
PLUG-AND-PRODUCE TECHNOLOGIES
REAL-TIME ASPECTS

Service Oriented Architectures for SME Robots and Plug-and-Produce

Klas Nilsson
Department of Computer Science, Lund University, Box 118, SE-22100, Sweden

Klas.Nilsson@cs.lth.se

Matthias Bengel
Robot Systems, Fraunhofer IPA, Nobelstr. 12, DE-70569 Stuttgart, Germany

Matthias.Bengel@ipa.fraunhofer.de

Keywords: Plug-and-Produce, Plug-and-Play, real-time computing, flexible manufacturing systems, robot.

Abstract: Plug-and-Produce (with the meaning that devices can be plugged in without any manual configurations
needed) is an attractive paradigm for manufacturing systems, and in particular for Small and Medium
Enterprises (SMEs) that do not have the expertise of system integrators but do need to be able to reconfigure
their systems by themselves. One approach for loosely (in terms of timing) coupled devices is that of
Service-Oriented Architectures (SOA). As can be understood from developments with multiple robot arm
and online operator interactions, future applications will in some cases need real-time guarantees for
performing services. That includes both real-time communication and the need to perform services with a
predictable timing. A review of available technologies and inherent limitations of distributed computing
leads to the conclusion that the standard SOA approach based on process oriented (like for RPCs and web
services) calls similar to distributed object orientation will not be practically useful. Instead, a data or state
centric approach should be adapted together with one-way message-based communication.

1 INTRODUCTION

The idea of "just plug in and produce" for
manufacturing equipment is very attractive. It is
inspired by the Plug-and-Play concept for PCs,
which has been developed from something less well
working for the old ISA-bus PCs running
Windows95, into a quite useful end-user support for
plugging in USB and other types of devices. There
are sometimes real-time requirements on the
communication between PCs and their peripherals,
and in manufacturing there are real-time
requirements on the communication between
different devices.

Such devices in manufacturing can be various
types of equipment such as robots, advanced sensors
and PLCs, and real-time communication is
accomplished via field buses or direct wiring, but
then with very limited PnP support. Comparing with
the simplicity of connecting appliances to a home
PC, one should observe that the PC then is a master

device that deals with real-time over dedicated
communication lines such as fire-wire for a camera.

The real-time problem is not really there, it just
works in a reasonable way when sufficient resources
are provided (such as USB2 for a memory stick),
and when that is not the case the user has to be a bit
more patient.

Large enterprises have technical experts that deal
with system integration and setup of communication
around robots and other types of machines. The
future anticipated wide-spread use of robots in
SMEs, however, leads to a situation where non-
experts (home PC users expecting PnP to work)
need to setup and maintain their robot installations.
In this situation, the lack of competence is not a
problem; it is a reasonable challenge that
automation/computer/software engineers should
solve. The problem is, however, the lack of
awareness within the involved engineering
disciplines concerning the inherent or hidden
limitations that pop up as peaks of complexity for
the end user, which efficiently prevents the PnP

249

paradigm to work in practice in SMEs. A certain
infrastructure coping with the (then internal)
complexity is needed.

Is explicit support for real-time communication
part of the needed infrastructure or not? Well, it is
typical for infrastructure (phone lines, high-ways,
health care, and so on) that:
• Persons (in this case engineers) have different

opinions about what need to be provided and
what it left to be solved on a case-by-case basis.

• Persons (still engineers, considering real-time
and PnP) imagine a cost for additional features,
and if the imagined cost is high compared to the
imagined (not actual) benefits, there is a
resistance of supporting development of the
support.

• Lack of a complete supporting infrastructure
can result in complete systems being developed
in parallel, with deficient overall efficiency,
since experienced problems (even if only in few
cases) may be severe.

• A well-working infrastructure is not really
noticed since it is taken for granted (only
noticed when not working), so even persons that
actually depend on it may pay no attention to it.

