
A FRAMEWORK FOR DISTRIBUTED AND INTELLIGENT
PROCESS CONTROL

Qurban A. Memon
UAE University, United Arab Emirates

qurban.memon@uaeu.ac.ae

Keywords: Distributed network control, Process Control, Intelligent agents.

Abstract: The customized development of the Distributed Control System for process control in an environment of
intelligent and tagged field devices etc., is the main focus of this work. The proposed solution consists of
two-layer approach: use of decentralized intelligent agents at the local process level, and four-tier modular
architecture at central controller level to help implement distributed intelligence. The design and
development issues for such a customized design are investigated.

1 INTRODUCTION

The decentralization of control, and expanding
physical setups have resulted into today's distributed
process control (DCS) systems (M. Ioannides, 2004,
J. Alonso, 2000). The research in this area is quite
active because of these developments, for example,
Profibus fieldbus networks and wireless Profibus for
real time industrial control systems (E. Tovar, 1999,
A. Willing, 2003). Recently focus is reported with
respect to distributed intelligence for reduced
operational changes. These efforts have respective
generated agent based approach (Bernan, 2002, F.
Maturna, 2005). Currently, active Radio Frequency
Identification (RFID) devices are being deployed for
a variety of process control industry solutions (A.
Juels, 2003, J. Bohn, 2004). To some industries,
RFID is bringing a level of automation and control
similar to what process control devices brought to
manufacturing decades ago. I. Satoh, 2004,
presented a framework which exploits agents to
enhance capabilities of the users in an environment
of tagged devices. In another work (S. Naby, 2006),
the author discusses idea of integrating software
agents into RFID architectures to accumulate
information from tags and process them for
customer/object or system specific use, for example
a concurrent mission. As a summary, the
optimization in network performance combined with
distributed intelligence in an environment of non-
stationary and reconfigurable devices provides a
new direction of research.

The process under investigation is shown in Figure
1, which shows reprogrammable and reconfigurable
control devices including some tagged and
distributed field intelligent devices. In short, the
challenges for DCS development include process
reconfigurability and intelligent decision making
within a Profibus/Profinet compatible network. For
comparison, a model is to be used to set a baseline
for performance. As the network is distributed,
hence a multiple input multiple output (MIMO)
baseline is considered that requires performance
matching to that of the centralized MIMO. For
Figure 1 to achieve similar performance to that of
the centralized MIMO, each parameter update needs
to be communicated over the network at times. In
order to categorize time delay d(t) in the network,
we divide it into three categories:

(1))()()()(321 tdtdtdtd ++=
where d1(t), d2(t), and d3(t) represent time delay
when a device communicates with controller, time
delay when a group of devices communicate with
controller; and when all devices communicate with
controller respectively. One obvious approach could
be to minimize either of these delays so as to
optimize the performance to match a centralized
MIMO system.

2 PROPOSED APPROACH

A set of processes is proposed to introduce
intelligence at field level to gain respective

240

independence. This way, minimized communication
with the main controller thwarts communication
bottlenecks caused by interoperability of devices, or
simple operational requirements at local level. This
also improves survivability of the local processes in
cases when central controller fails in providing
critical timely decision. The configurability of
devices may be provided by collecting operational
parameters at the device(s) level followed by
estimation of parameters of concerned entities at the
central level. This leads to two separate domains:

2.1 Local Process

The local entities tend to be distributed throughout
the environment to support overall operations. The
job of these entities can be done effectively by
agents. The agents collaborate, learn and adjust their
abilities within the constraints of the global process.
Agent design mechanism: A lot of work is done on
agents alone and details can be found in (R.
Brennan, 2001) Agents are active software entities
that can request for additional capabilities once they
discover that the task at hand can not be fulfilled.
The programming of these agents is done at the
central level where a set of heuristics is used for
reasoning at the local level, and is stored as a
function block diagram (like an internal script). The
agents know about their equipment, continuously
monitor its state, and can decide whether to
participate in a mission or not. The collaborating
agents join (on their own will) and thus form a
cluster in order to enable a decision making. In
addition to agents, there are other computing units
that exist at the local level and help to form a cluster.
These are known as cluster directory (CD) and
cluster facilitator (CF) respectively. The following
steps describe agent collaboration in clusters:
• Agent N receives a request from central process.
• It checks its scripts, and solves local steps.
• For external steps, it receives contact details of

other agents with external capability from CD.
• Agent N creates CFN and passes on these details.
• CFN passes the request to specified agents, and

thus cluster is formed.
For efficient collaboration, CD must remain updated
for recording the information of its members, such
as agent name, agent locator, service name, service
type, and so on. Upon joining or leaving the cluster,
an agent must register or cancel registration
respectively through CF. Through a query, an agent
can find out other members’ services and locators.

