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Abstract: Ladder logic is a graphical language widely used to program Programmable Logic Controllers (PLCs). 
PLCs are found at the heart of most industrial control systems used in automation because they are robust, 
they are relatively easy to program and because they are a proven technology. However there is currently no 
means to measure the intrinsic properties and qualities of the code produced. This paper details a method for 
creating tools to calculate software metrics for ladder logic, specifically Rockwell Automation’s 
implementation of ladder logic for its ControlLogix family of PLCs, Import-Export language version 2.6. 
Results obtained from these tools are briefly discussed also.  

1 INTRODUCTION 

Ladder logic was originally designed as a method 
for programming PLCs. It was intended to resemble 
electrical relay schematic diagrams so that the 
engineers familiar with the existing hard-wired, 
relay based electrical control systems could easily 
adapt to the new technology. It was so successful in 
this regard that PLC programmers have typically 
been recruited on the strength of their engineering or 
technicians background, as opposed to their strength 
in computer science. 

Although the basics of ladder logic have not 
changed much since that time, the language has 
evolved to help it meet the increasingly sophisticated 
needs of automation. Additional functionality has 
been added to the original relay specification 
language including: arithmetic operations, timers 
and counters, data comparison operations, data 
transfer commands, program control operations, 
ASCII operations, process control instructions and 
motion control instructions. Modern ladder logic 
now has much in common with more conventional 
programming languages (e.g. C and Java) in both 
functionality and in the way that the control 
strategies and algorithms can be implemented. Yet 
the shortage of software engineers in the field has 
meant that practices and techniques commonly used 

in computer science have been neglected in PLC 
programming languages. 

2 SOFTWARE METRICS  

The IEEE Standard Glossary of Software 
Engineering Terminology (IEEE Standard 610.12) 
defines software engineering as:  
“The application of a systematic, disciplined, 
quantifiable approach to development, operation, 
and maintenance of software; that is, the application 
of engineering to software.” 

The fact that the IEEE considers that engineering 
software systems requires quantification of system 
properties is highly relevant. This means that the 
inherent properties of a given piece of code must be 
measured in order to be able to ‘engineer’ it and 
improve it. 

The IEEE also defines a metric as “a quantitative 
measure of the degree to which a system, component 
or process possess a given attribute”. Software 
metrics should therefore be an implicit part of the 
engineering process. 

Various software metrics have existed since the 
1970s, and they have even been used to assess the 
complexity of manufacturing control architectures 
based on software and information flow (Phukan 
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2005), but very few have been used to evaluate PLC 
code. There is a desire to see practical tools to 
achieve this (Frey 2002) and recently a Java 
program has been built that analyzes the metrics of 
an Instruction List PLC program (Younis 2007). 

  

Metrics provide a way of analysing the code so 
the programmer can garner some information about 
its inherent properties. They are normally computed 
by static analysis techniques, which means that the 
program is analysed in an offline mode, as opposed 
to a dynamic analysis technique that analyses the 
program as it is running. 

 

Although metrics have not been used to 
meaningfully analyse PLC code, they have been 
used extensively on other languages. This means 
that there is a lot known about the strengths of these 
tools and the advantages they can offer. These 
include:  

 Wide acceptance of basic value of certain 
metrics. For example the cyclomatic 
complexity software metric (McCabe, 1976) is 
computed using a graph that describes the 
control flow of the program. The nodes of the 
graph correspond to the commands of a 
program. A directed edge connects two nodes 
if the second command might be executed 
immediately after the first command. This 
metric has been used extensively for the last 
thirty years and it is accepted that the higher 
the value of complexity, the harder the routine 
is to understand, test and maintain. Cyclomatic 
complexity is discussed further in section 
3.3.1.2.    

 Unbiased assessment of source code 
quality. Peer review can be used as a method 
of evaluating software code, but this is a 
biased assessment that could be affected by 
how the reviewer feels on the day. A computer 
program that analyses code will be unbiased. 

 Repeatability of measurements. The 
difficulty in reliance on peer review is 
consistency in measurement. A programmer 
reviewing the same code two weeks apart is 
unlikely to give an identical response. Is not 
the case with deterministic static analysis.  

 Ease of measurement. A metric 
measurement takes only a short time to collect 
and can be initiated by the programmer at their 
convenience; peer review takes far longer and 
involves more people.   

