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Abstract: In this paper we discuss feature parameterization and initialization for bearing-only data obtained from vision
sensors. The interest of this work refers to the comparison of the bearing-only data representation and ini-
tialization techniques. The behavior of the algorithm is analyzed for different robot motions and depth of the
features. The results are evaluated in terms of the sensitivity to step size and performance to ill conditioned
situations. The problem studied refers to robots moving on the plane, sensing the environment and extract-
ing bearing-only information from uncalibrated cameras torecover the position of the landmarks and its own
localization.

1 INTRODUCTION

The manipulation of bearing information is an impor-
tant issue in robotics. Bearing-only data is the kind of
information provided by cameras through the projec-
tion of landmarks which are in the scene. In order to
recover the position of these landmarks in the world,
multiple observations taken from different positions
must be combined.

Compared with information extracted from other
sensors such as lasers, bearing information is compli-
cated to use. However, the multiple benefits of using
cameras have motivated the interest in the researchers.
These benefits include the property that cameras are
able to sense quite distant features so that the sensing
is not restricted to a limited range.

This sensing of the environment in the form of
bearing information may be used for many applica-
tions such as the computation of the landmark local-
ization in the environment or the calculation of the
own robot pose mostly known as SLAMSimultane-
ous Localization and Mapping.

Algorithms which use bearing information must
deal with the problem of creating representations for
features by the combination of bearing data. The
problem of feature parameterization and feature ini-
tialization are of big importance here.

With regard to the feature parameterization, the
classical approach has been the use of acartesian
parameterization (Bailey, 2003), (Kwok and Dis-

sanayake, 2004), (Costa et al., 2004), (Klippenstein
et al., 2007). Some approaches prefer adepthparam-
eterization, where features are stored as an starting
point of the ray where the feature lays, the inclina-
tion of the ray and the depth (Davison, 2003). An
inverse-depthparameterization is an alternative, simi-
lar to thedepthparameterization but using the inverse
of the depth instead (Montiel et al., 2006). Some ap-
proaches use no explicit feature parameterization and
instead represent landmarks as constraints between
three robot poses (Trawny and Roumeliotis, 2006).

With regard to the feature initialization,Unde-
layed techniques immediately introduce features in
the map so that they can be used to improve the
robot estimation (Montiel et al., 2006), (Trawny and
Roumeliotis, 2006), (Costa et al., 2004), (Kwok and
Dissanayake, 2004) whileDelayedtechniques defer
the introduction into the map until the features are
near-Gaussian (Bailey, 2003), (Klippenstein et al.,
2007).Delayedtechniques often create temporal rep-
resentations for landmarks which are maintained in
separate filters and evolve with the incorporation of
new observations of these landmarks until they are fi-
nally introduced into the map (Davison, 2003).

The problem of depth computation for landmarks
is afforded in two separate ways. Some approaches
create depth representation from only one bearing as-
suming an approximate value for it. These techniques
are able to cover depths from the position were the
landmark was observed until infinity or until a max-
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imum depth within the workspace (Kwok and Dis-
sanayake, 2004), (Davison, 2003), (Montiel et al.,
2006). The other approach to depth computation is
the combination of observations taken from differ-
ent robot poses, where triangulation techniques are
used to recover the depth (Bailey, 2003), (Klippen-
stein et al., 2007).

The interest of this work refers to the comparison
of the bearing-only data representations and initial-
ization techniques, analyzed for different robot mo-
tions relative to depth of the landmarks in the scene.
Two feature parameterizations are studied. The first
is an standardcartesianparameterization, where fea-
tures are described by their(x,y) position. The alter-
native representation is an adaptation of theinverse-
depth(Montiel et al., 2006) to the 2D situation. Be-
sides, bothUndelayedandDelayedstrategies for fea-
ture initialization are used and their performance is
compared in different scenarios.

The problem studied in this paper refers to robots
moving on the plane, sensing the environment and ex-
tracting bearing-only information from uncalibrated
images to recover the position of the landmarks and
its own localization. As a result of this investigation,
some theoretical solutions are proposed, and their va-
lidity is supported by an exhaustive experimentation
using simulated data. Some preliminary experiments
have been carried out using real data from omnidirec-
tional images.

