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Abstract: The paper investigates a recursive approach for the bias compensating least squares (BCLS) technique. The
method presented is applied to the problem of on-line identification of single-input single-output bilinear
models in the errors-in-variables framework. Within this framework the recursive bilinear BCLS algorithm is
realized when a bilinear Frisch scheme (BFS) is iterativelyapplied for the estimation of the parameters of an
exemplary bilinear system, giving rise to the exact recursive BFS (ERBFS) method. Moreover, a further exten-
sion of the ERBFS incorporating Tikhonov regularization with variable exponential weighting is considered
and this is shown to be beneficial in the initial period of the identification procedure.

1 INTRODUCTION

The errors-in-variables (EIV) framework addresses
the identification of dynamical systems where both
the input and the output signals are corrupted by the
measurement noise (Söderström, 2007). The EIV ap-
proaches are found to be of considerable benefit when
the underlying physical laws characterizing the sys-
tem are of a prime interest, as opposed to the predic-
tion of the external signals (Söderström et al., 2002).
In this case, the classical methods based on the least
squares (LS) principle such as recursive LS (RLS)
or the Kalman filter (Ikonen and Najim, 2002) are
shown to yield estimates of the system parameters that
are asymptotically biased and, therefore, inconsistent
(Zheng, 1998; Söderström, 2007).

In the field of modelling for nonlinear systems, the
bilinear system (BS) models have been used to ad-
vantage in various practical applications, e.g. control
plants, biological and chemical phenomena, earth and
sun science, nuclear fission, fault diagnosis and su-
pervision, see (Mohler, 1991; Mohler and Khapalov,
2000) or (Ekman, 2005). Due mainly to the fact that
BS models are so widely applicable has prompted the
need to extend the EIV approaches developed for lin-
ear systems to encompass the BS case.

Recently, a technique for off-line compensation
of the bias in the case of dynamical BS, i.e. the bi-
linear bias compensating LS (BBCLS) scheme has
been proposed (Larkowski et al., 2007), upon which

a bilinear Frisch scheme (BFS) has been constructed
(Larkowski et al., 2008). The focus of this paper is
the extension of the BBCLS along with the BFS for
the purpose of on-line system identification. The pro-
posed approach consists of a recursively performed
update and bias compensation procedure for the data
covariance matrices, whilst the BFS equations are ap-
plied in an iterative manner at each recursion step.
Moreover, a further extension of the BFS incorporat-
ing the Tikhonov regularization (TR) technique with
a variable exponential weighting is considered. It is
shown via simulation studies that use of TR can be of
considerable benefit in the initial period of the identi-
fication procedure.

The paper is organized as follows: in the second
section the mathematical representation of the EIV
BS together with the assumptions stated and the no-
tation used are introduced. The third section presents
a brief review of the BBCLS and the BFS techniques.
In section four a recursive implementation of the BB-
CLS method is proposed. Subsequently, within the
BBCLS framework the BFS technique is applied re-
sulting in the exact recursive BFS (ERBFS) algo-
rithm. The section ends with an extension of the
ERBFS that incorporates the TR technique. Section
five presents the results of a numerical simulation
study involving the proposed algorithms, whilst the
overall conclusions and the further work are summa-
rized in section six.
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Figure 1: The basic setup for the EIV BS.

2 ASSUMPTIONS AND
NOTATION

Consider a discrete time-invariant single-input single-
output (SISO) class of BS that can be represented by
the following input/output difference equation

A(q−1)y0k=B(q−1)u0k+
p

∑
i=1

r

∑
j=1

ηi j u0k−i y0k− j (1)

with the polynomialsA(q−1) andB(q−1) given by

A(q−1) ,1+a1q
−1 + . . .+anaq

−na (2a)

B(q−1) ,b1q−1 + . . .+bnbq
−nb (2b)

wherer ≤ na, p≤ nb ≤ na, q−1 is the backward shift
operator, defined byxkq−1 , xk−1 andu0k, y0k are the
noise-free input and output sequences, respectively. A
diagrammatic illustration of the typical EIV setup for
a SISO BS is depicted in Figure 1.