Returning to PCs and IT infrastructure, a
comparison with security is relevant. Security should
better be built in using solid principles within device
drivers, operating systems and in middleware
solutions. Since that has not been the case for typical
PC systems, the costs in terms of failing
systems/enterprises and add-on protective systsems
(hardware and software) has been enormous. In
development of future automation solutions we
should be extra careful since the field by itself is not
big enough to cover huge extra costs; instead we
have to benefit from low-cost solutions. Therefore, if
PCs and low cost devices (hardware and software)
do not provide the needed solutions, we should pay
extra attention to get the foundations right for future
efficient SME usage.

Is then real-time communication and real-time
execution something we need; is it something that
can be added afterwards; or what should be the
foundation for future applications? The standard
answer today is that real-time is needed in very few
cases, so let's neglect it and focus on other
application aspects.

One promising approach is then so called
Service-Oriented Architectures (SOA), which could
be quite suitable (at least for non-real-time parts) but
the implementations tend to be slow and hard to map
onto real-time suitable implementations. For
instance, both UPnP and web services are

implemented on top of http with XML-based
information structures that not necessarily map on
hardware supported real-time means of
communication. We will come back to this issue, but
first some preliminaries that our discussion can
benefit from.

2 PRELIMINARIES

So called middleware and models of distributed
components providing software services typically
come from enterprise systems, but is also being used
for mobile robots and other system interconnections
with no strict real-time requirements. For real-time
communication within industrial automation, the
current practice is based on field buses. In modern
integrated systems with the need for so called
vertical integration, there enterprise and device
levels need to be able to communicate and the
different technologies need to be unified.

2.1 Basic Model of Communication

Software developers today normally use object-
oriented programming, and from the beginning they
learn how to use method calls for object interaction.
Multi-threaded applications, today typically written
in Java or C# with language support for
synchronized methods, also follow the object-
oriented paradigm quite well, which means that two-
way synchronous communication is the basis for
inter-object communication within a single program.
 Developers with experience from computer
networking or from data-flow oriented applications
with needs for buffering of asynchronous messages
may build distributed applications differently than
local programs, simply to deal with the quite
different and complex communication reality.
However, along the lines of hiding complexity, a
perhaps more common trend is to stretch the object-
oriented paradigm to cover also distributed systems,
which by definition are concurrent (but so far we
assume no real-time requirements). This is also the
basis for several of the middleware approaches that
are listed below. The problem is, however, the
distributed object-oriented paradigm has limited
applicability when assumptions about the networked
object interaction do not hold. That is, for realistic
applications (such as robot work cells) the
networking for object interaction does not scale or
does not handle typical deployment contexts. This
has been known for over a decade as appropriately
described by (Waldo, 1994), and the reader is
suggested to read at least sections 2 and 7 of that
report before continuing here.

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

250

In our case dealing with automation and real-time
demands (not to mention safety), the situation is
even more difficult, but still some of the dead-end
approaches are being promoted. To review the
current situation some further details on existing
solutions and requirements now follow.

2.2 Fieldbuses

The classical field buses are usually setup in a ring-
like structure, which is natural since the original
purpose was to minimize cabling. Some of them
provide hard real-time capabilities (like Sercos),
others just implement soft real-time like Profibus
and CAN bus. There, messages can almost be made
sure to be delivered in time – depending in their
priority. Nevertheless, the CAN bus supports
distributed hard real-like control although the
communication itself doesn’t (CAN, 1991). These
field buses make use of their own physical layer.
Sercos uses fibre optics, CAN bus relies on a three-
wire cable.

Typically a rather limited number of devices can
be connected to one network. Profibus and CAN bus
for instance support up to 127 participants.

