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Abstract: This paper deals with the concept of a control architecture for robot cells that enables Plug’n’Produce 
according to Plug’n’Play in the office world. To achieve this, the cell controller needs special functionality 
located in a software module called “P’n’P-Module”. This module takes as input descriptions of devices and 
processes. These descriptions are then automatically evaluated in order to offer the user device-independent 
high-level commands to define a task for the robot cell. Based on this task definition an executable code has 
to be generated. The focus of this paper lies on the descriptions and algorithms necessary to generate this 
executable code. The presented method will be realized as a test bed within a bin picking cell using UPnP 
and XIRP. 

1 INTRODUCTION 

In Germany, 45% of all robots in 2006 have been 
shipped to the automotive industry, not counting 
other industry sectors with mass production 0. The 
tasks robots have to fulfil there are mostly highly 
repetitive and do not change over an extended period 
of time. Therefore, the main requirements for robots 
used in mass production are short cycle times. The 
goal of the european project SMErobotTM 0 is to 
broaden the field of applications for robots from 
mass production to small lot size production, as it is 
typically encountered in small and medium sized 
enterprises (SMEs). Because of small lot sizes, fast 
adaptability of robot and surrounding cell to new 
products and processes is much more important for 
SMEs than short cycle times. To make this possible 
the programming of applications for robot cells and 
the integration of new devices into these robot cells 
must be adapted to these new requirements. 

2 APPROACH AND SCOPE OF 
THIS PAPER 

In the office world it is very easy to install and use 
new devices. For example, to install a printer to your 
PC, you just plug it in. The entire configuration is 

then done automatically and your application will 
offer you the service “print”. This automatic 
configuration is called “Plug’n’Play”. Carried 
forward to a production environment this would 
mean that you would connect e.g. a robot to a cell 
controller and it would offer you the service 
“move_to” on a HMI. Even more advanced, it 
could mean that you connect e.g. a robot and a 
gripper to a cell controller and the cell controller 
would recognize the new possibilities enabled 
through the combination of two or more devices and 
offer you the service “pick and place”. To 
achieve this, the cell controller needs to know about 
the functionality of the connected devices and must 
be able to draw conclusions which services it can 
offer to a user. The approach pursued in this paper is 
based on device- and process-descriptions evaluated 
in order to offer services representing the 
functionality of the robot cell to a user. 

The ability to add devices to a robot cell and to 
use the functionality of these devices without the 
need of configuration is called “Plug’n’Produce”, 
according to “Plug’n’Play” in the office world and is 
provided by a so called “Plug’n’Produce-Module”. 
Plug’n’Produce (P’n’P) can be broken down into 
three layers depending on the amount of 
configuration done automatically: 

 Communication Plug’n’Produce: deals with 
communication protocols. Automatic setup of a 
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basic means of communication between cell 
controller and devices includes discovery and 
addressing of devices. 

 Configuration Plug’n’Produce: automatically 
configures all the settings the users should not 
need to care about, e.g. bandwidth 
requirements, default values, … 

 Application Plug’n’Produce: automatically 
offers services to the user corresponding to the 
functionality of the robot cell. 

The focus of this paper lies on the Application-
P’n’P-layer. Of course, this layer depends on the 
Configuration- and the Communication-P’n’P-layers 
in order to get to know which devices are available, 
to communicate with these devices and to get to 
know the descriptions of these devices 0. However, 
the two lower layers will not be within the scope of 
this paper as they are already realized in available 
communication protocols like XIRP and UPnP that 
will be used. 

3 STATE OF THE ART 

UPnP 0 and XIRP 0are both XML-based client-
server communication protocols that both support 
eventing and in the case of XIRP also cyclic 
communication. UPnP was mainly developed by 
Microsoft® for the PC-world while XIRP (XML 
Interface for Robots and Peripherals) was developed 
by a consortium of companies within the German 
public funded project ARIKT. 
Both protocols support the definition of device 
profiles as do also many other communication 
protocols 0. These device profiles define 
programming interfaces that have to be supported by 
a device in order to belong to a certain device 
category. The functionality of the device can partly 
be inferred from the programming interface, but it is 
not itself part of a device profile. Therefore, device 
profiles do not contain enough information to allow 
detailed assumptions about the functionalities of 
devices. 