The BS can be classified into three main cate-
gories, see (Pearson, 1999) for more details, namely:
a) subdiagonalηi j = 0 ∀ j > i; b) diagonalηi j =
0 ∀ j 6= i; andc) superdiagonalηi j = 0 ∀ j < i. Noting
that both the subdiagonal and superdiagonal cases in-
clude the diagonal case, reference will be solely made
here to the diagonal BS (DBS) case for the remainder
of the paper. This is due to the fact that DBS exhibit
some crucial properties of interest, see (Rao and Gabr,
1984; Liu, 1992) or (Kotta and Nomm, 2003) for a de-
tailed discussion. At the same time DBS are possibly
the most commonly utilized class of BS for the pur-
pose of industrial applications, see (Burnham, 1991;
Yu, 1996; Martineau et al., 2004).

Without loss of generality, the case when all the
diagonal terms in the system (1) are present is consid-
ered here with their number given asnη = p2 where
r = p. The following assumptions are introduced:

A1. The DBS is time-invariant, asymptotically stable,
strictly stationary, observable and controllable.

A2. The system structure, i.e.na, nb, p, is knowna
priori .

A3. The true inputu0k ∼ N (0,σu0) is white, persis-
tently exciting and of sufficiently high order.

A4. Corrupting input/output noises ˜uk∼N (0,σũ) and
ỹk ∼ N (0,σỹ) of unknown variances are addi-
tive, white, mutually uncorrelated and uncorre-
lated with the noise free signalsu0k andy0k, re-
spectively.

Acknowledging A4, it is implied that the measured
input and output can be decomposed into their noise
free and noise contributions, i.e.

uk ,u0k + ũk (3a)

yk ,y0k + ỹk (3b)

wherek denotes the discrete time index. The identifi-
cation problem consists of determining the vector

ϑT ,
[

θT σũ σỹ
]

∈ R nθ+2 (4)

where θ ∈ R nθ is the parameter vector withnθ =
na+nb+nη andσũ, σỹ are the input and output noise
variances, respectively. The parameter vector is de-
fined as:

θ ,





a
b
η



 a ,







a1
...

ana






b ,







b1
...

bnb






η ,







η11
...

ηpp






(5)

with a∈ R na, b∈ R nb, η ∈ R nη where the extended
parameter vector̄θ is given by

θ̄ ,





ā
b
η



 ∈ R nθ+1 ā ,

[

1
a

]

∈ R na+1 (6)

The regressor vectors for the measured data, noise-
free data and noise are defined, respectively, as:

ϕk,





ϕyk

ϕuk

ϕρk



 ϕ0k,





ϕy0,k

ϕu0,k

ϕρ0,k



 ϕ̃k,





ϕ̃yk

ϕ̃uk

ϕ̃ρk



 (7)

where

ϕyk,







−yk−1
...

−yk−na






ϕuk,







uk−1
...

uk−nb






ϕρk,







yk−1uk−1
...

yk−puk−p






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ϕy0,k,







−y0k−1
...

−y0k−na






ϕu0,k,







u0k−1
...

u0k−nb






ϕρ0,k,







y0k−1u0k−1
...

y0k−pu0k−p







ϕ̃yk,







−ỹk−1
...

ỹk−na






ϕ̃T

uk
,







ũk−1
...

ũk−nb






ϕ̃T

ρk
,







ρ̃k−1,k−1
...

ρ̃k−p,k−p







with ϕk, ϕ0k, ϕ̃k ∈ R nθ , ϕyk , ϕy0,k, ϕ̃yk ∈ R na, ϕuk,
ϕu0,k, ϕ̃uk ∈ R

nb, ϕρk, ϕρ0,k, ϕ̃ρk ∈ R
nη and ρ̃k−i,k− j

denoting the noise contribution corresponding to the
bilinear product terms of the regressor vectorϕρk. In
agreement with (7), the extended regressor vectors are
given by

ϕ̄k ,

[

−yk
ϕk

]

ϕ̄0k ,

[

−y0k

ϕ0k

]

˜̄ϕk ,

[

−ỹk
ϕ̃k

]

(8)

whereϕ̄k, ϕ̄0k, ˜̄ϕk ∈ R
nθ+1.

3 A BRIEF REVIEW OF BBCLS
AND BFS

3.1 BBCLS

The BBCLS algorithm for the class of DBS comprises
of equations (9), (10) and (11), see (Larkowski et al.,
2007). These correspond to the bilinear bias compen-
sation rule, the noise covariance matrix and the noise
‘variance’ of the bilinear terms, respectively, i.e.