Newer developments don’t use their own
hardware layer but rely on the Ethernet technology.
Well-known examples are Sercos III (Sercos, 2002),
ProfiNet (Profibus, 1999) (ProfiNet is part of the
Profibus specification since 2003) and EtherCAT
(ETG, 2007]. All of them implement real-time
capabilities. This is mainly done by replacing some
of the ISO/OSI layers (Zimmermann, 1980) in the
standard TCP/IP stack. Therefore, the wiring gets
less complex and requires less effort. Further more,
in some of these technologies – if hard real-time is
not required – standard hardware like network
switches from the office world can be used.

As these technologies make use of the IP
technologies, the number of participants gets larger
and is not limited to only a small number. One fairly
successful attempt to bring together several
protocols under a unifying overall framework is the
CIP (ODVA, 2006) initiative. However, such
general solutions go with lengthy descriptions and
detailed APIs that are not easily adopted.

2.3 Middleware

Apart from the field bus technologies there are
several approaches to communicate not only
between different automated hardware devices but
as well between different programs, spread in the
network. Currently, some main directions can be
observed:

2.3.1 Web Services

The web services are a mainstream technology in the
B2B (business to business) communication and are
used there mainly as Enterprise Java Beans (Sun,
2007) and Microsoft’s .Net technologies. The web
services are usually implemented using the SOAP
protocol (W3C, 2007) that communicates via Http
and TCP/IP over Ethernet. The main advantage is its
flexibility and availability in the intranets and the
internet due to using the http port. But in this scope,
the main disadvantage is the lack of real-time
capability due to the standard network protocols.

2.3.2 OPC/UA

OPC/UA (OPC Unified Architecture) is the newest
of all OPC specifications (OPC, 2007). It contains
an own communication stack which is scalable from
embedded controllers up to main frames.

The architecture follows the SOA paradigm
(service oriented architecture) including several
logical layers. It supports profiles which can be
queried. Therefore, communication partners can
query their provided services.

As OPC/UA was invented for communication
via the internet, its architecture supports security
features like encryption and authorisation.
Determinism is not included. Internal tests
discovered that round-trip times are short enough to
implement even control loops for devices in
automation technology.

2.3.3 Corba

Particularly in the research area different Corba
implementations are used widely. Corba is the
abbreviation for Common Object Request Broker
Architecture and is a specification of an object-
oriented middleware (Mowbray, 1997). Its core is a
so-called object broker which defines platform-
independent protocols and services.

Usually the program code for the communication
over the network is not written manually. Instead, an
abstract language, the Interface Definition Language
(IDL) is used. From that, the stubs and skeletons are
generated automatically for various programming
languages and different operating systems. This is
why Corba is platform-independent on the one hand
and programming language-independent on the other
hand.

Newer implementations of Corba even support
real-time, provided that the underlying operating
systems and communication channels do as well.
Due to the fact that there are several different Corba
implementations it cannot be assumed a priori that
all the different implementations interoperate well as

PLUG-AND-PRODUCE TECHNOLOGIES REAL-TIME ASPECTS - Service Oriented Architectures for SME Robots
and Plug-and-Produce

251

there seem to be some differences in the concrete
implementations. The specifications for Corba and
IDL can be retrieved from (OMG, 2007).

2.3.4 Universal Plug and Play

The main purpose of Universal Plug and Play
(UPnP) is to control devices independent of their
manufacturers. UPnP is well-known in controlling
routers and multimedia equipment.

Originally, UPnP was introduced by Microsoft,
but nowadays, certifications for devices are
performed by the UPnP Forum (UPNP, 2007) which
at the time of writing consists of 845 vendors.

UPnP can be used on any communication
channel supporting IP communication. Basically,
UPnP makes use of several protocols for discovery,
addressing, description, eventing and so on. Also the
technologies IP, UDP, Multicasting, Http, and
SOAP are well known and are used in this
technology.

Unlike some the other middleware standards
described here, UPnP does not support any security
features. A good introduction to UPnP can be found
in (Jeronimo, 2003).