 Ability to judge progress in enhancing 
quality by comparing before and after 
assessments. 

The use of metrics allows organisation to set 
thresholds. If these thresholds are exceeded, action is 
recommended to inspect the code for problems, to 
reduce the measured values, either through 
modularisation or some alternate method. The initial 
coding effort might take longer, but it would in 
theory make it easier to program by fixing 
unnecessary complexity. It will also make it easier 
for a third party to understand the code. This would 
be a boon to any company, particularly for a modern 
factory where the demands of flexible automation 
and agile manufacturing mean that PLC code is 
changed more frequently than it ever was before. 
Another benefit of metrics is that they can help an 
organisation to identify the software in its portfolio 
that is of the lowest quality. By being able to tell the 
difference between what is good code and bad code, 
steps can be taken to improve the software that is 
most likely to cause problems in the future.  
 

An advantage of performing software metrics on 
PLC code is that code designed for similar functions 
(for example, interfaces for robots) from different 
manufacturers can be compared to help determine 
which equipment and software is the easiest to 
understand and work with. For example if the 
control interface for one robot manufacturer was 
found to have significantly less complexity than 
another company’s robot interface, then a purchaser 
of these robots might be influenced by this 
information. 

3 TOOL BUILDING 
INFRASTRUCTURE: DMS 

Although some metrics are quite simple in theory, 
extracting them in practice is complex. A lexical 
analysis approach to industrial control logic analysis 
has been suggested in the past (Danielsson 2003) but 
dismissed as being too difficult to implement. 

The tool chosen for this task was the “Design 
Maintenance System” (DMS®) by Semantic 
Designs. 

The DMS Software Reengineering Toolkit is a 
set of tools for automating customized source 
program analysis, modification or translation or 
generation of software systems containing arbitrary 
mixtures of languages (Baxter 2004). The term 
“software” for DMS is very broad and covers any 
formal notation, including programming languages, 
markup languages, hardware description languages, 
design notations and data descriptions. It was for this 
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versatility that DMS was chosen to analyze 
Rockwell Automation’s PLC code.  

A very simple model of DMS is that of an 
extremely generalised compiler, having a parser 
generator capabilities for arbitrary parseable 
languages, a semantic analysis framework and a 
general program transformation engine. It is 
particularly important that the analyzer output can be 
used to choose the desired transforms. Unlike a 
conventional compiler, in which each component is 
specific to its task of translating one source language 
to one target machine language, each DMS 
component is highly parameterized, enabling a wide 
variety of effects. This means one can choose the 
input language, the analysis, the transforms, and the 
output form in arbitrary ways.  

The computation of software metrics is based on 
the structure of the source code. This means metrics 
can be extracted from a parse of the program text. 
DMS® has the ability to parse large scale software 
systems based on the language definition modules 
used to drive DMS® for software reengineering 
tasks.  

The language definition for PLC control 
programs is Rockwell Automation’s Logix5000 
Controllers Import/Export Format Version 2.6. This 
version was introduced when RSLogix5000 
(Rockwell’s development environment program) 
Version 15 was introduced. The language definition 
module is intended to be backwards compatible. 
Although many earlier examples of code have been 
parsed by the module, it has not been extensively 
tested for every prior version of the import/export 
language (which will from here-on be referred to as 
‘L5K’, the file-type used by the import/export 
language. 

Some other things to note about this language 
module are that  
 The Motion Instruction set is included owing to 

the extensive use of these instructions in 
industry. Consequently, much of the example 
code used to test the parser made use of these 
instructions. 

 Of the five IEC 61131 languages (ladder logic, 
sequential function charts, function block 
diagram, structured text and instruction list), the 
only one that the parser is presently designed 
process is ladder logic. Further expansion to 
extend the functionality to the remaining 
languages is possible and would be a logical 
continuation of this work.   

 RSLogix5000 version 16 has subsequently been 
released along with version 2.7 of the 
import/export format language.  

3.1 Lexical Analysis 

The job of the lexer is to read in a source l5k 
program and to ‘tokenize’ it; that is to convert it 
from a stream of characters that make up the 
program body, to a sequence of lexemes. A lexeme 
is a single atomic unit of the language, for example a 
keyword. This sequence can then be input to the 
parser, which in turn will attach structure to the 
sequence and produce an abstract syntax tree. 