Through these steps, a trust is developed and thus
members hold higher authority than non-members.
Recently developed tools may be used to help
design cluster facilitator (CF) and domain ontology,
using for example DARPA Markup Language
(DARPA, DAML, 2000). The DAML extends XML
(Extensible Markup Language) and RDF (Resource
Description Framework) to include domain
ontology. It provides rich set of constructs to create
ontology and to markup information for attaining
machine readability and understandability.
Furthermore, the Foundation for Intelligent Physical
Agent (FIPA, 2003) Agent Management
Specification is extended to develop the agent role
called CF to manage cluster directory (CD) and
cluster ontology. Using assistance from DAML-
based ontology, the members of the cluster are able
to form cluster and communicate with other agents.

(Motion control through PLC)Controller

Profibus-enabled
device

Profibus-enabled
device

Profibus-enabled
device

Distributed field device

Distributed tagged devices

Interface

DrivePC (for SCADA)

Distributed intelligent devices

Figure 1: Typical Process Control Network.

CF

Domain
Ontology

Cluster
Directory

Cluster Ontology

} DAML File(s)

File access

Figure 2: Linking CF with DAML.

The interaction among domain ontology, CD and CF
can be best understood using Figure 2. Figure 2
shows how CF gets access to DAML files and
facilitates the common goal of the cluster. There are
tools available like Jena semantic web that can be
used to handle the cluster director (CD) built using
DAML, and to develop a Java class “Directory”.
Thus, main functions of CD can be summarized, as:
• Add and Remove the information of an agent
• Get the list of agent names of all members
• Get the information of individual agent by name

A FRAMEWORK FOR DISTRIBUTED AND INTELLIGENT PROCESS CONTROL

241

• Get ontology used by members in the cluster
• Add external ontology if provided by an agent

Using local process mechanism and main functions of
CD, the partial directory can be described as shown in
Figure 3. It shows information of CF (lines 1-9) and
members of cluster (lines 20-22), the cluster directory
also records meta-data about cluster such as cluster
name (line 12), cluster description (lines 13-15),
ontology used in cluster (lines 16-18), etc.

An example can be illustrated to show how
ontology may be updated (Fig. 4(b)) and that how
interactions may develop in a local process. It should
be noted here that basic cluster ontology provided by
CF remains the same but all members’ domain
knowledge (ontology) may not be the same. For
example, user agent holds basic knowledge of the
local process but does not understand the knowledge
that a distributed field device holds. Through DAML-
based ontology, members can communicate with each
other to acquire requested service, as shown in Figure
4. It is clear from Figure 4 that when distributed field
device agent joins the cluster, it informs CF about
corresponding ontology it provides (Figure 4(a)).
Thus the CF maintains local process ontology plus the
distributed field device ontology. When a user agent
wants to perform a task, it asks CF about domain
ontology and the agents that provide external
capability. In response, CF informs the user agent if
ontology is to be acquired (Figure 4(c)). Thus, the
user agent can communicate with the distributed field
device agent (Figure 4(d)).

2.2 Central Process

This process embodies core, like definition of
controller tasks, and definition of domain ontology
of each cluster. The other components are removal
of agent deadlocks, estimation of local
characteristics and decision making in cases when
situation develops beyond the capabilities of agent
clusters. It can be argued that if only small scale
changes are to be decided at the central level like
reconfiguration of device processes then intelligence
can further be distributed to the agents at local level.
In Figure 5, the model architecture of four tiers is
shown to implement objectives of the central
system. At the bottom layer (Tier 1), active readers
or Profibus/Profinet enabled devices collect data,
often collected on a trigger similar to a motion
sensor. These readers should be controlled by one
and only one edge server to avoid problems related
to network partitioning. This layer also provides
hardware abstraction for various Profibus/Profinet

compatible hardware and network drivers for
interoperability of devices. The edge sever (Tier 2)
regularly poll the readers for any update from device
agents, monitors tagged devices and distributed
devices through readers, performs device
management, and updates integration layer. This layer
may also work with system through controls and open
source frameworks that provide abstraction and
design layer. The integration layer (Tier 3) provides
design and engineering of various objects needed for
central controller as well as for field processes and for
simulation levels of reconfigurability. This layer is
close to business application layer (Tier 4). The
monitoring of agents behavior, its parameters and
cluster characteristics are done at this layer to assess
the degree of reconfigurability.

1. <cluster:CF rdf:ID="theCF">
2. <cluster:agentName>"CF"</cluster:agentName>
3. <cluster:agentDescription>
4. "DCS Cluster Facilitator"
5. </cluster:agentDescription>
6. <cluster:locator>
7. "http://dcs.ee.uaeu.ac.ae/DCS/agent/CF"
8. </cluster:locator>
9. </cluster:CF>
10.
11. <cluster:Cluster rdf:ID="DCSCluster">
12.<cluster:clusterName>"DCS"</cluster:clusterName>
13. <cluster:clusterDescription>
14. "Distributed Control System"
15. </cluster:clusterDescription>
16. <cluster ontology>
17. "http://dcs.ee.uaeu.ac.ae/DCS/ontology/dcs.daml"
18. </cluster:ontology>
19.
20. <cluster:hasCF rdf:Resource="#theCF"/>
21. <cluster:consistOf rdf:Resource="#agent1"/>
22. <cluster:consistOf rdf:Resource="#agent2"/>
23. </cluster:Cluster>

Figure 3: DCS Cluster Directory.

