05. 

The models, for all 360 ranks and for other 
attacks (Frequency Model Laplacian Removal, 
median filtering, small rotations, JPEG compression) 
can be obtained by contacting the authors. 

3.2 Model Validation 

Up to now, the experimental results point to the 
existence of a model for the attack effects on a 
particular video sequence and estimate this model 
(i.e. elucidates the second & third questions in the 
Introduction). 
 

Table 1: Statistical model for the watermarking attacks in the DCT hierarchy. 

Attack Rank Model parameters Error 
P(k)  0.076    0.072   0.228   0.095    0.021   0.096   0.071    0.133   0.120   0.083 
μ(k)  0.274    0.319   0.214   0.305    0.788   0.283   0.330    0.052   0.440   0.374 r =

 1
 

σ(k)  0.110    0.118   0.031   0.116    0.037   0.112   0.108    0.055   0.091   0.112 
0.035 

P(k)  0.019    0.025   0.190   0.213    0.091   0.075   0.271    0.025   0.031   0.056 
μ(k)  0.224    0.195   0.031   0.009    0.072   0.121   0.063    0.101   0.201   0.131 

r=
15

0 

σ(k)  0.130    0.135   0.011   0.021    0.083   0.010   0.010    0.110   0.134   0.046 
0.013 

P(k)  0.080    0.044   0.048   0.146    0.056   0.038   0.041    0.284   0.093   0.164 
μ(k)  0.131    0.096   0.094   0.066    0.083   0.091   0.090    0.023   0.062   0.055 

G
au

ss
ia

n 
fil

te
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g 

r=
30

0 

σ(k)  0.053    0.112   0.111   0.025    0.069   0.110   0.110    0.012   0.026   0.029 
0.013 

P(k)  0.319    0.057   0.083   0.066    0.095   0.056   0.101    0.073   0.074   0.071 
μ(k) -1.478  -1.185  -2.325  -2.151  -2.341  -0.971  -2.424  -0.536  -2.347  -2.141 r =

 1
 

σ(k)  0.284    0.789   0.557   0.604    0.551   0.747   0.441    0.648   0.549   0.606 
0.020 

P(k)  0.102    0.029   0.091   0.033    0.171   0.033   0.140    0.081   0.155   0.159  
μ(k) -0.324   0.213  -0.124  -1.104  -0.080  -0.716  -0.063  -0.279  -0.078  -0.035 

r=
15

0 

σ(k)  0.137    0.028   0.102   0.316    0.103   0.168   0.103   0.150    0.104   0.098 
0.021 

P(k)  0.054    0.151   0.283   0.105    0.078   0.067   0.073   0.098    0.023   0.063 
μ(k) -0.211  -0.105  -0.106  -0.114  -0.369  -0.030  -0.115  -0.120  -0.905  -0.203 

Sh
ar

pe
ni

ng
 

r=
30

0 

σ(k)  0.180    0.096   0.095   0.156    0.133   0.133   0.156   0.158    0.155   0.178 
0.021 

P(k)  0.070   0.087   0.105    0.116   0.097    0.100   0.059   0.131    0.069   0.161 
μ(k) -0.480   0.075  -0.354  -0.289  -0.115  -0.389  -0.401  -0.348  -0.619  -0.150 r =

 1
 

σ(k)  0.368   0.397   0.271    0.263   0.436    0.270   0.404   0.269    0.357   0.215 
0.037 

P(k)  0.235   0.083   0.043    0.096   0.070    0.149   0.087   0.048    0.075   0.109 
μ(k)  0.036  -0.084   0.206    0.103   0.422    0.006   0.017  -0.096    0.092   0.124 

r=
15

0 

σ(k)  0.084   0.204   0.027    0.063   0.073    0.100   0.136   0.203    0.155   0.146 
0.019 

P(k)  0.085   0.075   0.046    0.078   0.137    0.036   0.010   0.046    0.300   0.093 
μ(k)  0.004   0.191   0.197   -0.003   0.192    0.165  -0.005   0.212    0.047   0.015 

St
irM

ar
k 

r=
30

0 

σ(k)  0.144   0.193   0.192    0.141   0.074    0.195   0.140   0.189    0.036   0.148 
0.018 

 
 

   
Gaussian filtering Sharpening StirMark 

Figure 2: The attack models (continuous line) and the corresponding Gaussian laws (dashed line) for the rank r=300. 
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The model independence w.r.t. the video sequence 
and the estimation procedure is now to be 
investigated. 