θ̂BBCLS,
(

Σϕϕ −Σϕ̃ϕ̃
)−1 Σϕy (9)

Σϕ̃ϕ̃ ,





σỹIna 0 0
0 σũInb 0
0 0 σρ̃Inη



 (10)

σρ̃ , σuσỹ + σyσũ−σũσỹ (11)

whereσu , E[uk] andσy , E[yk] are the expected val-
ues of the measured system input and output signals
and(·̂) denotes an estimate. It is noted, that in the re-
mainder of the paper, the expressionΣab will be used
as general notation for the correlation matrix of vec-
tors ak andbk, i.e. Σab = E[akbT

k ]. Equation (9) can
be alternatively restated as

θ̂BBCLS= θ̂LS+ Σ−1
ϕϕΣϕ̃ϕ̃θ̂BBCLS (12)

whereθ̂LS denotes the LS estimate. It is implied from
the BBCLS algorithm that the knowledge regarding
noise variances corrupting input/output of a system
together with variances of measured input/output sig-
nals is sufficient to obtain unbiased estimates of the
true system parameters.

3.2 BFS

The Frisch scheme is a technique that allows the di-
rect estimation of the input/output noise variances to-
gether with the parameters of a system (Beghelli et al.,
1990; Söderström, 2006). As consequence, thea pri-
ori knowledge regarding the values ofσũ andσỹ is
not required leading to a wider practical applicabil-
ity. The extension of the FS, in the framework of the
BBCLS technique, for the class of DBS has been pro-
posed in (Larkowski et al., 2008). Define the parti-
tioned extended data covariance matrix

Σϕ̄ϕ̄ ,





Σϕ̄yϕ̄y ΣT
ϕuϕ̄y

ΣT
ϕρϕ̄y

Σϕuϕ̄y Σϕuϕu ΣT
ϕρϕu

Σϕρϕ̄y Σϕρϕu Σϕρϕρ



 (13)

where Σϕ̄yϕ̄y ∈ R (na+1)×(na+1), Σϕuϕ̄y ∈ R nb×(na+1),

Σϕuϕu ∈ R
nb×nb, Σϕρϕ̄y ∈ R

nη×(na+1), Σϕρϕu ∈ R
nη×nb

andΣϕρϕρ ∈ R
nη×nη . The BFS consists of three main

phases, i.e. calculation of the maximal admissible
value forσũ, denotedσmax

ũ (14), determination of a
functional relationship betweenσỹ andσũ (16a) and
the specification of a cost function to find a unique
value ofσũ (18a). The quantityσmax

ũ is given by:

σmax
ũ , λmin(A

∗
1) (14)

whereλmin(A∗
1) denotes the least eigenvalue of the

matrix A∗
1, and max(·) is the maximum operator. The

matrixA∗
1 is defined as:

A∗
1 , A1−B1Σ−1

ϕ̄yϕ̄y
BT

1 (15a)

with

A1,

[

Σϕuϕu ΣT
ϕρϕu

Σϕρϕu Σϕρϕρ

]

B1,

[

Σϕuϕ̄y

Σϕρϕ̄y

]

(15b)

The functional relationship betweenσỹ andσũ is
described by

σỹ , λmin(A
∗
2) (16a)

where
A∗

2 , A2−B2(Σϕuϕu−σũInb)
−1BT

2 (16b)
with

A2,

[

Σϕ̄yϕ̄y ΣT
ϕρϕ̄y

Σϕρϕ̄y Σϕρϕρ−σyσũInη

]

B2,

[

ΣT
ϕuϕ̄y

Σϕρϕu

]

(16c)

The cost function utilized is based on the Yule-
Walker equations, see (Diversi et al., 2006) for de-
tails. The instrumental vector (Söderström and Sto-
ica, 1994) for the measured data is defined as:

ϕ̄IV
k , ϕ̄k−na−1 ∈ R

nθ+1×1 (17)
Using (17) the corresponding cost function is formu-
lated as:

J( ˆ̄θ) , ‖Σϕ̄IV ϕ̄
ˆ̄θ‖2

2 (18a)
such that

J( ˆ̄θ) = 0⇔ ˆ̄θ = θ̄ (18b)
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Table 1: Summary of the ERBFS algorithm.