2 BACKGROUND

The problem studied in this paper is related to the use
of bearing-only information for the SLAM problem
using EKF. The robot moves on the plane and ele-
ments in the map are represented by their 2D coor-
dinates. Robot observes landmarks within a field of
view of 360◦ due to the use of omnidirectional cam-
eras and obtains bearing-only measurements. Odom-
etry is used to predict robot motion in every step. The
EKF Extended Kalman Filteris a widely used tech-
nique in these problems and a lot of information can
be found in the literature. The data association prob-
lem is not discussed in this paper. An innovation test
is used to select the observations which will be used
in the filter update. This test computes an individ-
ual compatibility for all observation-prediction pairs
and then obtains the greatest set of jointly compatible
pairs using the JCBB algorithm (Neira and Tardós,
2001). Although traditionally this algorithm is used
to solve the data association problem, we use it in or-
der to avoid the filter divergence in the presence of
poorly initialized features or high innovations.

Along this paper, next notation will be used:
x = (xr,x1...xn): the state vector containing cur-

rent robot pose (xr) and the positions of landmarks
(x1...xn)

P: the covariance matrix.
xrj = (xr j ,yr j ,θr j ) ∈ R

3, θr j ⊂ [−π,π] , for j =
1..k: j-th robot pose. When there is no confusion, the
subscriptj is omitted.

xi = (xi ,yi) ∈ R
2, for i = 1..n: Position of the i-

th feature in the map, forcartesianparameterization,
or xi = (xi ,yi ,θi ,ρi) ∈ R

4, θi ⊂ [−π,π], for i = 1..n:
when referring toinverse-depthparameterization.

zji : measurement taken from robot posej to fea-
ture i. When only one robot pose is used,zi refers to
the observation of featurei.

3 FEATURE
PARAMETERIZATION

Cartesian parameterizations represent features by
their (x,y) coordinates. This parameterization is very
intuitive since the feature position within the map can
be easily obtained. The initialization of features in
this cartesianparameterization is problematic due to
the nonlinearity of the triangulation techniques used
to recover its position based on the observations taken
from different robots poses. It can be easily shown
that bearings generate bigger uncertainty as landmark
position goes away from the camera. The observation
model for a featurexi = (xi ,yi) observed from a robot
posexr = (xr ,yr ,θr) is (Bailey, 2003):

zi = h(xr,xi) = arctan

(
yi −yr

xi −xr

)
−θr (1)

Inverse-depthparameterizations represent a fea-
turexi as a ray starting at(xi ,yi), the position where
the feature was firstly observed, with a global bearing
θi and a depth of1ρi

. Every feature is stored in the
state vector using these four parameters(xi ,yi ,θi ,ρi).
The cartesiancoordinates of the landmark could be
calculated as:

(
xi
yi

)
+

1
ρi

mi (2)

wheremi = [cos(θi)sin(θi)]
T .

The observation model withinverse-depthfor a
featurexi = (xi ,yi ,θi ,ρi) observed from a robot pose
xr = (xr ,yr ,θr) is:

h = atan2(hxy
y ,hxy

x ) (3)
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where(hxy
y ,hxy

x ) are the coordinates of the feature in
the robot reference:

hxy =

(
hxy

x
hxy

y

)
= Rr

((
xi
yi

)
+

1
ρi

mi −

(
xr
yr

))
(4)

with Rr =

[
cosθr sinθr
−sinθr cosθr

]
.

This observation model remains valid if next
equation is used instead of equation 4 provided that
ρi > 0:

hxy =

(
hxy

x
hxy

y

)
= Rr

(
ρi

((
xi
yi

)
−

(
xr
yr

))
+mi

)

(5)

As advantage with respect to thecartesianpa-
rameterization, the observation model for theinverse
depth is near linear. Additionally, landmarks at in-
finity (ρi = 0) or uncertainties that extend to infin-
ity can be represented. The main drawback of the
inverse-depthis that features are over-parameterized,
and therefore the Covariance matrix size is greater.

4 FEATURE INITIALIZATION

The feature initialization in SLAM consists in the cre-
ation of a representation of the landmark’s position
and its introduction into the stochastic map through
its meanand itscovariance matrix. The feature ini-
tialization problem of bearing-only is due to the fact
that features are only partially observable.