First, it should be précised whether the model 
computed on a particular video sequence can be 
representative for the whole corpus or not. In this 
respect, the investigation algorithm is resumed on 
the rest of 9 video sequences from the corpus and 
the corresponding models are computed. The errors 
between the reference model and these new models 
are evaluated according to three criteria: the 
similarity measure in eq. (1), the Kullback-Leibler 
divergence and the Hellinger distance (Appendix). 
For each criterion, and for three ranks, the minimal, 
maximal, and average errors are reported in Table 2. 
The numerical values obtained for the distance in 
eq. (1) ascertain a quite good accuracy (and 
generality) for the model provided in Table 1: the 
average errors are acceptably low, with one 
exception, namely the Gaussian filtering. The 
Kullback-Leibler divergence and the Hellinger 
distance lead to acceptably small values for all the 
attacks. In order to compute these three measures, 
the following instantiations were made in eqs. (1), 
(A4) and (A5): )(xv  is the reference pdf while )(xu  
is, successively, each of the other 9 individual 
models computed on the corpus. The interval I  is 

]3,3[ mixmixmixmixI σμσμ ∗+∗−= , where mixμ   
and mixσ  are the mixture mean and variance. 
 Secondly, the concordance between the 
maximum likelihood estimation (which is the basis 
for the EM Gaussian mixture algorithm) and the 
popular confidence limit estimation is checked. Note 
that the EM Gaussian mixture estimation results in a 
continuous pdf while the confidence limit estimation 
provides values for the probability that a random 

variable takes values in a given interval, but not the 
pdf itself. Consequently, the interval where the 
Gaussian mixture model takes non-zero values is 
evenly divided into 10 sub-intervals. On the one 
hand, confidence limits for the probability that the 
noise effects would take values in these sub-intervals 
are derived. On the other hand, the integral of the 
Gaussian mixture model on the same sub-intervals 
are computed. The experiments bring into evidence 
that each and every time (i.e. for each type of 
investigated attack and for each rank) the integral on 
the EM Gaussian model belongs to the 
corresponding confidence limits. 
 This sub-section shows that an individual model 
(Table 1), computed on a particular video sequence, 
is valuable for all the video sequences involved in 
the experiments and, moreover, that it does not 
depend on the estimation procedure. This means a 
positive answer to the first question in Introduction.  

4 CAPACITY COMPUTATION 

As discussed in Introduction, any side-information 
watermarking technique can be modelled by a noisy 
channel, where the mark is a sample from the 
information source and the noise is represented by 
the attacks. In order to evaluate the capacity of such  
a channel, the eqs. (A7) and (A8) are considered. 
For the capacity limits in eq. (A7), the noise power  
 

N  is the variance of the noise  vector, Section 2.2. 
The signal power P was derived from transparency 
constraints, so as to ensure a mark 30dB lower than 
the original (unmarked) coefficients.  

Table 2: The errors (minimal, maximal, average) between the reference model and the 9 models obtained on different video 
sequences, for three ranks: r = 1, r=150, and r = 300. 

r = 1 r = 150 r = 300 Type Attack 
Min Max Average Min Max Average Min Max Average 

Gaussian filtering 0.662 0.758 0.710 0.058 0.216 0.137 0.071 0.153 0.112 
Sharpening 0.109 0.148 0.128 0.028 0.065 0.046 0.055 0.087 0.071 Er

ro
r 

StirMark 0.077 0.093 0.085 0.065 0.109 0.087 0.084 0.131 0.108 
Gaussian filtering 0.131 0.204 0.167 0.011 0.016 0.014 0.029 0.030 0.029 

Sharpening 0.035 0.712 0.374 0.066 0.110 0.088 0.081 0.098 0.089 D
K

L.
 

StirMark 0.106 0.110 0.108 0.015 0.018 0.016 0.024 0.026 0.025 
Gaussian filtering 0.054 0.075 0.064 0.006 0.014 0.010 0.006 0.010 0.008 

Sharpening 0.213 0.255 0.234 0.009 0.019 0.014 0.015 0.015 0.015 D
H

L.
 

StirMark 0.025 0.029 0.027 0.002 0.003 0.002 0.004 0.004 0.004 
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The 1N  entropic power was also estimated on the 

on  original coefficient vector. The bandwidth W  
was computed as half the frame rate. 

When considering the capacity value in eq. (A8), 
the model provided by the present study (i.e. the pdf 
in Table 1) is considered as the noise pdf )(npN . 
The )(xpX  function giving the capacity value is 
searched for by means of a numerical strategy. 
Actually, it is considered that )(xpX  itself can be 
represented as a mixture of 5 Gaussian laws, thus 
restricting the searching to a space with 15 
dimensions (5 weights, 5 means values and 5 
variances). These 15 dimensions are not 
independent. First, the sum of weights should 
equal 1. Secondly, the mean of the mark (i.e. the 
mixture mean) is set to 0 (a generally accepted 
assumption in watermarking). Thirdly, the mixture 
variance was set so as to ensure a good transparency 
(i.e. 30dB lower than the host video). 