2.3.5 Representational State Transfer

The standard way of implementing web service
(using SOAP as in UPnP) has a number of
drawbacks in terms of (Newmarch, 2005):
1. Inefficiency with XML-based RPC-like

communication on top of http.
2. Unclear semantics in the use of GET and POST

requests.
3. Unclear object model and deficient referencing

of attributes in nested data structures.
To overcome these difficulties, the REpresentational
State Transfer model was suggested by Fielding
(Fielding, 2000) to overcome the above drawbacks.

Technologies used in Microsoft Robotics
Studio® (MSRS, see Microsoft.com for latest info)
is claimed to include a lightweight REST-style
service-oriented runtime, but the Decentralized
Software Services Protocol (DSSP) is actually
SOAP based. Therefore, even if DSSP is oriented
towards exposing device states, it is not clear how
the transfer of state information can be mapped to
real-time eventing as we aim for.

3 FUTURE COMMUNICATION
AND MIDDLEWARE

For PnP automation devices to become a reality, it
must be easy and streamlined to develop such

devices. The reason is that the strong arguments for
interoperability as in telecommunications do not
apply to automation, which also is to small an area
to cover extensive developments of special
solutions. Hence, we must be able to make use of
available technologies in a swift manner.

Note that the solution is not standardisation, at
least not in the traditional sense with agreements that
are negotiated in committees and then maintained as
thick documents. There are already a lot of
standards; we do not need more of them (unless
there is a core new technical solution that calls for
some agreements on how to make use of it).

What is the suitable approach then, and what are
the requirements?

3.1 Requirements for R&A Systems

To support the desired PnP developments we need
middleware providing an API with a suitable
expressiveness and simplicity. These two demands
are contradictory and it is an open issue if a good
solution can be found or not. For instance, even if
there are abstractions and APIs for communication
channels, the profiles and specifics for fieldbuses
may add too much of complexity if the selected
abstractions do not map onto the actual setup.
Another example is CORBA that should simplify
programming of distributed applications, but still
adds too much complexity (for programming, for
deployment, and for troubleshooting). Thus,
abstractions need to be defined on an appropriate
(probably medium) level to avoid problems:
1. Too low level: The complexity of networking

and field-buses gets exposed and the API gets
useless for a majority of the developers.

2. Too high level: Communication setup not
reflecting actual needs in terms of timing and
resources, and a variety of APIs will evolve.

Hence, the middleware should deal with
communication in terms of an application oriented
(not networking oriented) API that is designed to
map well on the most suitable alternatives for real-
time communication. To structure the topic we may
separate between:
• Mechanism: How are things accomplished

technically, typically locally in a computer node
or on the network?

• Policy: How are the mechanisms used and
configured locally?

• Deployment: How is an actual system
configured before and during run time?

Taking a look at just the mechanisms for
communication and connections between devices,
there are at least the following to consider, some if it

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

252

affecting the software in a less obvious way. For
brevity, the following items (that each deserves one
paper) are very shortly described without references:
a) Driven by time or events: EtherCAT, TTP, and

RTNet are time driven while ThrottleNet and
normal socket connections naturally forms
event driven communication. Combinations?

b) Exposing services or data: Configuration
methods and operational state, RPC or REST?

c) Operating peer-to-peer or master-slave: Is an
EtherCAT slave PC node a slave or a peer?

d) Connecting peer-to-peer or client-server:
Server socket in server, client, or p2p software?

e) Topology as star or ring: Implications on
predictability, reliability, resources and cabling?

f) Connection-based or datagram channels:
How to deal with the tradeoff between
performance and reliability/simplicity?

g) Synchronous or asynchronous: Both events
and calls can be both. Best practices and APIs?

h) Bidirectional or one-way: Should there be a
built-in support for handling event replies, for
unreliable low-cost means of communication?

i) Hot-plugging or reset: EtherCAT connected to
an end-effecter via tool exchanger, is a commu-
nication dip during tool changing acceptable?

j) Predictable or best-effort: Specification of
performance requested or obtained, but what
does it mean for the application software?

k) Dependable or fail-safe: SME robots only need
to be failsafe or are there mission-critical cases?

l) Guarded or collaborating nodes: Does
human-robot space-sharing imply a need for the
‘babbling-idiot’ protection as in TTP.