As told, a measurement only gives information
about the direction towards the landmark and two or
more observations must be combined in order to re-
cover the depth of the landmark. However, there are
some situations where the depth cannot be recovered
Next we give a formal description of these situations.
Theorem 1.- Let us namexr1 a robot position andxr2 a
second position translated but not rotated with respect
to xr1 . Let us namez1i the observation of a featurexi
taken fromxr1 and z2i the observation of the same
feature taken fromxr2 . Let us namedp the transla-
tion from xr1 to xr2 on a perpendicular direction to
z1i anddt the translation on a parallel direction toz1i .
Without loss of generality, letdt be equal to zero. The
landmark depth (distance betweenxr1 and the land-
mark) can be totally determined fromα = z1i −z2i as

depth= dp/ tanα (6)

Corollary 1.1.- This is an undetermined problem
(0/0) when simultaneouslydp = 0 andα = 0+ kπ
for k∈ Z.

Corollary 1.2.- This problem remains undetermined
independently of the magnitude ofdt .
Corollary 1.3.- The landmark is at infinity if simulta-
neouslyα = 0+ kπ for k ∈ Z anddp is different of
zero .
Theorem 2.- Let us namexr1 a robot position andxr2 a
second position rotated but not translated with respect
to xr1 . Let us namez1i the observation of a featurexi
taken fromxr1 and z2i the observation of the same
feature taken fromxr2 . Robot rotation (θr2) can be
absolutely determined fromθr2 = z1i −z2i.
Corollary 2.1.- Given a pure rotation motion, feature
depth cannot be recovered.
Corollary 2.2.- Given a translation and rotation mo-
tion with landmarks of infinite depth, the robot rota-
tion can be computed fromz1i − z2i for any dp < ∞
and robot translation cannot be recovered.

Based on these theorems, ill-conditioned situa-
tions are identified:
Proposition 1.- Depth of features aligned with robot
trajectory cannot be recovered. This situations is for-
malized in Corollaries 1.1 and 1.2.
Proposition 2.- Depth cannot be recovered with pure
rotation motions as shown in Corollary 2.1.
Proposition 3.- Landmarks at infinity give robot ori-
entation, but no translation information can be ob-
tained from them.This is based on Corollary 2.2.

Feature estimates calculated when the depth com-
putation problem is ill-conditioned present high co-
variances and great estimation errors which may
cause linealization problems. Once a feature has been
wrongly initialized, new observations taken from
robot poses not aligned with the feature will not be
able to correct its position. If acartesianparameter-
ization is used, an additional problem is that features
with infinite depth cannot be represented and their ini-
tialization must be deferred. This situation is formal-
ized in Corollary 1.3.

4.1 Undelayed Initialization

The undelayed initialization consists in the introduc-
tion of landmarks into the system the first time the
landmark is observed. This technique presents many
benefits since the information attached to a landmark
can be used earlier and it allows the use of landmarks
which may never been initialized if a delayed strat-
egy is used.Since the first time a landmark is observed
only bearing information is available, undelayed tech-
niques must deal with the problem of creating a repre-
sentation for the depth and its associated uncertainty.

If an inverse-depthparameterization is used, land-
marks are introduced using a fixed initial depth and an
uncertainty representation is created which covers all
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depths from somedmin to infinity. This initial depth
must be adjusted depending on the workspace.

Sincecartesianparameterization requires low co-
variances, anundelayedinitialization is only possible
if multiple hypothesis in depth are created (Kwok and
Dissanayake, 2004), (Kwok et al., 2007), (Sola et al.,
2005). All these approaches present a high complex-
ity and size of the map. Due to this complexity, ap-
proaches usingundelayedinitialization together with
cartesianparameterization are no longer analyzed in
this paper.

4.2 Delayed with Two Observations

This delayed technique consists in the combination of
the first two observations of a landmark to recover its
position using a triangulation algorithm. This is a not
purely delayed technique, since there are no condi-
tions which must be satisfied by the observations in
order for the landmark to be initialized, and all land-
marks are introduced in the map provided that they
are observed from at least two robots poses. The main
benefit of this initialization strategy is that the solution
is independent on the workspace. However, triangula-
tion algorithms used to recover the landmark position
are highly non-linear and, depending on the arrange-
ment of robot poses and features, the problem may be
ill-conditioned.

If a cartesianparameterization is used, the recov-
ered feature position must be near-Gaussian and co-
variances must be small. For this reason, additional
tests are used to check that features satisfy these con-
ditions. If features are parameterized usinginverse-
depth, this strategy may suppose a benefit in the sense
that it is independent on the size of the scene. There-
fore higher covariances in the estimates are admissi-
ble and recovered features are near-Gaussian even for
low parallaxes.