Step Description Procedure

1 Chooseλk and j 0 < λk < 1, j = 2na +1
2 RLS initialization: θ̂LS

nθ = 0, Pnθ = 103Inθ , σ̂k
u = 0, σ̂k

y = 0
2.1 RLS loop start for k = nθ +1. . . j
2.2 Data weighting γk = 1/k

Computation of:
2.3 Lk, θ̂LS

k , Pk Lk = Pk−1ϕk

ϕT
k Pk−1ϕk+

1−γk
γk

, θ̂LS
k = θ̂LS

k−1 +Lk
(

yk−ϕT
k θ̂LS

k−1

)

Pk = 1
1−γk

(

Pk−1−LkϕT
k Pk−1

)

2.4 σ̂k
u , σ̂k

y σ̂k
u = k−1

k σ̂k−1
u + 1

k−1u2
k, σ̂k

y = k−1
k σ̂k−1

y + 1
k−1y2

k

2.5 Σk
ϕρϕ̄y

Σk
ϕ̄ϕ̄ = Σk−1

ϕ̄ϕ̄ + γk
(

ϕ̄kϕ̄T
k −Σk−1

ϕ̄ϕ̄
)

2.6 RLS loop end end

3 BBCLS and BFS initialization Σk
ϕ̄IV ϕ̄ = 0, σ̂max

ũ = λmin(A∗
1, j )

3.1 Recursive BBCLS start for k = j +1. . .N
3.2 Data weighting γk = 1/k
3.3 Iterative BFS start

Computation of:
3.3.1 Σk

ϕ̄IV ϕ̄ Σk
ϕ̄IV ϕ̄ = Σk−1

ϕ̄IV ϕ̄+ γk
(

ϕ̄IV
k ϕ̄T

k −Σk−1
ϕ̄IV ϕ̄

)

3.3.2 σ̂k
ũ σ̂k

ũ = arg min
σ̂k

ũ

J( ˆ̄θk)

3.3.3 σ̂k
u , σ̂k

y σ̂k
u = k−1

k σ̂k−1
u + 1

k−1u2
k, σ̂k

y = k−1
k σ̂k−1

y + 1
k−1y2

k

3.3.4 Σk
ϕ̄ϕ̄ Σk

ϕ̄ϕ̄ = Σk−1
ϕ̄ϕ̄ + γk

(

ϕ̄kϕ̄T
k −Σk−1

ϕ̄ϕ̄
)

3.3.5 Ak
2, Bk

2 Ak
2 =

[

Σk
ϕ̄yϕ̄y

(Σk
ϕρϕ̄y

)T

Σk
ϕρϕ̄y

ΣT
ϕρϕρ

−σ̂k
yσ̂k

ũInη

]

, Bk
2 =

[

(Σk
ϕuϕ̄y

)T

Σk
ϕρϕu

]

3.3.6 A∗
2,k A∗

2,k = Ak
2−Bk

2(Σ
k
ϕuϕu

−σ̂k
ũInb)

−1(Bk
2)

T

3.3.7 σ̂k
ỹ σ̂k

ỹ = λmin(A∗
2,k)

3.4 Iterative BFS end
3.5 Lk, θ̂LS

k , Pk Lk = Pk−1ϕk

ϕT
k Pk−1ϕk+

1−γk
γk

, θ̂LS
k = θ̂LS

k−1 +Lk
(

yk−ϕT
k θ̂LS

k−1

)

Pk = 1
1−γk

(

Pk−1−LkϕT
k Pk−1

)

3.6 σ̂k
ρ̃ σ̂k

ρ̃ = σ̂k
uσ̂k

ỹ + σ̂k
yσ̂k

ũ− σ̂k
ũσ̂k

ỹ

3.7 Σk
ϕ̃ϕ̃ Σk

ϕ̃ϕ̃ =





σ̂k
ỹIna 0 0
0 σ̂k

ũInb 0
0 0 σ̂k

ρ̃Inη





3.8 Bias compensation θ̂BBCLS
k = θ̂LS

k +PkΣk
ϕ̃ϕ̃θ̂BBCLS

k−1
3.9 Recursive BBCLS end end

4 RECURSIVE BBCLS WITH
ITERATIVE BFS

In this section a recursive BBCLS (RBBCLS) algo-
rithm is developed, which comprises the recursive
update of the data and instrumental covariance ma-
trices, whilst the bias compensation procedure is re-
cursively applied to the data covariance matrix only.