3.1.1 Lexical Definition Macros 

Macros are definitions of characters, character sets 
and other useful blocks of text that are made up from 
regular expressions. Macros may be defined to 
abstract lexical notions like blank or newline 
whitespace, case insensitive letters, digits, 
hexadecimal digits and floating point numbers.  

3.1.2 Lexical Modes 

DMS® supports the use of lexical modes to lex 
different source file sections that contain passages of 
distinct lexical vocabularies. Lexical modes used to 
lex L5K programs include: 
 ModuleDeclarations. Lexes module declarations 

after module attributes have been collected. 
 DataDeclarations. This lexes DATATYPE and 

TAG block contents. 
 RLL. This lexes the PROGRAM section 

containing the body of ladder logic code. 
 ParameterValue. Includes various types of 

structured values and unstructured strings. This 
is the lexical mode to collect attribute values 
including names, numbers etc. 

 
Depending on where they are defined, macros 

are global (meaning they can be referred to from 
every lexical mode) or local (meaning that only the 
lexical mode in which the macro was defined can 
use that particular macro).  

Lexical modes are stored in a stack. The mode 
that is at the top of the stack is the mode used to 
process the next token. 

Operations performed on the mode stack are 
nearly always prompted by the occurrence of a 
specific token in a given lexical mode. Certain 
tokens encountered in one mode can trigger a 
change to another mode, reflected in a mode stack 
modification. 

If there is no token found in the current lexical 
mode then the lexer can perform a last ditch error 
recovery. This is usually either a switch to another 
lexical mode, or popping the current lexical mode 
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from the stack. If the token is then found in a new 
lexical mode then the lexer carries on from there. 

3.2 Parsing 

The output from the lexer is a stream of terminal 
tokens stored within a metafile. This metafile is then 
used as the input to the parser. 

The job of the parser is to attach a hierarchy of 
significance to list of tokens input to it from the 
lexer, constructing an abstract syntax representing 
the source program. The means through which this 
happens is by applying a set of context-free 
grammar rules to the token stream. 

3.2.1 Context-Free Grammars 

Context-free grammar rules are written in a Backus-
Naur Form (BNF), which is an established method 
of describing a formal language. The form for 
declaring a context-free grammar rule is as follows: 

TNT →  
where NT is a single non-terminal symbol and 

T is a sequence that can contain terminals i.e. tokens 
that have come from the lexer including literals, or 
non-terminals (which are formed from other 
grammar rule productions, i.e. are internal to the 
grammar). T can also be empty. The order of the 
components in T is critical to the formation of the 
rule. It is not enough that the appropriate terminals 
and non-terminals are present - if they are not in the 
correct order then the grammar rule has not been 
satisfied. 

 
By substituting one grammar rule into another, 

each non-terminal can be expressed in terms of a 
sequence of terminal tokens. In other words, a non-
terminal rule is a set of strings that make up part of a 
legal L5K program. 

Multiple rules can be used to associate the same 
non-terminal symbol for different syntaxes, i.e. one 
NT  may have many different flavours of T . For 
example, the grammar rule for the production called 
‘Conditions’ is as follows: 

 
Conditions = ; 
Conditions = Conditions PrimitiveTest ; 

 
What this means is that Conditions can be empty, 

or it can contain an arbitrary number of 
PrimitiveTests. 

 

A Z  
Figure 1: A simple ladder logic rung. 

The Goal Non-Terminal. The topmost grammar 
rule is called the goal non-terminal. This is the first 
rule specified in the list of grammar rules that make 
up the formal language. It is unique because every 
other non-terminal will be used as a component part 
of another grammar rule, but the goal non-terminal 
has no ‘parent’ rule. The set of strings that the goal 
non-terminal can contain will be every possible legal 
L5K program, including the stream of tokens 
generated by lexing a legal program.  

3.2.2 Abstract Syntax Trees 

The data structure created by the parser that contains 
all the information about which grammar rules were 
used to parse a program can be represented 
diagrammatically by an abstract syntax tree (AST). 
In an AST, the nodes between branches represent 
non-terminal rules and the ‘leaves’ of the tree are 
terminal tokens. The goal non-terminal is the root 
node, and the branches show which non-terminal 
rules can be substituted in to each other. 