4.3 Delayed until Condition

In a pure delayed initialization technique, observa-
tions of landmarks are accumulated and its initializa-
tion is deferred until a condition of Gaussianity is sat-
isfied; then observations are used to create a repre-
sentation for the feature (Bailey, 2003), (Klippenstein
et al., 2007).

If a delayed initialization is used, some landmarks
may never been initialized. Since the information pro-
vided by landmarks cannot been used until the land-
mark is initialized, a delayed technique decreases the
amount of information available to improve robot the
pose. Many delayed techniques present a high com-
putational cost to calculate the condition, and have

their own problems and limitations. The main benefit
is that the representation for the landmark is more ac-
curate and reliable than the obtained by an undelayed
strategy.

5 DISCUSSION

As told, the aim of this work is the comparison of
cartesianand inverse-depthparameterizations com-
bined withdelayedandundelayedinitialization tech-
niques. These have been selected because are the
most commonly used, being also simple and of low
computational complexity.

5.1 Inverse-Depth Undelayed

This technique is an adaptation to the 2D situation of
the technique described in (Montiel et al., 2006). A
featurexi is introduced into the map using a single
observation. The current robot posexr = (xr ,yr ,θr)
is used together with the observationzi and an ini-
tial depthρ0 parameterized ininverse-depthto get the
feature representationxi. This depth is worked out
using a minimal distancedmin which must be selected
depending on the workspace:

ρmin =
1

dmin
;ρ0 =

ρmin

2
;σρ =

ρmin

4
(7)

where ρmin is the inverse of depth,ρ0 is the ini-
tial inverse-depth, which is the middle value of the
interval [0,ρmin], and σρ is the standard deviation
used to initializeρ0 (95% of ρ is in the interval[
ρ0−2σρ,ρ0 +2σρ

]
= [0,ρmin].) The initial value of

the feature is calculated as:

xi = g(xr,zi ,ρ0) = (xr ,yr ,θr +zi ,ρ0) (8)

5.2 Inverse-Depth Delayed with Two
Observations

As a proposal, aninverse-depthparameterization
(Montiel et al., 2006) is combined with a delayed ini-
tialization technique where the second observation is
used to calculate the initial depth for the feature. The
position for the featurexi which has been observed
from xr1 andxr2 producing measurementsz1i andz2i
is calculated as follows:

xi = g(xr1 ,xr2z1i ,z2i) = (xr2,yr2,θr2 +z2i,ρ0)
ρ0 = s2∗c1−c2∗s1

(yr1−yr2)∗c1−(xr1−xr2)∗s1

(9)
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wherec j = cos(θ j + zji ) and sj = sin(θ j + zji ), for
j = 1,2.

An additional test is used in order to detect situ-
ations where inverse-depth cannot be recovered and
intersections take place in the opposite direction of
the observation. In these situations, the initialization
is deferred.

5.3 Cartesian Delayed with Two
Observations

Given the first two observationsz1i ,z2i of a landmark
xi taken from robot posesxr1 ,xr2 , the landmark po-
sition xi = (xi ,yi) is calculated as follows (Bailey,
2003):

xi = g1(xr1 ,xr2 ,z1i ,z2i) =
xr1s1c2−xr2s2c1−(yr1−yr2)c1c2

s1c2−s2c1

yi = g2(xr1 ,xr2 ,z1i ,z2i) =
yr2s1c2−yr1s2c1+(xr1−xr2)s1s2

s1c2−s2c1
(10)

wherec j = cos(θ j + zji ) and sj = sin(θ j + zji ), for
j = 1,2.

Similarly a test is used to check that features can
be recovered and intersections of bearings are not in
the opposite direction of the observations.

5.4 Cartesian/Inverse-Depth Delayed
until Finite Depth

A delayedtechnique is proposed where feature ini-
tialization is deferred until finite uncertainty in depth
can be estimated.

This is achieved by a simple test which compares
two observation rays and checks if they are parallel.
This situation is characterized by Corollaries 1.1 and
1.3. When observation rays are parallel, the uncer-
tainty in depth of the recovered landmark extends to
infinity and the initialization is deferred. This test is
especially useful when acartesianparameterization
is used, since infinite depths cannot been modeled.