Furthermore, an application of the BFS at each iter-
ation step is described with an additional extension
incorporating the TR technique. It is to be noted that
the RBBCLS method can be interpreted in the frame-
work of the iterative bias compensating LS (BCLS)
approaches, see e.g. (Zheng, 1998) and (Zheng, 2000)
for more details.
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4.1 Recursive BBCLS

The normalized recursive updates of the instrumental
and data covariance matrices are given by the follow-
ing equations, see (Ljung, 1999)

Σk
ϕ̄ϕ̄ = Σk−1

ϕ̄ϕ̄ + γk

(

ϕ̄kϕ̄T
k −Σk−1

ϕ̄ϕ̄

)

(19a)

Σk
ϕ̄IV ϕ̄ = Σk−1

ϕ̄IV ϕ̄ + γk

(

ϕ̄IV
k ϕ̄T

k −Σk−1
ϕ̄IV ϕ̄

)

(19b)

with

γk =
(

Σk
i=1βk,i

)−1
=

γk−1

λk + γk−1
(20)

where thei-th data is weighted at the discrete timek
according to the following rule

βk,i = λkβk−1,i for 0≤ i ≤ k−1 (21)

and βk,k = 1. It is to be noted that (20) simplifies
either to 1/k in the case of no adaptivity, i.e. when
λk = 1 or to 1−λ when the exponential forgetting is
used, i.e.λk = λ with 0 < λ < 1.

Assuming that the input/output noise variances,
i.e. σũ andσỹ are knowna priori or can be estimated,
allows application of the BBCLS algorithm to the re-
cursively computed estimate of the parameter vector,
i.e.

θ̂BBCLS
k = θ̂LS

k +PkΣϕ̃ϕ̃θ̂BBCLS
k−1 (22a)

Σϕ̃ϕ̃ =





σỹIna 0 0
0 σũInb 0
0 0 σ̂k

ρ̃Inη



 (22b)

σ̂k
ρ̃ = σ̂k

uσỹ + σ̂k
yσũ−σũσỹ (22c)

σ̂k
u =

k−1
k

σ̂k−1
u +

1
k−1

u2
k (22d)

σ̂k
y =

k−1
k

σ̂k−1
y +

1
k−1

y2
k (22e)

Lk =
Pk−1ϕk

ϕT
k Pk−1ϕk + 1−γk

γk

(22f)

θ̂LS
k = θ̂LS

k−1 +Lk
(

yk−ϕT
k θ̂LS

k−1

)

(22g)

Pk =
1

1− γk

(

Pk−1−LkϕT
k Pk−1

)

(22h)

It is remarked that whilst the input/output noise vari-
ances are postulated to be known, the noise ‘variance’
corresponding to the bilinear terms (22c) is required
to be recursively approximated at each time step. This
involves the recursive estimation of the variances of
the input/output signals, i.e. (22d) and (22e) (Young,
1984). Note that due to assumptions A1 and A3, see
(Pearson, 1999) for more details, the mean values of
the input/output signals do not explicitly appear in ex-
pressions (22d) and (22e) since they are both null.

4.2 Iterative BFS

Utilization of the recursively evaluated data and in-
strumental covariance matrices from the RBBCLS al-
gorithm allows the application of the BFS at each
recursion. Thus it is possible not only to estimate
the input/output noise variances but also to conduct
the noise compensation procedure given by (22a), see
(Linden et al., 2007) for more details regarding the
linear case. This results in the ERBFS algorithm
which is summarized in Table 1. It is to be noted that
ERBFS is rather expensive from the computational
point of view. However, with reference to Table 1, if
the time allowed for the calculation ofσ̂k

ũ at step 3.3.2
is bounded, the algorithm at least satisfies the prin-
ciples of a recursive estimation scheme (Ljung and
Söderström, 1987; Ljung, 1999).

4.3 Regularized BFS

In the case whena priori knowledge regarding the
value of the input noise variance is available, or can be
approximately anticipated, a regularization technique
may be utilized. The regularization method consid-
ered here is that of TR which forces the estimate to-
wards a pre-specified valuêσ∗

ũ controlled by the pa-
rameterω (Hansen, 2001). The incorporation of TR
into the cost function given by (18a) results in the fol-
lowing regularized cost function

J( ˆ̄θ,ω, σ̂∗
ũ),ω‖Σϕ̄IV ϕ̄

ˆ̄θ‖2
2 +(1−ω)‖σ̂∗

ũ− σ̂ũ‖
2
2 (23)

Note that (23) reduces to (18a) forω = 1. Further-
more, it may be beneficial to consider a variable con-
trolling parameter, i.e.ωk, such that the impact of
the regularization is significant at the beginning of the
identification procedure but gradually diminishes as a
function of the incoming data stream. It is proposed
to realize the concept as follows

ωk = e−
ς
k (24)

whereς is a user defined parameter describing the rate
at which the impact of the regularization diminishes.
This choice allows the potential bias introduced by
regularization (Hansen, 2001) to be alleviated as time
progresses. With reference to Table 1, the introduc-
tion of regularization requires the additional setting of
the parameterς at step 3, the subsequent implemen-
tation of equation (24) between steps 3.3.1 and 3.3.2
and replacement of the cost functionJk(