Since not all this complexity should be exposed in a
complete API (that nobody would use), we need:
o Tradeoffs such that the most critical and

common cases are well supported, for instance
by suitable default configurations.

o Abstractions in layers and a guide such that only
a few types of configurations are needed in
actual scenarios. Integration with model-driven
design tools is desirable.

o Ontology-based definitions of the communi-
cation model, including formal definitions of
items a to l above. Today standards and
definitions are only expressed in documents (for
humans) and code (for computers), but there is
no meaning including semantics that is
understandable by both humans and machines,
which is necessary for application-level PnP.

o Open source reference implementation working
with some generic devices. Different vendors
will then adopt the software (or perhaps re-
implement in other languages and for other
platforms) but agreements and specifications
need to be with respect to actual runnable code.

Suitable tradeoffs with respect to embedded
distributed software for robot work-cell devices
should primarily suit low-cost solutions as needed
for SMEs. Our research indicates that the following
decisions are appropriate:
A. Real-time data-flows should be based on one-

way data streams that from a programming
point of view is equal to an event or message
stream, but only resource use should be defined
programmatically (e.g. by providing a
maximum size message and a maximum
frequency) and no configuration of
communication profiles should go into the
application code.

B. There needs to be a binary version of the real-
time data flows, with complete description of
message types when a connection is established
but with only minimal binary information
during real-time operation. That way most
control messages fit into Ethernet frames and
low cost raw Ethernet can be used for
predictable communication.

C. Real-time RPC, RMI, CORBA method calls, or
web services, should not be permitted, at least
not the standard IDL way. If permitted, the
underlying asynchronous operation should be
explicit, meaning that there is a call object that
can be queried for completion, errors, etc.

D. Non-real-time network traffic should be
possible to do in the same way as for real-time
communication, but in this case synchronous
method calls could map (automatically) to RPC
calls or web services.

E. All encapsulated entities used by the real-time
parts of the application should be resource
aware; real-time is just a special case of
resource limitations (namely CPU power and
the scheduling of it), so also memory usage and
IO bandwidth allocation should be taken care of
in a structured way.

F. The use of safe languages such as Java and C#
should be used for improved modularity and
robustness of hand-written code. Unsafe
languages such as C++ should not be used for
flexible dynamic parts of systems since the risk
for dangling pointers and crashes get too high.

G. All systems should (without extra engineering)
run on standard desktop computers for
simulation and debugging purposes, then
without real-time performance but with full
concurrency using a virtual time scale.

There will of course be no power to enforce the
decisions above and standardization via a committee
would not work; freely available implementations of
selected abstraction must be the most simple and
efficient way of building systems, and thereafter de-

PLUG-AND-PRODUCE TECHNOLOGIES REAL-TIME ASPECTS - Service Oriented Architectures for SME Robots
and Plug-and-Produce

253

facto standards should evolve. In this perspective
compatibility (either directly or via bridges) with
major wide-spread middleware solutions such as
MSRS must be supported. A variety of initiatives are
ongoing, including the Apache CXF Open Source
Service Framework (Apache, 2007).

The focus in REST on data rather than methods
(or nouns instead of verbs) suits our manufacturing
scenario quite well since it is data that is actually
transferred over the network and simple mappings of
device state to network data should permit tiny
devices to be part of the PnP system. Using switched
raw Ethernet (Martinsson, 2002) and self-descriptive
data packets (Blomdell, 2007) then supports low-
cost solutions. To find out if the above technical
decisions are appropriate or not, more assessments
are needed to get application experiences. That is
ongoing but outside the scope of this paper.