Let xrj = (xr j ,yr j ,θr j ), for j = 1,2 be the two
robot poses where observationszji , for j = 1,2 to
a landmarkxi were taken. Global bearingsα ji , for
j = 1,2 to the landmark are calculated as:

α ji = θr j +zji (11)

If we nameSα ji the linearized propagated covari-
ance for bearingα ji then the Chi-squared test for Fi-
nite Depth is expressed as:

(α1i −α2i)
2

Sα1i +Sα2i

> χ2
0.99,1d.o. f (12)

5.5 Cartesian/Inverse-Depth Delayed
until Feature Not Aligned with
Robot Poses

As stated in Proposition 1, the initialization of fea-
tures aligned with the robot trajectory is problematic
when working with bearing-only data. When a fea-
ture is observed from two robot poses which are in
line with the feature, it is not possible to make a right
depth initialization. Corollary 1.1. gives a formal
explanation of this situation: feature is aligned with
robot trajectory when the observation rays are paral-
lel and the robot translation takes place in a direction
which is parallel to the observation.

Let xrj = (xr j ,yr j ,θr j ), for j = 1,2 be the two
robot poses where observations to a landmarkxi were
taken. From hereα1i , α2i , for j = 1,2 can be com-
puted with equation 11. LetSα ji , for j = 1,2 be their
linearized propagated covariances. Observation rays
are parallel when:

(α1i −α2i)
2

Sα1i +Sα2i

≤ χ2
0.99,1d.o. f (13)

The robot trajectory fromxr1 to xr2 has a global
inclination which can be calculated as:

θt = arctan

(
yr2 −yr1

xr2 −xr1

)
(14)

LetSθt be the linearized propagated covariance for
bearingθt . The trajectory is parallel to the observa-
tion rays when:

(θt −α ji )
2

Sθt +Sα ji

≤ χ2
0.99,1d.o. f (15)

for j = 1,2.
The initialization of features is deferred until a

pair of observations is available where the feature is
not aligned with the trajectory. This delayed tech-
nique is less restrictive than the explained in section
5.4 and is specially useful for aninverse-depthparam-
eterization since it allows the initialization and the use
of features of infinite depth.

6 EXPERIMENTS

In order to analyze the performance of the different
parameterizations and initialization techniques, some
experiments have been designed so that the perfor-
mance and robustness of the algorithms can be ana-
lyzed.
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The experimentation and analysis of results is car-
ried out using a simulator which presents many ben-
efits. First of all, exactly the same experiment can
be solved by several algorithms so that results are
fully comparable. Besides, ground truth information
is available to compare with the obtained results.

Some preliminary experiments have been carried
out using omnidirectional images which can be seen
in Figure 1. The matches have been obtained using
SURF descriptors (Murillo et al., 2007).

Figure 1: Omnidirectional image: feature extraction and
matching.

In the simulated experiments, an observation noise
with an standard deviation of 0.125 degrees is used.
Features are placed on the walls of a squared room.

An initialization to the system is introduced from
three robot poses and the first 5 observed landmarks.
It is based on SFM techniques with the Trifocal Ten-
sor (Sagüés et al., 2006). The data association prob-
lem is not discussed in this paper and data association
is supposed to be perfect.

Algorithms have been tested in different scenarios
and under different conditions ofvisibility, trajectory
and step sizes. The Visibility affects to the number
of visible landmarks. Two possibilities are evaluated:
Total, where all features are visible from all robot
poses andSection, where the workspace is divided
into four sections; In every step robot observes the
features within its section and a few from the neigh-
borhood in order to connect the sections. When the
visibility is Total, no loop closing takes place and dis-
tant features are used.

As stated in section 4 theRobot Trajectoryhas
a big influence on depth computation in such a way
that if landmark is on the direction of robot transla-
tion, depth computation is an undetermined problem.
Two trajectories have been evaluated. The first is an
Squaredtrajectory composed by several pure trans-
lation motions and four 90◦ pure rotations. In this
trajectory some features are aligned with the robot
movement for many steps. The odometry noise is in-
troduced as a function of the step size (st) and it can
be seen in columnsPure translationandPure rotation
of Table 1. The second trajectory isCircular: Robot
describes a circumference when moving along the en-
vironment which supposes mixed rotations and trans-
lations. No feature in the map is observed in line with
the trajectory. The standard deviations of the odome-

try noise are shown in columnMixed motionof Table
1,

Table 1: Odometry noise relative to the step size (st).