The capacity values computed with the general 
formula and with Shannon limits are shown in 
Table 3. A general agreement between the two types 
of capacity estimation can e noticed, with some 
exceptions (for 1=r of Gaussian filtering, StirMark). 
At the same time, the capacity estimation starting 
from the attack models is compulsory when a certain 
degree of precision is required: that capacity 
evaluation by limits can lead at relative errors of 
about 100% and larger! 

Table 3: Capacity value and limits (lower and upper ) for 
rank r = 1, r = 150 and r=300. 

Rank 
       Attack 

Capacity 

Gaussian 
filtering Sharpening StirMark 

value 3.567 1.332 2.307 
r = 1 

limits (3.632 ; 
3.651) 

(1.268 ; 
1.725) 

(2.394 ; 
2.415) 

value 0.339 0.251 0.259 
r = 
150 limits (0.037 ; 

0.949) 
(0.004 ; 
0.569) 

(0.005 ; 
0.273) 

value 0.055 0.006 0.009 
r = 
300 limits (0.018 ; 

0.935) 
(0.002 ; 
0.621) 

(0.002 ; 
0.273) 

5 CONCLUSIONS 

The present paper brings into evidence that some 
real life watermarking attack effects are stationary in 
the DCT hierarchy and accurately estimates the 
corresponding probability density functions. Then, 
these models are involved in capacity evaluation. 

From the applicative point of view, beyond 
watermarking itself (i.e. reaching the capacity limit 
in a practical application), these results are the 
starting point for a large variety of applications in 
the multimedia content processing, as smart 
indexing or in-band content enrichment, for 
instance. 

Further work will be also devoted to considering 
the Blahut approach for watermarking capacity 
evaluation. 
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APPENDIX 

A1 Pdf Estimation Tools 

Be there ],...,,[ 21 Nxxx  a set of N  experimental 
data complying with the iid model. Suppose that 
these data are sampled from a random variable X  
whose pdf )(xp  is unknown and should be 
estimated. A )(ˆ xp  Gaussian mixture is a linear 
combination of Gaussian laws and can approximate 
any continuous )(xp  pdf (Archambeau & other, 
2003): 

∑
=

=
K

k
k xpkPxp

1
)()()(ˆ , (A1) 
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The number of mixtures K  is pre-established by 
the experimenter and kkkP σμ ,),(  are 3K 
parameters to be estimated by the EM (expectation 
maximisation) algorithm (Dempster & other, 1977), 
based on a maximum likelihood criterion: 
 the E step: 
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(A3) 

where the ( i ) upper index denotes the current 
iteration; the total number of iterations is also 
subject to the experimenters choice. 

The relationship among the parameters of the 
individual Gaussian laws and the mixture parameters 
is given in (Trailovic, Pao, 2002). 

Alongside with the similarity measure defined in 
eq. (1), two popular methods for pdf comparison are 
involved in the experiments (Basseville, 1996): 
 Kullback-Leibler divergence:  

dx
xv
xuxuvuD

I
KL ∫= )(

)(log)(),( 2 ; (A4) 

 Hellinger distance: 

( )∫ −=
I

HL dxxvxuvuD
2

)()(
2
1),( . (A5) 

A2 Capacity Evaluation Basis 

The capacity of a continuous channel, whose input 
and output information sources are denoted by X  
and Y  is given by the Shannon’s formula (A6): 

∫ ∫=
2

1

2

1

),(max
)(

x

x
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y
XY

xp
dxdyyxfC

X
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)()(
),(log),(),( 2 ypxp

yxpyxpyxf
YX

XY
XYXY = , 

where )(xpX  and )(ypY  stand for the input and 
output pdfs, while ),( yxpXY  is the joint pdf of X  
and Y . The 21, xx  and 21, yy  are the limits of the 
intervals on which the input and output pdfs have 
non-zero values. In the case of a non-Gaussian 
noise, Shannon derives some upper and lower limits, 
eq. (A7): 

1
2

1
1

2 loglog
N

NPWC
N

NPW +
≤≤

+ , (A7) 

where W  is the channel bandwidth, P  is the signal 
power, N  is the noise power, and 1N  is the noise 
entropy power (i.e. the power of a white-type noise 
which has the same bandwidth and entropy as the 
considered noise). 

When assuming the noise is additive and 
independent, eq. (A6) becomes: 

dydxyxgC
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where the noise limits are 111 xyn −=  and 

222 xyn −=  (Dumitru, & others, 2007). 
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