Figure (2) below shows a small part of an AST, a 
sub-tree for the simple rung shown in figure (1). 

 

 
Figure 2: Sub-tree of a simple rung. 

In this subtree, the lexed output are the literal 
instructions ‘XIC’ and ‘OTE’, the parentheses ‘(‘ 
and ‘)’ and the terminal token for both instances of 
NAME, which in this case would be A and Z. Every 
other node is a non-terminal, and the way in which 
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these non-terminals are structures represents the 
form of the grammar rules. 

3.3 Attribute Evaluation 

Attribute evaluation entails attaching rules to 
grammar productions and terminals that compute 
certain interesting values over syntax trees. 
Computation of these values involves composing the 
attribute computations for the constituents of the tree 
with intermediate values passed up or down the tree 
depending on what is being calculated. Ultimately, 
calculated values are stored in hash trees associating 
attributes with specific AST nodes. Passing down 
from a parent to child node is known as ‘inheriting’ 
a value, and from a child to parent is called 
‘synthesis’ of a value. The value passed is often then 
used in another rule associated with that particular 
production. 

If a parent node needs a value passed up from its 
child to complete a calculation then it is imperative 
that the child rule is evaluated before the parent rule. 
The ordering can be further complicated by 
directives included by the user which force one rule 
to be executed before or after another. The partial 
order for the collection of these values and how they 
are calculated over a structure as large as an abstract 
syntax tree is critical.   

3.3.1 Calculating Metrics 

Attribute evaluation can be used to measure the 
inherent properties of a piece of code. 

The following examples will show how to 
measure some basic metrics: 
 The number of rungs of ladder logic in a 

program. 
 The cyclomatic complexity of a ladder logic 

program. 

Number of Rungs 
Every time an AST node reflecting the grammar rule  
RungList = RungList CommentedRung ; 

 
is encountered, the following associated attribute 
evaluation rule is executed. 
 
RungList[0].CommentedRungCount = 

RungList[1].CommentedRungCount + 1 ; 
 
The CommentRungCount value can then be 

passed up the AST to a higher level grammar rule by 
synthesis. The grammar production 

RoutineDefinition = 'ROUTINE' NAME 
RoutineAttributes RungList 
'END_ROUTINE' ; 

Has the associated rule 
RoutineDefinition[0].CommentedRungCount 
= RungList[1].CommentedRungCount ; 

This hands the value of CommentedRungCount 
from the child node (RungList) to the parent 
(RoutineDefinition). Once the value has been passed 
higher up the tree, the value can be summed over the 
number of routines, and then over the number of 
programs to get the final value for the number of 
rungs in a file. 

Cyclomatic Complexity 
Calculating the cyclomatic complexity is more 
difficult. Knowing that 

Cyclomatic Complexity = Number of Closed 
Loops + 1 

(Watson, McCabe 1996) and the number of 
closed loops is essentially the number of ‘If’ 
statements makes this possible. But what constitutes 
an ‘If’ statement in ladder logic where no such 
construct is built in to the language? 

The assertion made here is that if a non-trivial 
condition precedes an action in a rung then that is a 
closed loop. This simplest example of this is shown 
in figure (1) above. This can be thought of as an If 
statement in a conventional language; IF A is true 
THEN execute Z. 

               
Figure 3.                                   Figure 4. 

Figure(3) and figure(4), like the example above 
still contain just one IF statement. In figure(3) IF A 
is true THEN execute Y AND Z; in figure(4) IF A 
OR B is true THEN execute Z. 

Of course it is possible to have multiple IF 
statements contained within the same rung. 

 

     
 Figure 5.                 Figure 6. 

Both figure(5) and figure(6) contain two IF 
statements. In figure(5), IF B true THEN execute Y 
AND IF A OR B true THEN execute Z; in 
figure(6) IF A true THEN execute Y AND IF A 
AND B are both true THEN execute Z. 
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Determining what is a non-trivial condition or 
action is achieved by passing around Boolean flags 
up and down the AST for each rung.  These flags 
assess whether a condition or action is trivial or not.  
The attribute NonTrivialCondition is defined to be 
 A non-empty Condition 
 An Action that starts with a non-null condition 

 
Conditions = ; 
Conditions[0].NonTrivialCondition = 
false ; 

 
Conditions = Conditions 
PrimitiveTest;Conditions[0].NonTrivialC
ondition = true ; 

 

An additional flag is required for Actions (which 
can contain Conditions in them). 
NonTrivialTrailingCondition is true if an Action 
ends with a non-null Condition.  