Standard Pure Pure Mixed
deviation translation rotation motion

xr 0.01∗ st 0.03∗ st 0.03∗ st
yr 0.01∗ st 0.03∗ st 0.03∗ st
θr 2◦ 2.5◦ 2.5◦

TheStep Sizedetermines the distance (in meters)
between two consecutive robot poses. This is the pa-
rameter which affects the most the behavior of algo-
rithms. Step sizes of 0.125 m, 0.250 m, 0.5 m and 1
m are tested.

6.1 Analyzed Information

The variables used in order to analyze the perfor-
mance of an algorithm are listed below.

Final Divergence. Percent of results where the final
robot pose diverges from its estimation. The condi-
tion which is tested for each component(xr ,yr ,θr) in-
dependently can be written as

(a− â)2

P
> χ2

0.99,1d.o. f . (16)

a being (xr ,yr ,θr) the ground-truth,̂a the estimated
value for variablea andP its estimated covariance.

Map Consistency. Percent of features in the final
map whose estimation isconsistentwith the ground
truth. A feature is consideredconsistent if the estima-
tion error in itsxi or yi coordinate satisfy:

|a− â|

+
√

P χ2
0.99,1d.o. f .

≤ 1.5 (17)

where the variablea represents thexi or yi coordi-
nates.
Trajectory Divergence. Percent of steps in the
trajectory where the estimation of the robot pose (xr ,
yr , θr ) diverges.

Feature Initialization Step. Average of the number
of steps needed to initialize a feature, calculated as
the difference between the step when a feature is first
observed and the one when the feature is introduced
into the map.

Feature Usage. Average of the feature used per step
calculated as the percentage of features used in the
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Figure 2: Cartesian delayed techniques comparison. Analysis of the results for different step sizes (x-axis). The algorithms
used arecartesian delayed. xy-d: with two observations.xy-f: until finite depth. xy-l: until feature not aligned with robot
poses.

filter update versus the features observed.

Map Consistency per Step. Average of the percent
of consistent features in the map in every step.

Additionally, information related to the precision
and error of the final robot pose, the trajectory and the
final map has been also studied.

6.2 Results

A total of 160 experiments have been designed, and
all of them have been solved using the available algo-
rithms discussed in section 5. For the Inverse-depth
undelayed, a minimal depthdmin = 0.5m is used.

The results are analyzed in three different blocks.
In the first we compare thecartesian delayedalgo-
rithms. In the second, we compare allinverse-depth
delayedapproaches and in the third block, a global
comparison is carried out where the best of thecarte-
sian delayedalgorithms and theinverse-depth de-
layed algorithms are compared to theinverse-depth
undelayedalgorithm.

6.2.1 Cartesian Delayed Comparison

The results obtained by thecartesian delayedalgo-
rithms can be found in Figure 2. The cartesian de-
layed until finite depth (xy-f) algorithm performs bet-

ter than the delayed with two observations (xy-d) and
the delayed until features not aligned (xy-l) methods:
the final divergence (Figure 2.a) and trajectory diver-
gence (Figure 2.c) are the lowest for all step sizes, the
map consistency (Figure 2.b, Figure 2.f) are the high-
est, and the number of features used to update (Figure
2.e) is higher than the used by the other cartesian al-
gorithms for all step sizes even though this algorithm
needs more steps to initialize a feature (Figure 2.d).

6.2.2 Inverse-depth Delayed Comparison

From the study of the results obtained by the inverse-
depth delayed algorithms, we can observe that all al-
gorithms performed in a very similar way (Figure 3).
The final divergence (Figure 3.a), map consistency
(Figure 3.b), trajectory divergence (Figure 3.c), fea-
ture usage (Figure 3.e) and map consistency per step
(Figure 3.f) results are similar for all inverse-depth de-
layed algorithms.Only the feature initialization step
(Figure 3.d) differs, due to the use of the different de-
layed strategies.