In the domain of knowledge representation, 
languages have been developed that can be used to 
describe functionalities of devices in form of a 
taxonomy plus additional attributes. The most 
popular of these languages is OWL (Web Ontology 
language). It was developed as a key technology of 
the Semantic Web 0 with the goal to add meaning to 
the information that is today merely displayed in the 
internet. This additional information can be used to 
enable knowledge based services that contain 

several entities. 
In the context of home entertainment systems, a 

function planning module was developed within the 
SmartKom project. This module tries to serve 
complex user requests by first determining which 
devices are necessary and then determining how to 
control devices based on abstract descriptions of the 
functionalities of devices 0, 0. 

In this paper, the concept of device profiles 
augmented by a detailed description of the device’s 
functionality with a knowledge representation 
language is used to infer the functionality of a robot 
cell within the Plug’n’Produce-Module that adapts 
concepts of the function planning module of the 
SmartKom project to the robotic domain to generate 
executable code for UPnP- and XIRP-devices thus 
enabling Application-P’n’P. 

4 APPLICATION-P’N’P 
OVERVIEW 

Application-P’n’P as the highest P’n’P-layer has the 
goal to offer the user as easy as possible means of 
using the functionality of a robot cell. In the context 
of SMErobotTM this means offering the user as easy 
as possible means of adapting robot cells to new 
tasks. 

State of the art of defining the sequence for robot 
cells is to enter commands in the dialog of some sort 
of a programming system. The entered commands 
are then uniquely mapped to devices. This is an 
appropriate way of programming as long as the user 
has detailed knowledge about the control structure of 
devices as well as about programming itself. In the 
context of a SMErobotTM-application this cannot be 
granted. Users of robot cells in SME environments 
normally know a lot about the processes they have to 
perform in order to achieve the desired result, but 
have only minor knowledge about programming 
devices (a robot is a special kind of device). 
Therefore, the definition of sequences for robot cells 
in SME environments should be possible without the 
need of device programming. Instead, programming 
should be focused on the processes the user wants to 
execute. In this paper, this will be called “process-
oriented programming” and the corresponding 
commands will be called “process commands” as 
opposed to traditional “device commands”. 

Process commands trigger whole processes like 
drilling a hole or gripping a part, while device 
commands trigger a state change in a single device 
like setting a digital output or moving a robot from 
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point A to point B. Process commands are a much 
more general approach than subroutines because 
they define the sequence of actions for a process and 
the required functionalities. They abstract 
programming interfaces and communication and are 
therefore independent of specific device properties 
or communication protocol properties. 

The mapping of specific device commands to a 
process command in order to generate executable 
code will be described in detail in the following 
chapters. 

The introduction of process commands imposes 
the following requirements on the robot cell 
controller: 

 The robot cell controller needs information 
about the functionality of the available devices 
and must be able to infer the subset of available 
process commands that can be executed by the 
current setup of the cell. 

 The robot cell controller must be able to 
automatically generate code to execute the 
sequence of process commands defined by the 
user. 

To fulfil these requirements the “P’n’P-Module” is 
introduced. It acts as an intermediate between user 
and devices. The operating mode of the P’n’P-
Module will be described in detail in the following 
chapters. Figure 1 shows a block diagram of the 
P’n’P-Module and its environment. 
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Figure 1: Block diagram of the P’n’P-Module and its 
environment 

5 DESCRIPTIONS 

As shown in figure 1, three types of descriptions are 
necessary: 

 Device Descriptions containing information 
about the functionality and the programming 
interface of devices. 

 Process Descriptions containing information 
about the required functionality of a process 
and the sequence of actions. 

 One user-defined task description containing 
information about the sequence of processes 
and according process parameters. 

 
Information on the determination of the functionality 
of the robot cell can be found in 0. Therefore, this 
paper concentrates on the generation of executable 
code out of descriptions of programming interfaces 
of devices, the description of the sequence of actions 
of processes and the user-defined task description. 