 

The number of If statements is then summed 
over all rungs within a routine, and to calculate the 
cyclomatic complexity one is added to that total. 

An example of a grammar rule, the associated 
attributes and complexity calculation is shown 
below. 

  

PrimitiveAction = '[' 
ParallelConditions ParallelActions ']'; 
      
PrimitiveAction[0].NonTrivialCondition 
= 
ParallelConditions[1].NonTrivialConditi
on /\ 
ParallelActions[1].NonTrivialCondition  
; 

 

PrimitiveAction[0].NonTrivialTrailingCo
ndition = 
ParallelActions[1].NonTrivialTrailingCo
ndition ; 

 

IF 
ParallelConditions[1].NonTrivialConditi
on /\ 
~ParallelActions[1].NonTrivialCondition 
THEN PrimitiveAction[0].IfCount = 
ParallelActions[1].IfCount + 1 ; 
ELSE PrimitiveAction[0].IfCount = 
ParallelActions[1].IfCount ; 
ENDIF; 

3.3.2 Reporting Metrics 

A family of metrics is calculated using this method. 
These include: 
 Lines code without blank lines and comments  

 Number of files *  
 Number of Programs * 
 Number of Routines * 
 Number of Rungs * 
 Number of Rungs with comments * 
 Cyclomatic complexity 
 Cyclomatic complexity of the largest rung * 
 Mean Cyclomatic complexity per rung * 
 PrimitiveTest Count * 
 Maximum number of PrimitiveTests on a rung * 
 Mean number PrimitiveTests per rung * 
 Decision density 
 Ladder instruction occurrence * 
 Motion instruction occurrence * 
 Halstead unique operators 
 Halstead unique operands 
 Halstead operator occurrence 
 Halstead operand occurrence 
 Halstead program length 
 Halstead program vocabulary 
 Halstead program volume 
 Halstead program difficulty 
 Halstead program effort 
 Halstead bug prediction 

 
These are standard software engineering metrics 

except the starred metrics which are ladder logic 
analogues. As well as these metrics, the location in 
the source code of the rung with the biggest 
cyclomatic complexity and also the largest number 
of PrimitiveTests is also reported. 

The metrics reporting engine collects the 
required base information at different points in the 
hierarchy: routine, program (a collection of 
routines), controller (a collection of programs) and 
system level (a collection of files/controllers). The 
necessary calculations are then performed and the 
metrics are collated in to multiple reports of 
different formats (.txt and .xml files). 

4 RESULTS 

The metrics tool has been used to analyze 
production code from automotive OEMs. Just under 
200000 lines of source code were analyzed – the tool 
took about 30 seconds to run. The results that it has 
produced have been very interesting. Some of the 
most notable are: 
 Mean cyclomatic complexity per rung is in the 

range 1.1 – 1.6. This seems reasonable, 
averaging just slightly over 1 decision per rung. 

 The maximum cyclomatic complexity found for 
any rung was 31. This level of complexity 
found on one rung means the program is harder 
to conceptualize than it needs to be and that to 
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enhance the readability of the routine for other 
programmers and users, this complicated rung 
should be split in to several smaller, simpler 
rungs.  

 The mean number of PrimitiveTests per rung is 
in the range 2 – 4. 

 The maximum number of PrimitiveTests found 
on a rung is 89. This is a very large value and 
makes navigating a program difficult as that 
amount of information cannot easily be fitted on 
to a standard monitor sized screen even when 
zoomed out. Action should certainly be taken to 
address this problem. 

 For a set of 729 routines, the mean cyclomatic 
complexity was 31.37 but the median was 16, 
indicating that the majority of the routines are 
relatively small, but some of the bigger ones get 
quite large. The programmer should re-examine 
the more complex routines to see if a) there is a 
better way to implement the logic so that the 
functionality is equivalent but the routines less 
complex, b) that the complex routines can be 
split in to multiple simpler routines  

 

A sample of some metrics report output can be 
found in the appendix. 