An especial study is carried out in order to com-
pare the capability of the inverse-depth algorithms to
deal with features which are observed during many
steps aligned with the trajectory. The most critical sit-
uation is when the robot moves following an squared
trajectory and only observes landmarks within its sec-
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Figure 3: Inverse-depth delayed comparison. Analysis of the results for different step sizes (x-axis). The algorithms are: id-d:
with two observations.id-f: until finite depth. id-l: until feature not aligned with robot poses.

tion. In this situation the problematic features are F12,
F23, and F34 (Figure 4). In this figure, the ground-
truth robot trajectory and landmark positions are dis-
played in red, while the estimates and uncertainties
calculated by the algorithms are drawn in blue. As
can be observed, both the trajectory and the landmark
positions have been correctly estimated in all cases.
However, features F12, F23 and F34 present high un-
certainty (Figure 4.a) when the algorithm used is the
inverse-depth with two observations(id-d).

Paying attention to the problematic features (F12,
F23, F34) in Figure 4 we can observe the results of
an earlier initialization of features which are in line
with the trajectory. Even though their initial estimate
and covariance correctly represent the feature posi-
tion, posterior observations are not able to correct its
position due to the huge innovation.

The Inverse-depth delayed until finite depth(id-
f) andInverse-depth delayed until feature not aligned
with robot poses(id-l) performed in a similar way.
However, the second is preferred because of its capa-
bility to initialize and use features of infinite depth.

6.2.3 Global Comparison

As can be observed in Figure 5, the behavior of the
inverse-depth undelayed algorithm (id-u) is seriously
affected by the step size. For the smallest step size
(0.125m), almost all experiments converged in the last

robot pose (Figure 5.a) while for the other step sizes,
many experiments diverged. The number of consis-
tent features in the final map (Figure 5.b) is lower than
for the other algorithms. This behavior is also ob-
served for the number of consistent features per step
(Figure 5.f).

The cartesian delayed until finite depth algorithm
(xy-f), its behavior is not so much affected by the step
size but we can observe a better performance when
the step size increases: the final divergence (Figure
5.a) is slightly higher for smaller step sizes. The num-
ber of consistent features in the final map (Figure 5.b)
and along the steps (Figure 5.f) slightly decreases for
smaller step sizes. The feature usage (Figure 5.e) re-
mains high for all step sizes.
The inverse-depth delayed until features not aligned
algorithm (id-l) produced the best results, exhibiting
an stable behavior for all step sizes: almost all ex-
periments converged (Figure 5.a) and also along the
trajectory (Figure 5.c). Almost all features are consis-
tent in the final map (Figure 5.b) and along the steps
(Figure 5.f), and the feature usage is the highest (Fig-
ure 5.e).

An interesting information about the features us-
age can be extracted from Figure 5.d and Figure 5.e:
it can be observed that when an undelayed strategy
is selected, the percent of features used to update the
map in every step (Figure 5.e) is much lower than the
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Figure 4: (a) Inverse-depth delayed with two observations.(b) Inverse-depth delayed until feature not aligned with robot
poses. (c) Inverse-depth delayed until finite depth.
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Figure 5: Global comparison. Analysis of the results for different step sizes (x-axis). The algorithms used are: id-u:inverse
depth undelayed, dmin = 0.5m. xy-f: cartesian delayed until finite depth. id-l: inverse depth delayed until feature not aligned
with robot poses.

used by the delayed algorithms even though features
initialization requires a lower number of steps (Figure
5.d.) Therefore, delayed techniques provide impor-
tant benefits due to the fact that the initial estimates
introduced into the map are better with lower covari-
ance.

7 CONCLUSIONS

In this paper we have discussed feature parameteri-
zation and initialization using bearing-only measure-
ments. Both considerably affect the results of the al-
gorithms. However, this paper shows that even with
a perfect feature parameterization, if the initialization
problem is ill-conditioned the results are inconsistent.
As conclusion we can state that in general situations
the delayed inverse depth until features not aligned
performs competitively.

An interesting result of this study is the related
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to the cartesian parameterization when it is combined
with a finite depth test. It was expected that carte-
sian algorithm based in triangulation techniques were
to suffer a great degradation of their performance for
small step sizes. However, results show that the algo-
rithm delayed until finite depth with cartesian param-
eterization is not very sensitive to the step size and
exhibits very competitive results, which makes it an
appropriate algorithm for indoors. Other interesting
conclusion is that introducing features earlier in the
EKF does not mean that more/better information will
be available to update the state.

In this paper we have also stated ill-conditioned
situations: a pure rotation motion and features aligned
with the trajectory. None of them can be managed in
any case. Some ideas have been presented to detect
these situations which will allow the algorithms to de-
cide which data can be used in each step.
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