DFD agent
CF

DCS ontology

DFD ontology

User
agent

a

b

c
d

..........> File access
-------> Agent Communication
DFD : Distributed Field Device

Figure 4: Ontology update provided by DFD.

This layer also takes care of parameters like
handling device processes, resource allocation and
scheduling of processes. The separation of edge
server and integration layer improves scalability and
reduces cost for operational management, as the
edge is lighter and less expensive. The processing at
the edge reduces data traffic to central point.
Similarly, the separation of integration from
business applications helps in abstraction of process
entities.

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

242

Distributed
Tagged/Intelligent

devices

Reader 1 or
Profibus/Profinet enabled

device

Reader 3 or
Profibus/Profinet enabled

device

Reader 2 or
Profibus/Profinet enabled

device

Edge Server

Integration layer

1 65432

Tier 1:
Devices with
overlapping

fields

Tier 3:
Integration

Tier 2:
Edge Server

Tier 4:
Packaged

Applications

Figure 5: 4-Tier Reference Architecture.

The Tier 3 also enables it as self-healing and self-
provisioning service architecture to increase
availability and reduce support cost. Control
messages flow into the system through business
application portal to the integration layer, then on to
the edge and, eventually, to the reader. Provisioning
and configuration is done down this chain, while
reader data is filtered and propagated up the chain.

3 CONCLUSIONS

The main idea behind two processes is
decentralization. The communication delay is
reduced at the cost of increased intelligence at the
local level. In fact, if we look at equation (1) we see
that d1(t), d2(t) and d3(t) minimize to a level when
problem of the node device exceeds the threshold
level of the agent intelligence. If collaborative
intelligence exceeds combinatorial complexity then
there is no need of communication between devices
and the controller and requirements of the central
process reduce to that of the design of agents only.
Thus, the performance matches to that of the
centralized MIMO system. The four-tier modular
architecture at central level helps in implementation
of distributed intelligence at field level and in
designing of agents. The functionality more
appropriate to the layer has been fit into respective
tiers at central level. Additionally, design and
reconfigurability can help introduce features in
agents to thwart intrusive agents, during real time.
This set of gains has not been claimed in either of
the approaches (E. Tovar, 1999, A. Willing, 2003).

ACKNOWLEDGEMENTS

This work was financially supported by UAE
University under a grant no. 01-04-7-11/07.

REFERENCES

A. Juels, R. Rivest, M. Szydlo, “The Blocker Tag:
Selective Blocking of RFID Tags for Consumer
Privacy”, Proceedings of ACM conference on
Computer and Communications Security, 2003.

A. Willig, “Polling based MAC protocols for improving
real-time performance in a wireless Profibus”, IEEE
Trans. on Industrial Electronics, pp. 806-817, 2003.

Bernnan, M. Fletcher, and D. H. Norrie, “An agent-based
approach to reconfiguration of the real-time
distributed control systems,” IEEE Transactions on
Robotics and Automation, Vol. 18, No. 4, 2002.

DARPA Agent Markup Language, http://www.daml.org/
E. Tovar, and F. Francisco, “Real-time field bus comm.

using Profibus Networks”, IEEE Trans. on Industrial
Electronics, pp. 1241-1251, 1999.

F. Maturana, R. Staron, K. Hall, “Methodologies and
Tools for Intelligent Agents in Distributed Control”,
IEEE Intelligent Systems, pp. 42-49, February 2005.

Foundation for Intelligent Physical Agents (FIPA),
http://www.fipa.org/specs/fipa00023/

I. Satoh, “Software agents for ambient intelligence”,
Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, pp.1147-1150, 2004.

J. Alonso, et al, “Development of a Distributive Control
Scheme for Fluorescent Lighting based on LonWorks
Technology”, IEEE Transactions on Industrial
Electronic, Vol. 47, No. 6, pp. 1253-1262, 2000.

J. Bohn, F. Mattern, “Super-Distributed RFID
Infrastructures”, Lecture Notes in Computer Science
(LNCS) No. 3295, Springer-Verlag, pp. 1-12,
Eindhoven, Netherlands, November 8-10, 2004.

M. G. Ioannides, “Design and Implementation of PLC
based Monitoring Control System for Induction
Motor”, IEEE Transactions on Energy Conversion,
pp. 469-476, 2004.

R. Brennan and D. Norrie, “Agents, holons and function
blocks: Distributed intelligent control in
manufacturing”, Journal of App. Sys Studies, 2001.

S. Naby, and P. Giorgini, “Locating Agents in RFID
Architectures”, Technical Report # DIT-06-095,
University of Trento, Italy, December 2006.

A FRAMEWORK FOR DISTRIBUTED AND INTELLIGENT PROCESS CONTROL

243