5.1 Device Descriptions 

The description of programming interfaces of 
devices is realized in form of state charts, called 
“Device State Charts”. Device State Charts can have 
as many states as necessary, but depending on the 
functional description of a device certain states are 
mandatory. If the functional description of a device 
contains a certain skill, the state chart must contain 
certain mandatory state(s), e.g. if the functional 
description of a gripper contains the skill “CanGrip”, 
the Device State Chart of this device must contain 
the states “open” and “closed”. Apart from these 
mandatory states, the Device State Chart may have 
other additional states that replicate special 
properties of the device controller. Figure 2 shows 
an exemplary Device State Chart of a gripper. The 
states “configuring”, “opening” and “closing” are 
additional states. 

open

closed

opening closing

WaitFor:
XIRP:Request 

<Open>

Send:
XIRP:Event

<gripper closed>

WaitFor:
XIRP:Request 

<Close>

Send:
XIRP:Event

<gripper opened>

configuring
WaitFor:

XIRP:Request 
<SetAngle>

Send:
XIRP:Event
<angle set>

 
Figure 2: Device State Chart of a simple gripper. 
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The transitions of the state chart describe the 
device commands that triggers the state changes. In 
the case of the bin picking test bed described in 
chapter 7 UPnP and XIRP will be used as 
communication protocols. Therefore the transitions 
of the Device State Charts describe device specific 
UPnP and XIRP communication to control the 
devices. 

Several languages exist to describe state charts. 
One of them is SCXML 0. SCXML allows the 
concurrent execution of parallel state charts and their 
synchronization and is therefore well suited for the 
use in Device State Charts. 

Device State Charts are a mandatory part of 
device descriptions in order to generate the 
necessary sequence of commands to reach certain 
states – that means, to execute a certain task. 

5.2 Process Descriptions 

General Process State Charts describe the states the 
involved devices have to reach, their order and 
synchronizations that must be taken into account. 
They are the counterpart of Device State Charts. 
General Process State Charts have the purpose of 
describing the sequence of actions of a certain 
process. “General” means that they describe this 
sequence independent of the devices actually used 
and therefore independent of their specific 
programming interfaces. Therefore, they must 
describe which states must be reached by the devices 
in which order to execute a certain action, but they 
must not describe how these states can be reached as 
this depends on the devices actually used. General 
Process State Charts consist of separate state 
machines for each involved devices. These separate 
state machines are synchronized where necessary, 
e.g. to assure that a gripper is closed only after the 
robot has reached the gripping position. Figure 3 
illustrates the General Process State Chart of a 
picking process. 

General Process State Charts are expressed in 
SCXML, too. 

5.3 Task Description 

The task description is defined by the user of the 
robot cell on the Generic HMI as sequence of 
process commands. The Generic HMI displays all 
executable processes to the user. The user defines a 
sequence of processes and enters the corresponding  

gripper state chartrobot state chart

open

closed

idle

move

idle

move

idle

 
Figure 3: General Process State Chart of a picking process. 

process parameters like e.g. gripping force, picking 
position or robot speed. For that purpose dialogs are 
automatically generated out of the process 
descriptions. It is either possible to enter the required 
process parameters directly on the HMI or, if 
available, with the help of input devices. Positions 
could e.g. be taught with lead through programming 
if the robot is equipped with a force torque sensor 
and the controller supports lead through 
programming. 

6 GENERATION OF 
EXECUTABLE CODE 

In order to run the task defined by the user code has 
to be generated that can be executed by the code 
generator (see figure 1). This code generation 
consists of two steps. First, General Process State 
Charts and Device State Charts are combined to 
(device-) Specific Process State Charts. Second, the 
Specific Process State Charts are concatenated 
according to the user-defined task description to a 
Task State Chart. In this Task State Chart, the user-
defined process parameter values are included. 
Figure 4 illustrates the workflow. 
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Figure 4: Workflow to generate executable code. 

6.1 Generation of Specific Process 
State Charts 

Specific Process State Charts are generated out of 
General Process State Charts by adding device 
commands to the transitions. 
Therefore, the states of the General Process State 
Chart are mapped to states of the Device State 
Charts of the used devices. The mapping is possible 
because the states of the General Process State 
Charts and the states of the Device State Charts are 
related by an ontology. The device commands are 
then added stepwise by searching a path in the 
Device State Chart for each Transition in the 
General Process State Chart. This path including all 
states, transitions and device commands in between 
is then inserted into the General Process State Chart. 
Once this path-search has been done for a whole 
General Process State Chart, the result is a (device-) 
Specific Process State Chart. Figure 5 illustrates this 
approach exemplary using the Device State Chart 
shown in figure 2 and the Process State Chart in 
figure 3. 

