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Abstract: A collision avoidance path planning problem is considered and a simple solution which uses piecewise 
constant controls generated by discretizing a feasible equilibrium path is presented and investigated. 

1 INTRODUCTION 

A new methodology has been recently proposed 
(Sultan, 2007) for the control of nonlinear ODEs,  
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Here f is a function of class Ck in UX ×  (k > 0), x, 
u, and t are the state, control vectors, and time, 
whereas X, U, and T are open sets in the n, m, and 
one dimensional real spaces. 

The key idea is to control (1) such that its state 
space trajectory is close to an equilibrium path 
obtained by solving 
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not singular, there exist an open set Ue and a unique 
function g of class Ck such that 
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Here Ue is the largest domain in U in which (2) can 
be solved uniquely for x as in (3) and )),(( uug
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not singular. If ),( ff ux , ef Uu ∈  is a different 

solution of (3), iu and fu  can be connected by a 

curve )(sue in eU , parameterized by ],0[ τ∈s , 

feie uuuu == )(,)0( τ , (4) 

which is g-mapped onto an equilibrium path, 
))(()( sugsx ee = , ,)0( ie xx = fe xx =)(τ . 

The control problem is to develop control laws 
which guarantee that the state space trajectory of the 
system is close to the equilibrium path, as illustrated 
in Figure 1. In order to achieve this goal, the strategy 
described next was proposed in (Sultan, 2007). The 
controls are initially fixed at ui and when the 
transition begins, at t=0, they start to vary along eu , 

)()( tutu e= , Tt ⊂∈ ],0[ τ . When t  reaches τ  the 
controls are frozen at the final, desired value: 
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The corresponding state space trajectory, )(txd , 
called the deployment path, is the solution of 

iddd xxtuxfx == )0()),(,( . (6) 

If )(τdx belongs to the basin of attraction of fx  
then the system’s trajectory will settle down, 
asymptotically in time, to the desired final value, 

fx . Asymptotical stability of  fx   is crucial for the 
application of this methodology. 
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Figure 1: Deployment and equilibrium paths. 

In this paper an example of a collision avoidance 
path planning problem is considered. An equilibrium 
path which satisfies the constraints is found and 
discretized to generate piecewise constant controls 
which are used to drive the system.  It is important 
to remark that this strategy is different from the one 
proposed in (Sultan, 2007), where continuous 
controls are used. Here, the parameterization of the 
equilibrium path, originally continuous, is 
discretized. One justification for this approach is the 
easiness of discrete controls implementation. 

2 THEORETICAL RESULTS 

In the following two important results are given (the 
proofs are omitted for brevity). 

 
Theorem 1. If the equilibrium path is composed 

only of asymptotically stable equilibria then, for 
0>∀ε  there exists a piecewise constant control 

)(tu , obtained by discretizing the equilibrium path, 
such that the distance between the corresponding 
segments of the deployment and equilibrium paths is 
less than ε  (i.e. the deployment and equilibrium 
paths are arbitrarily close). 

 

Theorem 2. If the equilibrium path is composed 
only of asymptotically stable equilibria and for any  
u, ),( uxf  is Taylor series expandable in x, for 

0>∀η  there exists a piecewise constant control 
)(tu , obtained by discretizing the equilibrium path 

such that ],0[,)( τη ∈∀< ttxd . 

3 A PATH PLANNING PROBLEM 

Consider a two link robotic manipulator in the 
vertical plane (Figure 2). The links are rigid, the 

system is placed in a constant gravitational field, 
control torques and damping torques proportional to 
the relative angular velocity between the moving 
parts act at the joints. The equations of motion are: 
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where angles 21 ,θθ  describe the motion, mi, li, ci, Ii, 
are the mass, length, center of mass (CM) position, 
transversal moment of inertia of the i-th link, di and 
ui are the damping coefficient and control torque at 
joint i, respectively, g is the gravitational constant.  
These equations can be easily cast into the first order 
form (1). The numerical values (SI units) used are:  
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(9) 

The system must transition between two 
equilibria, 0,70 21 == ii θθ , 0,70 21 =−= ff θθ . 
Collision with a circular sector obstacle, of radius 
R=1, described below, must be avoided:   
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Figure 2: Two link robotic manipulator. 
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    An equilibrium path which satisfies (10) is 
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and the equilibrium controls are easily found, 
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    The equilibrium path is parameterized using the 
following class C2 function 
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which is further discretized to obtain piecewise 
constant controls using  (11) and (12).  
    Consider 10=τ (“fast deployment”). Piecewise 
constant controls are generated using N equal time 
intervals. Figure 3 shows the deployment and 
equilibrium paths.  

 
Figure 3: Deployment paths for “fast” deployment. 

Figures 4 and 5 give the time histories of the 
controls and angles for N=17 and N=40. The 
deployment error cannot be made small enough to 
avoid the obstacle regardless of how large N is 
(higher values of N were considered). Thus τ  
should be increased and the controls  refined for the 
deployment error to be sufficiently small. 

 

Figure 4: Controls variation for “fast” deployment. 

 
Figure 5: Generalized coordinates variation for “fast” 
deployment. 

In the second scenario, called “slow” deployment, 
the deployment time is 20=τ  and piecewise 
constant controls are generated by discretizing (11-
13) with N=34 and N=80. Figures 8-10 show that 
collision is avoided. The deployment error is smaller 
because the deployment time is longer and finer 
controls are used. It is important to mention that if 
only the deployment time is increased the desired 
result is not obtained; if N=17 or N=40 are used in 
conjunction with 20=τ , the deployment error is 
still big and collision with the obstacle occurs.  
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Figure 6:  Deployment paths for “slow” deployment. 

 
Figure 7: Controls variation for “slow” deployment. 

 
Figure 8: Generalized coordinates variation for “slow” 
deployment. 

 

4 CONCLUSIONS 

An example of a path planning problem is used to 
illustrate the control of nonlinear systems using 
equilibrium paths. The idea is to find an equilibrium 
path which satisfies the collision avoidance 
constraints, which is a much easier problem than 
finding a dynamic path which satisfies the 
constraints. Then the equilibrium path is discretized 
to build piecewise constant controls which are used 
to drive the system. Simulations indicate that for the 
deployment and equilibrium paths to be close the 
deployment time should be sufficiently long and the 
controls sufficiently refined. 

It is important to remark that the solution 
investigated here uses discretizations of an 
equilibrium path which satisfies the collision 
avoidance constraints as opposed to continuous 
parameterizations and hence continuous controls. 
One justification for this approach is the easiness of 
practical implementation of discrete controls. 
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