ˆ̄θk) from 3.3.2

by J( ˆ̄θk,ωk, σ̂∗
ũ).
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5 SIMULATION STUDIES

This section provides a numerical evaluation and
comparison of the proposed ERBFS algorithm with
the RLS and the off-line BFS. The SISO DBS system
used in the simulations withna = 2, nb = nη = 1 is
simulated forN = 5000. It is described by the follow-
ing difference equation

y0k = 1.2y0k−2 −0.9y0k−1 +0.6u0k−1+

0.1y0k−1u0k−1 (25)

The input is generated by

u0k ∼ N (0,0.5) (26)

The variances of the input and output noises are
selected asσũ = 0.05 andσỹ = 0.16, respectively,
in order to yield an approximately equal signal-to-
noise ratio (SNR) on both input and output, i.e.
SNRu ≈ SNRy ≈ 10[dB]. In the case of the ERBFS
and the regularized ERBFS (RERBFS) the minimiza-
tion procedure from step 3.3.2 (see Table 1) is re-
stricted to a maximum of 10 iterations. The parameter
λk is set to unity, i.e. no adaptivity, for all evaluated
algorithms.

Considering the results presented in Figure 2,
where the ERBFS is compared with its off-line coun-
terpart and the RLS, the following observations are
made:

a) RLS yields estimates that are asymptotically bi-
ased for the case of all system parameters.

b) The estimate of the vectorϑ obtained via the off-
line BFS is quite close to its true value.

c) The EBFS achieved virtually identical estimates
as the off-line BFS at the last recursion step, i.e.
k = N.

d) Estimates given by EBFS converge to their off-
line counterparts obtained by the BFS algorithm
over the succesive recursions.

e) There is a clear correlation between the quality of
the estimated variances of the input/output signals
and the quality of the estimated input/output noise
variances which, subsequently, has an impact on
the estimates of the system parameters.

f) The ERBFS encountered some difficulties in the
estimation of the input noise variance in the ini-
tial part of the identification procedure, i.e. up to
about first 1000 samples which is indicated by the
relatively highly scattered values ofσ̂ũ.

In fact observation (f) can be regarded as a premise for
considering regularization of the input noise variance
such that the uncertainty in the initial part of the iden-
tification is alleviated, leading to improved accuracy

of the estimates. In the second experiment the ERBFS
is compared with the RERBFS, where the parameters
are set as follows:ς = N/ω0 whereω0 = 100 and
σ∗

ũ = 1.5σũ. For completeness, the results obtained
by the BFS are also included. Consideration of the
results in Figure 3 leads to the following observations:

g) Although the guess of the regularization parame-
ter σ∗

ũ was rather ‘rough’, a substantial improve-
ment w.r.t. the input noise variance is observed in
the initial period of the recursion.

h) The impact of applying TR is also evident in the
case of the estimated output noise variance and
the system parameters leading to the faster con-
vergence.

i) Due to the utilization of the exponential control-
ling variable weightingωk the results obtained by
the RERBFS and ERBFS atk = N are practically
indistinguishable. As a consequence, any poten-
tial induced bias due to the use of regularization
is kept to a minimum, for the case considered.

6 CONCLUSIONS

A new recursive technique, i.e. the RBBCLS method,
for identification of the class of SISO DBS has been
developed and evaluated. Within the RBBCLS frame-
work the ERBFS algorithm has been formulated in
which the Frisch equations are evaluated at each re-
cursion. The further extension incorporating the vari-
able regularization via the TR method, giving rise to
the RERBFS, was considered and shown to be bene-
ficial in the initial period of the identification proce-
dure. The methods proposed have been demonstrated
when applied to a SISO DBS EIV identification prob-
lem. Comparisons made with the standard RLS tech-
nique illustrates the superiority and relatively high
noise robustness of the proposed algorithms.

The further work will address two outstanding is-
sues. Firstly, the extension and subsequent recursive
implementation of the BCLS method to a wider class
of the polynomial nonlinear EIV systems. Secondly,
the alleviation of the computational burden via the ap-
plication of a fully recursive BFS based on gradient
approaches and/or on other fast methods via lineariza-
tion of the Frisch equations.
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Figure 2: The results of the identification procedure using ERBFS, BFS and RLS algorithms.
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Figure 3: The results of the identification procedure using BFS, RERBFS and ERBFS algorithms.
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