Part of resulting 
Specific Process 
State Chart
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WaitFor:
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<gripper closed>

 
Figure 5: Generation of Specific Process State Chart out of 
Device State Chart and General Process State Chart. 

6.2 Generation of Task State Chart 

To generate the Task State Chart, the Specific 
Process State Charts are concatenated according to 
the task description. If a process does not involve a 
device, this device stays in the last state of the 
previous process. Finally, the user-defined process 
parameters are included. Result is a state chart 
containing device commands of the used devices 
that can be executed. Figure 6 shows an example of 
a Task State Chart. 
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Figure 6: Generation of Task State Chart by concatenating 
processes. 

While concatenating the processes, a basic 
plausibility check is performed to assure that only 
processes with matching final and start states are 
attached. This plausibility check assures e.g. that the 
gripping process shown in figure 3 cannot be used 
without in between opening the gripper again in 
some other process. In this way some errors of the 
user defined Task Description can be detected. 

6.3 Executing the Task State Chart 

The execution of the Task State Chart is done by the 
code executor in the cell controller (see figure 1). 
For each involved device, a state machine is 
initialized with the start state of the first process. 
From then on these state machines check cyclically 
if the condition of a transition is fulfilled. If yes, a 
state change is triggered and the state machines 
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switch to the next state. State changes of a device 
can either be triggered by an incoming message 
from that device, by a state change of another device 
or by a transition without a transition condition. 

7  TEST BED BIN PICKING 

The presented concept will be realized as test bed in 
a bin picking robot cell. This cell consists of the 
following devices: 

 Robot 
 Gripper 
 3D-Sensor 
 PC that runs the bin picking algorithms 

All these devices are connected to a cell controller. 
The cell controller runs the P’n’P-Module with the 
described functionality. Figure 7 illustrates the 
underlying control architecture. 
 

 
Figure 7: Control Architecture of the bin picking cell. 

All devices have their own controller that offers a 
programming interface to access their functionality. 
This programming interface is accessible either via 
XIRP or the UPnP communication protocol. 
Because both protocols support automatic discovery 
and initialization of communication, the devices are 
integrated into the cell controller without manual 
configuration effort. Then, description files 
containing the Device State Chart are loaded into the 
P’n’P-Cell-Controller. The P’n’P-Cell-Controller 
uses these descriptions to evaluate the cell 
functionality and – after the user has defined a task – 
generate and execute code as described in this paper.  

8 CONCLUSIONS AND 
OUTLOOK 

The presented concept allows programming of a 

robot cell without knowing details about the 
underlying programming interfaces and 
communication protocols and therefore permits 
users with little knowledge of (robot) programming 
to use robots. The user has to combine and 
parameterize the processes but does not need to use 
device commands. To facilitate the parameterization, 
intuitive input devices can be integrated into the cell 
controller. 

The abstraction layers introduced to achieve this 
goal furthermore allow easy exchange of devices 
with different programming interfaces and 
communication protocols as long as they offer the 
same functionality. 

The concept should help users in a SME 
environment to define typical machine tending or 
part handling tasks that do not require closed control 
loops extending over several devices as the present 
concept cannot cope with real time requirements. 
One possible solution would be to include 
mechanisms into the communication layer to support 
real-time provided that real-time communication 
protocols are used. Another, more advanced 
approach would be to establish direct real-time 
connections between devices that need to exchange 
time-critical data. This approach would impose new 
requirements on the devices and the underlying 
network. 

Another possibility to further advance the 
presented concept is to upgrade the plausibility 
check described in chapter 6.2. The available 
information about the meaning of processes and 
states could be used to not only detect task definition 
errors, but also make suggestions to the user on how 
to correct them. 

A third advancement of the presented concept 
could be an upgrade of the code executor. At the 
moment it executes the generated Task State Chart 
sending single commands to devices to trigger 
actions. Because state charts are a very general way 
of representing programs, the Device State Chart 
could be used to generate complete programs for 
single devices using transformation rules. This 
would allow generating e.g. a program for a robot, 
downloading it and running it on the robot controller 
thus significantly reducing the communication 
effort. 

The bin picking test bed will give the opportunity 
to prove the presented concept, to draw conclusions 
about its strengths and weaknesses and by this 
means decide about the next steps. 
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