5 CONCLUSIONS 

There is a need to evaluate the quality of code 
produced for industrial control systems. Using the 
DMS® Software Engineering Toolkit, tools have 
been developed that use attribute evaluation over an 
abstract syntax tree to compute metrics that have 
been in common use in more conventional 
programming languages for nearly thirty years.  

It is hoped that appropriate use of these tools will 
help programmers produce clear and concise code, 
will allow project managers to make better decisions 
concerning their code based upon the numerical 
evidence gleaned from the tool. Industrial partners 
willing to trial these tools within are being actively 
sought after. 
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APPENDIX 

FILE 
C:/RSLogix5000/l5k_files/Z24_PLC1.L5K 
55134 lines of source. 
54783 lines of l5k code without blank 
lines and comments. 
20 programs. 
232 routines. 
7407 rungs. 
Aggregate cyclomatic complexity: 7653 
Mean cyclomatic complexity: 32.99 
Median cyclomatic complexity: 21.00 
Cyclomatic complexity of the largest 
rung: 31 
Position of rung with maximum 
cyclomatic complexity, occurs @ line: 
54494 
Mean Cyclomatic complexity per rung: 
1.03 
PrimitiveTest Count: 19025 
Maximum number of PrimitiveTests of any 
rung in the Controller: 30 
Decision density: 5.01 
Halstead unique operators: 53 
Halstead unique operands: 1865 
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Halstead operator occurrence: 37222 
Halstead operand occurrence: 108478 
Halstead program length: 145700 
Halstead program vocabulary: 1918 
Halstead program volume: 1588914.89 
Halstead program difficulty: 1541.38 
Halstead program effort: 2449115919.79 
Halstead bug prediction: 529.64 
 
PROGRAM MainProgram @ line 59508 
 7027 lines of l5k code without blank 
lines and comments. 
  139 routines. 
  Number of Rungs: 2713 
  Aggregate cyclomatic complexity: 4535 
  Mean cyclomatic complexity: 32.63 
  Median cyclomatic complexity: 4.00 
  Mean Cyclomatic complexity per rung: 
1.67 
  Cyclomatic complexity of the largest 
rung: 26 
  Position of rung with maximum 
cyclomatic complexity, occurs @ line: 
63750 
  PrimitiveTest Count: 10989 
  Mean number PrimitiveTests per rung: 
4.05 
  Maximum number of PrimitiveTests on a 
rung: 81 
  Position of rung with maximum number 
of PrimitiveTests, occurs @ line: 59702 
  Decision density: 0.65 
  Halstead unique operators: 67 
  Halstead unique operands: 955 
  Halstead operator occurrence: 18365 
  Halstead operand occurrence: 56269 
  Halstead program length: 74634 
  Halstead program vocabulary: 1022 
  Halstead program volume: 746129.49 
  Halstead program difficulty: 1973.83 
  Halstead program effort: 
1472735785.88 
  Halstead bug prediction: 248.71 
 
ROUTINE S_Dcu @ line 20278 
   410 lines of l5k code without blank 
lines and comments.  
   Number of Rungs: 102 
   Number of Rungs with comments: 102 
   Cyclomatic complexity: 114 
   Cyclomatic complexity of the largest 
rung: 9 
   Position of rung with maximum 
cyclomatic complexity, occurs @ line: 
20675 
   Mean Cyclomatic complexity per rung: 
1.12 
   PrimitiveTest Count: 167 
   Maximum number of PrimitiveTests on 
a rung: 11 

   Position of rung with maximum number 
of PrimitiveTests, occurs @ line: 20675 
   Mean number PrimitiveTests per rung: 
1.64 
   Decision density: 0.28 
   Ladder instruction occurrence: 380 
   Motion instruction occurrence: 10 
   Halstead unique operators: 31 
   Halstead unique operands: 183 
   Halstead operator occurrence: 442 
   Halstead operand occurrence: 1251 
   Halstead program length: 1693 
   Halstead program vocabulary: 214 
   Halstead program volume: 13106.30 
   Halstead program difficulty: 105.96 
   Halstead program effort: 1388731.04 
  Halstead bug prediction: 4.37 
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