4 CONCLUSIONS

Appropriately designed real-time capable
middleware and PnP support will most likely
simplify for application development rather than
being a complication. Support for real-time
communication should be built into the abstractions
we use for communication between programs and
computers. Real-time support means permitting real-
time operation (when OS and all involved parts
comply), so well-written applications will provide
real-time capabilities when deployed on a real-time
capable system. Many promising technologies and
partial solutions have been developed over the years,
but it appears there are no solution with the
completeness and scalability that is needed for the
future very flexible and modular SME applications.
A suitable approach appears to be open-source
reference implementations of suitable abstractions
for Ethernet-based communication and development
of middleware that is compatible with (but also
useful independently of) the Microsoft Robotics
Studio. Additionally, special attention should be
paid to self-descriptive binary communication
channels that map well onto raw Ethernet and that
can be bridged automatically to high-level XML-
based eventing as used in several of the existing
standards. Such developments are currently ongoing
in the SMErobot consortium.

ACKNOWLEDGEMENTS

This work was supported by the EU FP6 project
SMErobot®.

REFERENCES

Apache, 2007: Apache CXF: An Open Source Service
Framework, http://incubator.apache.org/cxf

Blomdell, A., 2007:The LabComm Protocol Language,
http://torvalds.cs.lth.se/moin/LabComm

CAN, 1991: CAN Specification, Version 2.0, ISO 11898:
1993-11

ETG, 2007: EtherCAT Technology Group website,
http://www.ethercat.org

Fielding, R., 2000: Architectural Styles and the Design of
Network-based Software Architectures, http://
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Jeronimo, M., 2003: UPnP Design by Example. 2003 Intel
Press. ISBN 0971786119.

Martinsson, A., 2002: Scheduling of Real-time Traffic in a
Switched Ethernet Network, Master thesis, https://
www.control.lth.se/database/publications/article.pike?
action=fulltext&artkey=5683

Mowbray, T. J. and Ruh, W. A., 1997: Inside Corba:
Distributed Object Standards and Applications.
Addison Wesley 1997. ISBN 978-0201895407.

Newmarch, J., 2005: A REST Approach: Clean UPnP
without SOAP, Newmarch, J., "A RESTful approach:
clean UPnP without SOAP," Consumer
Communications and Networking Conference, 2005.
CCNC. 2005 Second IEEE , vol., no., pp. 134-138.

ODVA, 2006: The Common Industrial Protocol (CIP™)
and the Family of CIP Networks. At
http://www.odva.org/Portals/0/Library/Publications_
Numbered/PUB00123R0_Common%20Industrial_Pro
tocol_and_Family_of_CIP_Netw.pdf

OMG, 2007: OMG Specifications. – Middleware
Specifications.http://www.omg.org/technology/
documents/spec_catalog.htm

OPC, 2007: The OPC Foundation.
http://www.opcfoundation.org/Downloads.aspx?CM=
1&CN=KEY&CI=283

Profibus, 1999: Profibus Specification. 1991/1993 DIN
19245, IEC 61158/IEC 61784

Sercos, 2002: SERCOS interface, 2002. IEC/EN 61491.
Sun, 2007: Enterprise Java Beans, Sun Microsystems,

2007. http://java.sun.com/ejb
UPNP, 2007: The UPnP Forum. http://www.upnp.org/
W3C, 2007: SOAP Specifications, 2007.

http://www.w3.org/TR/SOAP/
Waldo, J., Wyant, G., Wollrath, A., Kendall, S., 1994: A

Note on Distributed Computing. http://
research.sun.com/techrep/1994/smli_tr-94-29.pdf

Zimmermann, H., 1980: OSI Reference Model — The
ISO Model of Architecture for Open Systems
Interconnection, IEEE Transactions on
Communications, vol. 28, no. 4, pp. 425 - 432.

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

254

